Ljubiša Kočinac

A CHARACTERIZATION OF ω_{μ} -METRIZABLE SPACES (Received 07.05.1990.)

Abstract. We define the k-developability degree of a topological space and prove that a regular space X is ω_{μ} -metrizable iff it is ω_{μ} -additive and its k-developability degree is ω_{μ} .

In [3], R.E. Hodel defined the metrizability degree m(X) of a topological space X to be the smallest infinite cardinal τ such that there is a base for X consisting of τ discrete collections. Hodel also gave several characterizations of m(X) and extended some metrization theorems to higher cardinality.

In [4] P. Nyikos and H.-C. Reichel introduced the developability degree of a regular space and showed its importance in metrization theory.

DEFINITION 1.([4]) The developability degree of a regular space X, denoted by dv(X), is the smallest infinite cardinal τ such that there exists a collection $\{\mathcal{U}_{\alpha}: \alpha \in \tau\}$ of open covers of X such that the family $\{\operatorname{St}(x,\mathcal{U}_{\alpha}): \alpha \in \tau\}$ is a local base at any point $x \in X$.

(As usual, for A < X, $\operatorname{St}(A,\mathcal{U}_{\alpha}) = \cup \{U: U \in \mathcal{U}_{\alpha}, A \cap U \neq \varnothing\}$. For $x \in X$ we write $\operatorname{St}(x,\mathcal{U}_{\alpha})$ instead of $\operatorname{St}(\{x\},\mathcal{U}_{\alpha}\}$. $\operatorname{St}^2(x,\mathcal{U}_{\alpha}) = \operatorname{St}(\operatorname{St}(x,\mathcal{U}_{\alpha}),\mathcal{U}_{\alpha})$.)

It is known that the following metrization theorem is true: a Hausdorff space X is metrizable iff it has a contable collection $\{\mathcal{U}_n:n\in\mathbb{N}\}$ of open covers such that for every compact set C c X and every neighborhood U of C there is some $i\in\mathbb{N}$ for which $\operatorname{St}(C,\mathcal{U}_i)\subset U$ (see [1;T.1.1] and [2;3.4.E]).

AMS Subject Classification (1980): 54A25, 54E35

Here we define the k-developability degree of a regular space and extend this result to higher cardinality.

DEFINITION 2. The k-developability degree kdv(X) of a regular space X is the smallest infinite cardinal τ such that there exists a family $\{\mathcal{U}_{\alpha}: \alpha \in \tau\}$ of open covers of X with the property that for every compact set $C \subset X$ and every its neighborhood V there is a \mathcal{U}_{α} with $St(C,\mathcal{U}_{\alpha}) \subset V$.

Clearly, $dv(X) \le kdv(X)$ for every regular space X. There is a space Y such that dv(Y) < kdv(Y) (see [1]).

PROPOSITION 1. For any regular space X, $kdv(X) \le m(X)$.

Proof. Let $m(X) = \tau$. We use the characterization "(MM)" of m(X) proved by R.E. Hodel in [3]:

(MM) X has a collection $\{\mathcal{U}_{\alpha}:\alpha\in\tau\}$ of open covers such that for every point $x\in X$, $\{\operatorname{St}^2(x,\mathcal{U}_{\alpha}):\alpha\in\tau\}$ is a local base at x.

Denote by Λ the set of all finite subsets $\lambda=(\alpha_1,\ldots,\alpha_k)$ of $\tau.$ Of course, $|\Lambda|\leq \tau.$ For $\lambda=(\alpha_1,\ldots,\alpha_k)\in \Lambda$ put

 $\begin{array}{c} \mathcal{V}_{\lambda} = \wedge \{\mathcal{U}_{\alpha_{1}}: 1 \leq i \leq k\} \ \equiv \{U_{\alpha_{1}} \cap \ldots \cap U_{\alpha_{k}}: U_{\alpha_{i}} \in \mathcal{U}_{\alpha_{i}}, \ 1 \leq i \leq k\}. \\ \text{We shall prove that the collection } \{\mathcal{V}_{\lambda}: \lambda \in \Lambda\} \text{ witnesses } \mathrm{kdv}(X) \leq \tau. \text{ Let } \mathrm{C} \text{ be any compact subset of } \mathrm{X} \text{ and } \mathrm{W} \text{ any neighborhood of } \mathrm{C}. \mathrm{For \ every} \ x \in \mathrm{C} \mathrm{C} \mathrm{C} \text{ there exists some } \alpha(x) \in \tau \text{ such that } x \in \mathrm{St}(x, \mathcal{U}_{\alpha(x)}) \subset \mathrm{St}^{2}(x, \mathcal{U}_{\alpha(x)}) \subset \mathrm{W}. \\ \mathrm{The \ family} \ \{\mathrm{St}(x, \mathcal{U}_{\alpha(x)}: x \in \mathrm{C}\} \text{ is an \ open \ cover \ of } \mathrm{C} \text{ so \ that \ one \ can \ find a \ finite \ set} \ \{x_{1}, \ldots, x_{k}\} \subset \mathrm{C} \text{ such \ that } \mathrm{C} \subset \cup \{\mathrm{St}(x_{1}, \mathcal{U}_{\alpha_{1}}): 1 \leq i \leq k\}, \text{ where } \mathcal{U}_{\alpha_{1}} = \mathcal{U}_{\alpha(x_{1})}. \text{ Let } \lambda = (\alpha_{1}, \ldots, \alpha_{k}) \in \Lambda. \text{ We are going to \ prove } \mathrm{St}(\mathrm{C}, \mathcal{V}_{\lambda}) \subset \mathrm{W}. \\ \mathrm{Let} \ p \in \mathrm{St}(\mathrm{C}, \mathcal{V}_{\lambda}). \ \text{There \ exists \ a} \ \mathrm{V} \in \mathcal{V}_{\lambda} \text{ such that } \mathrm{p} \in \mathrm{V} \text{ and } \mathrm{V} \cap \mathrm{C} \neq \varnothing. \\ \mathrm{Let} \ q \in \mathrm{V} \cap \mathrm{C}. \ \text{Then \ p} \in \mathrm{St}(\mathrm{q}, \mathcal{V}_{\lambda}). \ \text{But} \ q \in \mathrm{St}(x_{1}, \mathcal{U}_{\alpha_{1}}) \text{ for \ some \ } \mathrm{j} \leq k \text{ so \ that \ we have:} \end{array}$

