Jovanka Nikić

A NATURALLY INDUCED STRUCTURE ON A SUBSPACE OF A SPACE WITH AN F (2K+1,-1) - STRUCTURE

(Received 07.04.1990.)

Abstract: In section 1 the results of the author's previous paper [4] are given, where the structure f(2k+1,-1) was defined on the manifold M. In section 2, 3 and 4 there are new results which refer to structure $-f = \phi$ of a rank f = n-1. The hypersurface N^{n-1} of the manifold M is observed and it is shown that ϕ induces on N^{n-1} a natural structure $F = \frac{1}{9} \phi B$, which is a F(3,-1)-structure, or an almost product structure, which depends on the choice of the hypersurface.

Examined also are the integrability conditions of the naturally induced F(3,-1)-structure.

1. Preliminaries. Let us first observe the structure f satisfying the condition $f^{2k+1}-f=0$.

DEFINITION 1. Let M^n be a differentiable manifold of class C^{∞} , and let there be a tensor field $f \neq 0$ of the type (1,1) and of class C^{∞} such that

(1.1)
$$f^{2k+1} - f = 0$$
, $f^{2i+1} - f \neq 0$ for $i \leq i < k$,

where k is a fixed positive integer, greater then 1. Let rank f=r be constant. We call such a structure an f(k+1,-1)-structure or an f-structure of rank r and of degree 2k+1. For a tensor field f, $f\neq 0$ satisfying (1.1), the operators

$$(1.2) m = 1 - f^{2k}, 1 = f^{2k}$$

are complementary projection operators where 1 denotes the identity operator applied to the tangent space at a point of the manifold.

It is easily seen that l+m=1, $l^2=1$, $m^2=m$, ml=lm=0 by virtue of (1.1), which proves the Theorem.

AMS Subject Classification (1980): 53C15

Let L and M be the complementary distributions corresponding to the operators l and m, respectively. If rank f = r is constant, then $\dim L = r$ and $\dim M = n - r$.

THEOREM 1.1. For f satisfying (1.1) and l, m, defined by (1.2), we have

If = fl = f, mf = fm = 0,
$$f^2m = 0$$

For f satisfying (1.1) and m, defined by (1.2), we have (1.3) $(m + f^k)^2 = 1$, $fm = mf = 0$.

THEOREM 1.2 Suppose that there is a projection operator m on M^n and that there exists a tensor feild f such that (1.3) is satisfied; then f satisfies (1.1).

PROPOSITION 1.1. Let an f-structure of rank r and of degree 2k+1 be given on M^n , then $f^{2k}l = 1$ and $f^{2k}m = 0$. Then f^k acts on L as an almost product structure operator and on M as a null operator.

In [4] an adapted frame u_1, \dots, u_n for an f(2k+1,-1)-structure is chosen and matrices of tensors g_{ij} and f_i^{ij} are given with respect to this

chosen and matrices of tensors
$$g_{ij}$$
 and f_i' are given with respect to the adapted frame:
$$\begin{bmatrix} 0 & E & 2p - \frac{2p}{2} \\ -E & 2p & 0 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Let $\bar{u}_1,\dots,\bar{u}_n$ be another adapted frame with respect to wich the metric tensor g and the tensor f have the same components as (1.4). We put $\bar{u}_j = \gamma_j^J u_j$, then we find that γ has a form

$$\gamma = \begin{bmatrix} s & \frac{2p}{2^{q}} \\ & s & \frac{2p}{2^{q-1}} \\ & & s & \\ & & \frac{p}{2} \\ & & & -B_{p} & A_{p} \\ & & & & 0_{n-r} \end{bmatrix}$$

where S $\left(\frac{2p}{i}\right)$, $i=2,4,\ldots,2^q$ is a matrix of the form

where each matrix A_t , t = 1,...,i has a format $\left(\frac{2p}{i}\right) \times \left(\frac{2p}{i}\right)$, i.e. $s \times s$.

Let $\overline{S}_{\left(\frac{2p}{i}\right)}$ be the tangent group defined by $S_{\left(\frac{2p}{i}\right)}$. then we can say

that the group of the tangent bundle of the manifold can be reduced to

$$\bar{S}\left(\frac{2p}{2^q}\right)^{\times \bar{S}}\left(\frac{2p}{2^{q-1}}\right)^{\times \dots \times \bar{S}}\left(\frac{2p}{4}\right)^{\times U_p \times O_{2p} \times O_{n-r}}.$$

THEOREM 1.3. A necessary and sufficient condition for an n-dimensional manifold M^n to admit a tensor field $f \neq 0$ of the type (1,1) and of rank r, such that $f^{2 \cdot 2^q + 1} - f = 0$, is that

(i)
$$r = (q+1)2p$$

(ii)
$$p = s \cdot 2^q = s \cdot k$$
 and

(iii) the group of the tangent bundle of the manifold be reduced to the group

$$\bar{\bar{S}}_{\left(\begin{array}{c}2p\\2\end{array}\right)}^{2p}\times\bar{\bar{S}}_{\frac{2p}{2^{q-1}}}^{2p}\times\cdots\times\bar{\bar{S}}_{\left(\begin{array}{c}2p\\4\end{array}\right)}^{2p}\times U_p\times O_{2p}\times O_{n-r}.$$

2. Almost paracontact strusture - f^k . In what follows let $k = 2^q$, $q \in \mathbb{N}$.

THEOREM 2.1. Denote $-f^k = \phi$. The structure ϕ satisfies the condition $\phi^3 - \phi = 0$, i.e. ϕ is an $\phi(3,-1)$ -structure.

