On Carlsson Type Orthogonality and Characterization of Inner Product Spaces


Eder Kikianty, Sever S. Dragomir




In an inner product space, two vectors are orthogonal if their inner product is zero. In a normed space, numerous notions of orthogonality have been introduced via equivalent propositions to the usual orthogonality, e.g. orthogonal vectors satisfy the Pythagorean law. In 2010, Kikianty and Dragomir [9] introduced the $p$-HH-norms ($1\leq p<\infty$) on the Cartesian square of a normed space. Some notions of orthogonality have been introduced by utilizing the 2-HH-norm [10]. These notions of orthogonality are closely related to the classical Pythagorean orthogonality and Isosceles orthogonality. A Carlsson type orthogonality in terms of the 2-HH-norm is considered, which generalizes the previous definitions. The main properties of this orthogonality are studied and some useful consequences are obtained. These consequences include characterizations of inner product space.