 $\begin{array}{c} \textbf{p} \in \textbf{St}(\textbf{q}, \mathcal{V}_{\lambda}) < \textbf{St}(\textbf{q}, \mathcal{U}_{\alpha_{j}}) < \textbf{St}(\textbf{St}(\textbf{x}_{j}, \mathcal{U}_{\alpha_{j}}), \mathcal{U}_{\alpha_{j}}) = \textbf{St}^{2}(\textbf{x}_{j}, \mathcal{U}_{\alpha_{j}}) < \textbf{W}. \\ \textbf{This means } \textbf{St}(\textbf{C}, \mathcal{V}_{\lambda}) < \textbf{W} \text{ and the proposition is proved.} \end{array}$

In [4], it was shown that dv(X) = m(X) for every LOTS X. So we have COROLLARY 1. For any LOTS X we have dv(X) = kdv(X) = m(X).

Recall that a space X is τ -additive, τ a cardinal, if the intersection of less then τ open sets is open.

PROPOSITION 2. If X is a regular τ -additive space with $kdv(X) = \tau$, then $m(X) \leq \tau$.

Proof. Let us suppose that a collection $\{\mathcal{U}_{\alpha}: \alpha \in \tau\}$ satisfies the conditions of the definition of kdv(X). Using τ -additivity of X we can assume that for every $\alpha, \beta \in \tau$, $\alpha > \beta$ implies \mathcal{U}_{α} is a refinement of \mathcal{U}_{β} . We shall prove that this collection satisfies condition (AS) in Hodel's paper [3] which is a characterization of m(X):

(AS) X has a collection $\{\mathcal{U}_{\alpha} : \alpha \in \tau\}$ of open covers such that for every point $x \in X$ and every neighborhood W of x there is a neighborhood V of X and $\beta \in \tau$ such that $\mathrm{St}(V,\mathcal{U}_{\beta}) \subset W$.

Suppose on the contrary that this is not true. Then there exists a point $x \in X$ and its neighborhood W such that for every neighborhood V of X and every $\alpha \in \tau$ one has $St(V, \mathcal{U}_{\alpha}) \cap (X \setminus W) \neq \emptyset$. Therefore, for every $\alpha \in \tau$ there is $X_{\alpha} \in St(X, \mathcal{U}_{\alpha})$ for which $St(X_{\alpha}, \mathcal{U}_{\alpha}) \cap (X \setminus W) \neq \emptyset$. Using the fact that $\{St(X, \mathcal{U}_{\alpha}): \alpha \in \tau\}$ is a local base at X and for every X > B $St(X, \mathcal{U}_{\alpha}) \subset St(X, \mathcal{U}_{\beta})$ one can easily verify that the T-sequence $(X_{\alpha}: \alpha \in \tau)$ converges to X. So, $C = \{X_{\alpha}: \alpha \in \tau\} \cup \{X\}$ is a compact subset of X. Now for every $X \in T$ we have: $St(C, \mathcal{U}_{\alpha}) \cap (X \setminus W) \supset St(X_{\alpha}, \mathcal{U}_{\alpha}) \cap (X \setminus W) \neq \emptyset$ which is a contradiction. This completes the proof.

From Propositions 1 and 2 we obtain

THEOREM 1. If X is a regular τ -additive space, then $m(X) = \tau$ if and only if $kdv(X) = \tau$.

Recall that a Tychonoff space X is called ω -metrizable if its topology can be induced by a uniformity having a linearly ordered base of cofinality ω_μ .

Using a result of Wang Shu-Tang (see [3]) that a regular space X is ω_μ -metrizable iff it is ω_μ -additive and m(X) = ω_μ we have

COROLLARY 2. A regular space X is $\omega_\mu\text{-metrizable}$ if and only if it is $\omega_\mu\text{-additive}$ and kdv(X) = ω_μ .

REFERENCES

- [1] A.V. ARHANGEL'SKII, Bicompact sets and the topology of spaces, Trans. Mosc. Math. Soc. 13(1965), 1-62.
- [2] R. ENGELKING, General Topology, PWN, Warszawa, 1977.

- [3] R.E. HODEL, Extensions of metrization theorems to higher cardinality, Fund. Math. 87(1975), 219-229.
- [4] P. NYIKOS & H.C.-REICHEL, Some results on cardinal functions in metrization theory, Glasnik Mat. 15(35)(1980), 183-202.

Ljubiša Kočinac

JEDNA KARAKTERIZACIJA ω_{μ} -METRIZABILNIH PROSTORA

Uvodi se kardinalna funkcija k-Moore-ov stepen kdv(X) datog regularnog prostora X i koristi se radi karakterizacije ω_{μ} -metrizabilnih prostora: regularan prostor X je ω_{μ} -metrizabilan ako i samo ako je ω_{μ} -aditivan i kdv(X) = ω_{μ} .

Filozofski fakultet Univerzitet u Nišu 18000 Niš, Yugoslavia