Proof. We can see that

THEOREM 2.2. The structure ϕ is an almost paracontact Riemannian structure if rank f = n-1.

Proof. Let

$$m = 1 - f^{2k} = \begin{bmatrix} 0 & 0 & & & \\ 0 & 0 & & & \\ & \ddots & & & \\ & & 0 & 0 & \\ & & & 0 & 1 \end{bmatrix}, \qquad \xi = \begin{bmatrix} 0 & & & \\ 0 & & & \\ \vdots & & & \\ 0 & 1 \end{bmatrix}, \qquad \mu = (0, 0, \dots, 0, 1)$$

M is an 1-dimensional distribution.

Multiplying the coresponding matrices, it is clear that $m=\mu\otimes\xi$, $\phi^2=1-m=1-\mu\otimes\xi$, $\phi\xi=0$, $\mu\phi=0$, $\xi(\mu)=1$, $\mu(x)=g(\xi,x)$ and $g(\phi x, \phi y)=g(x,y)-\mu(x)\cdot\mu(y)$ which prove the Theorem.

3. The structure on the hypersurface

THEOREM 3.1. Let M^n be a manifold with $\phi(3,-1)$ -structure of rank r and let N^m be a hypersurface in M^n , m=n-1. If the dimension of $T(N^m)_p \cap f(T(N^m))_p$ is constant, say s, for all $p \in N^m$, then N^m possesses a natural F(3,-1)-structure of rank s.

Proof. Let C ba a transversal defined on N^m , i.e. $C \in T(M^n)_p$, but $C \notin T(N^m)_p$ for all $p \in N^m$. Let B be a differential of tha imbedding of N^m in M^n . Then B is a map of $T(N^m)$ into $T_R(M^n)$, where $T_R(M^n)$ denotes the rastriction of $T(M^n)$, the tangent bundle of M^n to N^m . Then we can find a locally 1-form C defined on N^m such that:

$$B^{-1}B = I$$
 $BB^{-1} = I - C^* \otimes C,$
 $C^*B = B^{-1}C = 0,$ $C^*(C) = 1.$

Let F be defined locally on $T(N^{n-1})$ by $F = B^{-1}\phi B$. Then:

$$F^{2}X = B^{-1}\phi B B^{-1}\Phi B X = B^{-1}\phi \ (I - C^{*} \otimes C) \ \phi \ (BX) = B^{-1}\phi^{2} \ (BX) - C^{*}\phi \ (BX) \ B^{-1}\phi C.$$

If C is in distribution M, then ϕC = 0; so we have that

$$(F^{3} - F)X = B^{-1}\phi BB^{-1}\phi^{2}BX - B^{-1}\phi BX =$$

$$= B^{-1}\phi \ (I - C^{*} \otimes C) \ \phi^{2}BX - B^{-1}\phi BX = B^{-1}((\phi^{3} - \phi)BX) = 0$$

for all X. On the other hand, supose that C is in distribution L. Then:

$$(F^{3}-F)X = (B^{-1}\phi B)B^{-1}\phi^{2}(BX) - (B^{-1}\phi B)C^{*}(\phi BX)B^{-1}\phi C - B^{-1}\phi BX = B^{-1}(\phi^{3}-\phi)BX - C^{*}(\phi^{2}BX)B^{-1}\phi C - C^{*}(\phi BX)B^{-1}\phi^{2}C + C^{*}(\phi BX)C^{*}(\phi C)B^{-1}\phi C = 0$$
 since $\phi^{2}C = C$ on L and $C^{*}B = B^{-1}C = 0$, and since we can choose C^{*} so that $C^{*}(\phi C) = 0$. Also $C^{*}(\phi^{2}BX) = C^{*}(BX + (\phi^{2}-1)BX) = 0$

THEOREM 3.2. If (ϕ, ξ, μ) is an almost paracontact structure on M^n , hten N^{n-1} possesses a natural F(3,-1)-structure if ξ is tangent to N^{n-1} . The hypersurface N^{n-1} possesses a natural almost product structure if ξ is not tangent to N^{n-1} .

Proof. When ξ is not tangent to N^{n-1} , ξ can be chosen for a pseudonormal. Then we have from Theorem 4.1. that $T(N^{n-1}) \cap f(T(N^{n-1})) = T(N^{n-1})$, and rank $F = \dim N^{n-1} = n - 1$. The almost paracontact structure F has a maximal rank, i.e. F is an almost product structure.

