A.A. Borubaev

ON COMPLETENESS AND COMPLETIONS OF UNIFORMLY

CONTINUOUS MAPPINGS

(Received 03.05.1990.)

uniformly continuous notion of complete Abstract. We introduce the mappings. A completion of a uniformly continuous mapping is defined.

A uniformly continuous mapping $f:(X,U) \rightarrow (Y,V)$ of a uniform space (X,U) onto a uniform space (Y,V) is called complete if for every Cauchy filter F in (X,U) such that f(F) is convergent in (Y,V), it follows that F is convergent in (X,U).

Let us consider the following diagram

Let us consider the following diagram
$$(X,U) \xrightarrow{i_{X}} (\widetilde{X},\widetilde{U})$$

$$\parallel f \qquad \parallel \widetilde{f}$$

$$V f \qquad V f$$

$$(Y,V) \xrightarrow{i_{Y}} (\widetilde{Y},\widetilde{V})$$

where $(\widetilde{X},\widetilde{U})$ and $(\widetilde{Y},\widetilde{V})$ are completions of spaces (X,U) and (Y,V), respectively, i_{χ} and i_{χ} canonical embeddings of (X,U) and (Y,V) in $(\widetilde{X},\widetilde{U})$ and $(\widetilde{Y},\widetilde{V})$ and \widetilde{f} a unique uniformly continuous extension of the mapping f. This diagram is commutative and it is a pull-back in the category Unif.

THEOREM 1. Let $f:(X,U) \to (Y,V)$ be a uniformly continuous mapping. Then the following conditions are equivalent:

- (1) The mapping f is complete;
- (2) The diagram (1) is a pull-back in the category Unif;
- (3) $\tilde{f}(\tilde{X} \setminus X) \subset \tilde{Y} \setminus Y$.

Proof. (1) \Rightarrow (2). Let f be complete and let $\varphi: (Z, W) \to (\widetilde{X}, \widetilde{U})$ and $\psi: (Z,W) \to (\widetilde{Y},\widetilde{V})$ be uniformly continuous mappings such that $\widetilde{f} \cdot \varphi = i_{V} \cdot \psi$. Let us show that the diagram (1) is a pull-back in the category Unif, i.e. there is a (unique) uniformly continuous mapping $h:(Z,W) \rightarrow (X,U)$

AMS Subject Classification (1980): 54E15, 54E52

such that $i_X \cdot h = \varphi$ and $f \cdot h = \psi$. Let z be an arbitrary element in Z and $\mathcal B$ a filter of neighbourhoods of the point $\varphi(z)$ in $(\widetilde X,\widetilde U)$. Then $F = i_X^{-1}(\mathcal B)$ is a Cauchy filter in (X,U). As $\widetilde f(\varphi(z)) = i_Y(\psi(z))$, it is not difficult to see that f(F) converges to the point $\varphi(z)$ in (Y,V). Then, according to the definition of a complete mapping, the filter F converges to a point $x \in X$. Now putting h(z) = x we have defined the mapping $h: Z \to X$ which is uniformly continuous and satisfies the conditions $i_X \cdot h = \varphi$ and $f \cdot h = \psi$.

- (2) \Rightarrow (3). Let $y \in Y$ and $y \notin \widetilde{Y} \setminus Y$. We will show that $y \notin \widetilde{f}(\widetilde{X} \setminus X)$. Consider the one-point uniform space $Z = \{y\}$ with the trivial uniformity W. Let $p \in \widetilde{X}$ be an element such that $f(p) = i_{\widetilde{Y}}(y)$. Putting $\psi(y) = y$ and $\varphi(y) = p$, we have defined mappings $\varphi: Z \to \widetilde{X}$ and $\psi: Z \to Y$ for which, by the construction, we have $\widetilde{f} \cdot \varphi = i_{\widetilde{Y}} \cdot \psi$. Then, according to condition (2), one has $i_{\widetilde{Y}} \cdot h = \varphi$ and $f \cdot h = \psi$. Hence, $p \in X$ and thus $\widetilde{f}^{-1}(y) \in X$. This means that $y \notin \widetilde{f}(\widetilde{X} \setminus X)$ and the inclusion (3) is proved.
- (3) ⇒ (1). Let F be a Cauchy filter in (X,U) such that f(F) converges to a point y in (Y,V). Then F is a base of some Cauchy filter in the complete space $(\widetilde{X},\widetilde{U})$ and it converges to a point x in $(\widetilde{X},\widetilde{U})$. Then $\widetilde{f}(x)$ = y. From $\widetilde{f}(\widetilde{X} \setminus X) \subset \widetilde{Y} \setminus Y$ it follows that $x \in X$. Therefore, F converges (in $(\widetilde{X},\widetilde{U})$) to the point $x \in X$, i.e. f is a complete mapping. The theorem is proved.

