Zbornik radova Filozofskog fakulteta u Nisu
Serija Matematika 4(1880), 71-78

Stanimirovi¢ Predrag
LEXICAL ANALYSIS OF LISP-EXPRESSIONS IN TURBO PASCAL
(Received 17.03.1990.)

Abstract. In the interpreter of programming language MLISP,
process of lexical analysls executes before of syntax analysis
evaluation.

The process of lexlical analysis in this interpreter contalns

following stages:
- determination the length of an atom;
- detection of the atom;
| - bullding a specific internal form of the atom.

0. Introduction

the
and

the

Any inetrpreter or compiler executes lexical analysis of the

|
|
| input program. A lexical analysis can be independent
|

interpretation or compilation, or it is called dyring the

analysis and the runing of a program.

a character string and lexical units contained in the

Lexical analyzer usualy detects keywords,

AMS Subject Classification (1980): B8F99

71

programming language implementad by the interpreter or compiler.

of

syntax

During the lexical analysis, the source program is accepted as
language

statements are detected. The lexical units are called tokens or atoms.

operators,

identifiers, integrs and real numbers, strings and other lexical units

of the input program. The list of atoms which is detected depends on the

The output of a lexical analysis is a series of atoms. Because
of the increase of effectiveness of the next stages of interpretation or

compilation, each atom is represented by a corresponding internal form.

1. The lexical analyser of ihe programming language MLISP

The lexical analyser of the programming language MLISP detects
the atoms of that language and transforms them into a specific internal
form.

MLISP lexical analyser does not analyse complete source
program in single call. It also contains twe functions which are called
during the process of transformation of the entered MLISP-expression
into the internal form. The result of calling the lexical analyser will

be the internal form of the next atom of the entered expression.

2. The grammar for the lexical analysis

The grammar for the lexical analysis defines the atoms
detected in the lexical analyser. BNF notation is used for the

description of the grammar.

2.1. Constant with fixed values

Two constants with fixed the fixed value are used.

A. nil is the most important simple LISP data type.

In MLISP, nil is used in the following ways:

o nil is the usual list terminator (or, more precisely, nil
represents an empty list).

e nil represent the logical constant false. Any non-nil value
being often thought of as true.

° nil 1s also used as the default result value by some special
function such as cond.

B. The constant t represent value of non-nil expression.

<special__constants> ::= nillt

2.2. Strings

A string is specified as a sequence of characters enclosed in
double quotes.

<string> ::= "<array_chars>"
<array_chars> ::= el <char><array_chars>
<char> ::= <letter>l<digit>|<special_char>
<letter> ::= albl...lz
<digit> ::= 011121314I15I6171819
<special_chars> ::= ~|LI@IHIHI%I*1 (1) +]=]-]7]
72

2.3. Left and right parentheses

The left and right parentheses represent individual atoms
and separators.

<parentheses> ::= (|)

2.4. Integers

An integer is represnted by a sequence of characters starting
with either from plus or minus sign, or a digit 0..9, and containing

only digits.

<integer> ::= [+|-]<integer_out>

<integer_out> ::

<digit>|<array_digits>
<array_digits> ::

el<digit><array digits>

2.5. Build-in functions

Built-in functions represent the atoms whose detection make

that determined function in TURBO PASCAL are called.

<name_of _function> ::= +I=1*|/I=I>I<leql<=I>|/=lor|ifl1+]1-]
carlcdrinot|andlsetlabslneqlcons|condl
atomlnulllcaar|cadrlcdar|cddr!listleval
lastlexitldefunlquotelzeroplpluspl print!
progllprog2iprognl listplminus!|nconsl|

minusplnumberplstrlngplsymbolpllengthlconcat
| substring

2.8. Symbols

A symbol is represents by its name.

<symbol> ::= <array_chars>

3. The internal form of atoms

The internal form of an atom is a pointer variable
representing a record. The fields of the record are defined so that
they carry complete information detected by the lexical analyser.

An exception are the constants with a fixed value. The
internal form of the mil is the pointer nil, while the internal form of

the constant t is the reserved pointer t.

73

Let the pointer variable x™ represent the internal form of an

atom. The two fields of the record x* are defined in the same way for
all the types of atoms:
x*.left:=nil; x*.right:=nil.
The field x".type takes the values of the enumerated type
typesizraz = (name, num, strin, sym). The value of the field x".type

determined the type of the atom.

A. The internal form of a string contains the following fields:

o x*.left := nil;
o Xx*.right := nil;
o X" .type := strin;

o the field x".a represents the concatenation of the

caracters forming the string.

B. The fields of the pointer variable x*, which represents the internal

form of an integer, are defined as follows:

o x*.left := nil;
o x“.right := nil;
o X".type := num;

o the field x*.r represent the numeric value of the

atom.

C. If the pointer variable x* represent the internal form of a built-in

function,

then:

o x*.left
o x*.right
o x~.type

;= nil;

1= nil;

1= name;

o the field x*.a is defined as the concatenation of

the characters forming the atom.

D. If x~ represents the internal form of a symbol, its field are defined

in the feollowing way:
o x*.left
o x~,.right
o x°.type

= mnil;

1= nil; |

1= sym;

o the field %".a represents the concatenations of the

characters forming the symbol.

74

4., The idea of lexical analysis in MLISP

Using of ponters and pointer variables give the following
advantage:

o Lists are basic structure in LISP, and pointers are the best
for their representation.

o Pointers can be composed in binary trees.

o Binary trees are adequate for the process of syntax analysis
and the evaluation of LISP-exressions. The car represented the internal
form of a function, and cdr contains the internal forms of arguments.

o A pointer variable stored on the heap can be disposed.