4. Integrability conditions

The structure ϕ is integrable if $[\phi, \phi] = 0$; $[\phi, \phi]$ denotes the Nijenhuis tensor of ϕ , i.e.

$$[\phi, \phi] (X, Y) = [\phi X, \phi Y] - \phi [\phi X, Y] - \phi [X, \phi Y] + \phi^{2}[X, Y]$$
 for all vector fields X and Y on M^{n} .

In this section we shall assume that ϕ is an $\phi(3,-1)$ -structure on M^{II} and that $F=B^{-1}\phi B$ is the naturally induced F(3,-1)-structure.

THEOREM 4.1. Let N^{n-1} be a hypersurface in M^n , and suppose ϕ is integrable. If, locally, the transversal to N^{n-1} can be found to lie in the distribution M, then the induced F(3,-1)-structure on N^{n-1} is integrable.

Proof. We see that

 $[F,F](X,Y) = [FX,FY] - F[FX,Y] - F[X,FY] + F^{2}[X,Y] =$

- $= B^{-1}[BB^{-1}\phi BX, BB^{-1}\phi BY] B^{-1}\phi [BB^{-1}\phi BX, BY] -$
- $-B^{-1}\phi [BX, BB^{-1}\phi BY] + B^{-1}\phi BB^{-1}\phi [BX, BY] =$
- $= B^{-1} \{ [\phi, \phi] (BX, BY) [C^*(\phi BX)C, \phi BY] [\phi BX, C^*(\phi BY)C] + (C^*(\phi BX)C, \phi BY] [\phi BX, C^*(\phi BY)C] + (C^*(\phi BX)C, \phi BY] [\phi BX, C^*(\phi BY)C] + (C^*(\phi BX)C, \phi BY] [\phi BX, C^*(\phi BY)C] + (C^*(\phi BX)C, \phi BY] [\phi BX, C^*(\phi BY)C] + (C^*(\phi BX)C, \phi BY) [\phi BX, C^*(\phi BY)C] + (C^*(\phi BX)C, \phi BY) [\phi BX, C^*(\phi BY)C] + (C^*(\phi BX)C, \phi BY) [\phi BX, C^*(\phi BY)C] + (C^*(\phi BX)C, \phi BY) [\phi BX, C^*(\phi BY)C] + (C^*(\phi BX)C, \phi BY) [\phi BX, C^*(\phi BY)C] + (C^*(\phi BX)C, \phi BY) -$
- $+ [C^*(\phi BX)C, C^*(\phi BY)C] + \phi [C^*(\phi BX)C, BY] + \phi [BX, C^*(\phi BY)C] -$
- $-C^*(\phi [BX, BY]) \phi C$,

where we have used the fact that B[X, Y] = [BX, BY], for vector fields X, Y on N^{n-1} , and that $BB^{-1} = I - C^* \otimes C$. If the transversal C lies in the distribution M, then the form C^* can be chosen so that $C^*\phi = 0$. We see that: $[F, F](X, Y) = B^{-1}([\phi, \phi](BX, BY)) = 0$.

REFERENCES

- [1] Y.BAI KIM, Notes on f-manifolds, Tensor (N.S.) 29, 1975
- [2] G. LUDEN, Submanifolds of manifolds with an f-structure, Kodai Math. Sem Rep. 21 (1969), 160-166.
- [3] T MIYZAWA, Hypersurfaces immersed in an almost product Riemannian manifold, Tensor, (N.S.) 33 (1979), 114-116.
- [4] J.NIKIĆ, On a structure defined by a tensor feild f of the type (1,1) satisfying $f^{2\cdot 2^q+1} f = 0$, Univ. N. Sad, Zbornik radova PMF, 12, (1982), 369-378.
- [5] S.SATO, On a structure similar to the almost contact structure I, Tensor (N.S.) 30 (1976), 219-224.
- [6] Y.TASHIRO, On contact structure of hypersurfaces in complex manifolds I, II, Tohiku Math. J. (2) 15 (1963) 62-78, 167-175.
- [7] K.YANO and ISHIHARA, The f-structure induced on submanifolds of complex and almost complex spaces, Kodai Math. Sem. Rep. 18 (1966), 120-160.

Jovanka Nikić

PRIRODNO INDUKOVANA STRUKTURA NA POTPROSTORU PROSTORA SA f(2k+1,-1)-STRUKTUTOM

U jednom ranijem radu autora definisana je struktura f(2k+1,-1) na mnogostrukosti M^{n} . Ovde se daju novi razultati koji se odnose na strukturu -f k = ϕ ranga f=n-1. Utvrdjeni su takodje uslovi integragilnosti prirodno indukovane F(3,-1)-strukture.

Fakultet tehničkih nauka Veljka Vlahovića 3 21000 Novi Sad Yugoslavia