Let $f:(X,U) \to (Y,V)$ be a uniformly continuous mapping. A uniformly continuous mapping $f^*:(X^*,U^*) \to (Y,V)$ is called a completion of f if the following conditions are satisfied:

- 1) (X,U) is a dense uniform subspace of (X,U);
- 2) The mapping f * is complete;
- 3) $f = f^* | X$.

THEOREM 2. Every uniformly continuous mapping has only one (up to a uniform isomorphism) completion.

Proof. Let $f:(X,U) \to (Y,V)$ be uniformly continuous. Let $\widetilde{f}:(\widetilde{X},\widetilde{U}) \to (\widetilde{Y},\widetilde{V})$ be the unique uniformly continuous extension of the mapping f to the completions \widetilde{X} and \widetilde{Y} of X and Y, respectively. Put $X^* = \widetilde{f}^{-1}(Y)$. Let U be the uniformity on X^* induced by the uniformity \widetilde{U} and $f^* = \widetilde{f}|X^*$. It is easy to see that $f:(X^*,U^*) \to (Y,V)$ is a completion of f.

A uniformly continuous mapping $f:(X,U) \to (Y,V)$ is called uniformly perfect (see [1]) if it is uniformly continuous precompact and perfect (in the topological sense).

THEOREM 3. A mapping $f:(X,U) \to (Y,V)$ is uniformly perfect iff it is complete and precompact.

Proof. Clearly, if f is uniformly perfect, then f is complete. Let f be a complete precompact mapping. We are going to show that f is perfect.(i) f is a compact mapping: Take any y \in Y. Let ${\sf F}_{_{f V}}$ be an arbitrary Cauchy filter in $(f^{-1}(y), U_y)$. Then $f(F_y)$ converges to the point y and because of completeness of f, F_y converges in $(f^{-1}(y), U_y)$. Hence, $(f^{-1}(y), U_{V})$ is a complete subspace of (X, U). On the other hand, from precompactness of f it follows that $(f^{-1}(y), U_y)$ is precompact in (X, U). So, $(f^{-1}(y), U_y)$ is compact. (ii) f is closed: Let $y \in Y$ and let 0 be an open set containing $f^{-1}(y)$. We will show that there exists an open set Gsuch that $y \in G$ and $f^{-1}(G) \subset O$. Suppose, on the contrary, that for every $\beta \in V$, $f^{-1}(\beta(y)) \cap (X \setminus 0) \neq \emptyset$. Let F be a ultrafilter in X containing the centered system $\{f^{-1}(\beta(y)) \cap (X \setminus 0): \beta \in V\}$. Then $\gamma \cap F \neq \emptyset$ for every finite covering $\gamma \in U$. By the construction, $f^{-1}(\beta) \cap F \neq \emptyset$ for every $\beta \in V$. The precompactness of f implies that $\alpha \cap F \neq \emptyset$ for every $\alpha \in U$, i.e. F is a Cauchy filter in (X,U). It is clear that f(F) converges to the point $y \in Y$. Then, by the definition of a complete mapping, F converges to some point $x \in X$. Thus $\cap \{f^{-1}(\beta(y)) \cap (X \setminus 0): \beta \in V\}$ eq Ø. However, it is easy to see that we came to a contradiction. Hence, f is a closed mapping.

THEOREM 4. A uniformly continuous mapping f is precompact iff its completion is uniformly perfect.

REFERENCES

[1] A.A. BORUBAEV, Uniformly perfect mappings. Absolutes of uniform spaces, Comp. Rend. Acad. Bulg. Sci. 42(1989), 19-21 (in Russian).

A.A. Borubaev

O KOMPLETNOSTI I KOMPLETIRANJU UNIFORMNO NEPREKIDNIH PRESLIKAVANJA

Definiše se kompletno i uniformno savršeno uniformno neprekidno preslikavanje i uvodi pojam kompletiranja uniformno neprekidnih preslikavanja. Proučene su neke veze medju ovim preslikavanjima.

University of Frunze 720024 Frunze, USSR