Before calling the lexical analyser, a complete
MLISP-expression is entered and put into the array a. The a is used as
the input buffer. Elements of the a is characters: each element of the a
corresponds to the character of the expression. The elements of the
array a are the input values of the lexical analyser.

The lexical analyser in the MLISP interpreter consists of the
functions reada and readi.

At the first call, the functions reada and readl use the array
a starting from its first element, and, at each next call - from the
place where the previous analysis has stopped.

Characters from the buffer a are extracted in the function
reada. This function defines the number of the buffer-elements forming
an atom, i.e. his length.

The functicn readl use the length of an atom and forms his

internal form.

4.1. The function READA

The function reada "separates" a "portion" as big as an atom
from the a and copmputes its length.
The meanining of the variables in the function:
o The value of the variable m represents the current length
of the separated atom.
o The value of the variable k represents the index of the
buffer a.
Algorithm is described as follows:
STEF 1.

The starting value of the variable m is zero.

75

STEP 2.

Increase the value of the variable k by one.

STEP 3.
All the spaces and CR and LF sequences is ignored

starting from the k.

STEP 4.
CASE 1. If alk] = '(" or alk]l = ')’ the result of the
functions is one.
CASE 2. If alk]l = '"' then is defined a repeat-until loop
which terminates when alk] = '"’ or alkl = * ' or

alk] = *(’ or alk] = *)".
In the body of the loop increase the values of the
variables k and m by cne.
If a[k] = '"’, the value of the variable m represent
the length of the string, else it represents the
length of the symbol.
CASE 3. For other values of alk] the steps A and B are
executed C.

STEP A.
A while-loop which finites if alk] is equal to an
separator, i.e. alkl'= ' ’ or alkl = *(° or alkl =
") or alk] = #13.
In the body of the loop increase the values of the
variables k and m by one.
When is the while-loop terminated, the value of the
variable m represents the length of the atom.

STEP B.
Decrease the value of k by one in order to make the
lexical analysis start from aseparator at the next

call,

4.2, The function READ1

The function readl detects an atom and builds the
corresponding internal form. The pointer which point to the internal
form of the detected atom is assigned to the name of the function. The

length of the atom, assigned to the name reada, is used during his

detection.

76

For the constant nil set up readl := nil, and for the constant
t set up readl := t. In this way, the internal form of these atoms is
assigned to the name of the function.

For other atoms the pointer p is defined. This pointer points
to the internal form p* of the atom.

The dynamic allocation procedure new(p) alocates a new memory
area in the pointer variable p®. The pointer p points teo the polnter
variable p® to the specific memory adress.

Two fields of the record p* are the same for the all the types

of atoms:
p~.left:=nil; p*.right:=nil.

The remainding fields of that record are defined after the atom
detection.
Command readi:=p the name of the function readl set up to the

internal form of the detected atom.

A. THE DETECTION OF THE ATOMS NIL AND T

The atom pil is detected Dby wusing 1l=reada=3 and
alk-2]+a[k-1]+alk]l="nil".

For the detection of the constant t is used Il=reada=1 and
alkl="t".

B.THE DETECTION OF STRINGS
An atom of the length 1 represents a string if alk-1+1]=""’
and a[k]=""". The remaining fields of the dynamic variable p~ are
defined in the following way:
p*.type:=strin;

C. THE DETECTION OF BUILT-IN FUNCTIONS
An atom of the length 1 represents a built-in function if the
string alk-1+11+ o o o +a[k] is equal to one of the built-in functions
in the implemented language.
If the atom represents a built-in function, the remalning
fields of the ponter variable p® are defined as follows:
P”. type: =name;

pr.ar=alk-1+1]+ o o o +al[k].

D. THE DETECTION OF INTEGERS AND REAL NUMBERS
A real number can be detected using the procedure
val(s,re,code) in TURBO PASCAL. This procedure converts the string value

77

s=a[k-1+1]+ o o o +al[k] to its numeric representation and stored the
result in re. If the string s is somehow invalid, the index of the
offending character is stored in code; otherwise, code is set to zero.

A number re represent an integer if trunc(re)=re.

Remaining flelds of the internal form of such an atom is

defined in this way:
P*. type: =num;

p*.r:=re.

F THE DETECTION OF SYMBOLS
The other atoms are symbols.
Remaining fields of the internal form of an symbol are defined

as follows:
p".type: =sym;

pt.s = a[k-1+1] + ... + alkl.
REFERENCES
[17 LELAND L. BECK, An introduction to systems programing,

Addison-Wesley Publishing Company, San Diego State University, 1987.

[2] ROBERT WILENSKY, LISPcraft, WWNORTON & company, New York, London,
1984.

[3] DAVID GRIES, Compiler Construction for Digital computers, Cornell
University, Toronto, 1971.

[4] ROOBIN HUNTER, The design and constructions of compilers, New York,
1983.

[5] TURBO PASCAL 4,0, USERS GUIDE, Osborn, McGraw Hill, New York.

[6] P. STANIMIROVIC, Implementacija LISP Iinterpretatora u TURBO
PASCALu, magistarski rad.

Predrag Stanimirovidé
LEKSICKA ANALIZA LISP-IZRAZA U TURBO PASCALU

U radu su izloZeni osnovni principi i uloga leksicke analize u
konstrukeciji interpretatora ili kompilatora. U tom kontekstu date su
osnovne koncepcije 1 specificnosti leksicke analize jedne wvarijante
programskog Jjezika LISP u PASCALu.

Filozofski Fakultet
Cirila i metodija 2
18000 Nisg
Yugoslavia

78

	1.pdf (p.1-25)
	2.pdf (p.26-47)
	3.pdf (p.48-71)
	4.pdf (p.72-99)
	5.pdf (p.100-125)

