T.K. Dyikanov ON μ-BOUNDED AND PRECOMPACT UNIFORM MAPPINGS (Received 03.05.1990.)

Abstract. We transfer some notions and results concerning topological and uniform spaces to the class of uniformly continuous mappings.

Let f be a mapping from a set X onto a topological space (Y,\mathcal{T}) . A system $U=\{U_0:0\in\mathcal{T}\}$ of pseudouniformities U_0 on the sets $f^{-1}(0)$ is called a **pseudopreuniformity on the mapping f** [1] if for every $0,0'\in\mathcal{T}$ such that $0'\in 0$ the identity embedding of $f^{-1}(0')$ into $f^{-1}(0)$ is a uniformly continuous mapping with respect to the pseudouniformities U_0 , and U_0 . Moreover, if for every two distinct points $x,x'\in f^{-1}(y),\ y\in Y$, there exist a neighbourhood 0 of y and a cover $\alpha\in U_0$ such that x' does not belong to $\alpha(x)=\cup\{A\in\alpha:x\in A\}$, then the pseudopreuniformity U on f is called a **preuniformity** on f and the pair (f,U) is called a **preuniform mapping**.

Let X' be another set. Let U' = $\{U_0': 0 \in \mathcal{T}\}$ be a preuniformity on a mapping $f': X' \to (Y,\mathcal{T})$. A mapping $\lambda: X \to X'$ satisfying condition $f = f' \cdot \lambda$ is called a (U,U')-uniformly continuous morphism of f to f' [1] if for every $0' \in \mathcal{T}$ and every cover $\alpha' \in U_0'$, there exists $0 \in \mathcal{T}$ such that $0 \in 0'$ and $\lambda^{-1}(\alpha') \cap f^{-1}(0) \in U_0$.

Let $\alpha=\{A\}$ be a uniform cover of a set $f^{-1}(0)$. The star of a set M in $f^{-1}(0)$ with respect to α is the set $\alpha(M)=\cup\{A\in\alpha:A\cap M\neq\emptyset\}$. A set M is called α -dense in $(f^{-1}(0),U_0)$ [2] if for every $x\in f^{-1}(0)$ there exists $x'\in M$ such that $x\in\alpha(x')$, i.e. $\alpha(M)=f^{-1}(0)$.

Let μ be a cardinal number. A pseudopreuniformity U on f and pseudopreuniform mapping (f,U) are called μ -bounded if for every $0 \in \mathcal{I}$ and every $\alpha \in U_0$ there exists a set M whi i is α -dense in $f^{-1}(0)$ and $|M| \le \mu$; if μ is finite, then (f,U) is called totally bounded.

AMS Subject Classification (1980): 54E15, 54E52

PROPOSITION 1. If $\lambda: X \to X'$ is a (U,U')-uniformly continuous morphism of a μ -bounded pseudopreuniform mapping $(f,U): X \to Y$ to a pseudo preuniform mapping $(f',U'): X' \to Y$, then the mapping (f',U') is also μ -bounded.

PROPOSITION 2. If $(f,U):X \to Y$ is a μ -bounded pseudopreuniform mapping, then for every $X' \subset X$ the induced pseudopreuniformity $U' \equiv U | f'$ on the mapping $f' = f | X' : X' \to Y$ is μ -bounded.

PROPOSITION 3. Let X' be a dense set in X with respect to the topology induced by the psedopreuniformity U on f. If the mapping (f',U'): $X' \to Y$ is μ -bounded, then $(f,U):X \to Y$ is also μ -bounded.

The proofs of these propositions follow from the following known fact [2]: for every pseudouniform space (X,U) the following conditions are equivalent: (1) the space (X,U) is μ -bounded; (2) there is a base $\mathcal B$ of U having cardinality $\leq \mu$; (3) there is a base $\mathcal B$ for U such that every uniform cover of X has cardinality $\leq \mu$.

A preuniform mapping $(f^*, U^*): X^* \to Y$ is called a completion of a mapping $(f, U): X \to Y$ [3] if :

- (a) the mapping (f*,U*) is complete;
- (b) if $e_U: X \to X^*$ is a uniform embedding, then $X^* = [e_U(X)];$
- (c) for every (U,U')-uniformly continuous morphism λ of (f,U) to a complete mapping (f',U') there exists a (U^{*},U')-uniformly continuous morphism λ ^{*} of f to f' such that λ ^{*} \cdot e_U = λ .

PROPOSITION 4. A completion of a μ -bounded preuniform mapping is also μ -bounded.

A preuniformity U on f and a preuniform mapping (f,U) are called precompact if for every $0 \in \mathcal{T}$ the uniformity U_0 has a base consisting of finite covers.

PROPOSITION 5. For any preuniform mapping (f,U) the following conditions are equivalent: (1) (f,U) is a totally bounded mapping; (2) (f,U) is precompact; (3) the completion (f^*,U^*) of (f,U) is a compact (\equiv perfect) mapping.

REFERENCES

- [1] B.A. PASYNKOV, Uniformities on mappings, TOPOSYM 3(1988), p. 23.
- [2] A.A. BORUBAEV, Uniform spaces, Frunze, 1987 (in Russian).
- [3] B.A. PASYNKOV, On completeness of uniform mappings, TOPOSYM 3(1988).

pr. Vernadskogo 89/174, 117526 Moscow, USSR