I. Ju. Gordienko TWO THEOREMS ON RELATIVE CARDINAL INVARIANTS IN C -THEORY

(Received 12.03.1990.)

Abstract. Two well-known theorems of C -theory on the relationship between topological properties of X and C (X) are extended to the case of relative topological invariants.

All spaces under consideration are assumed to be Tychonoff topological spaces. By $C_p(X)$ we denote the space of all continuous real-valued functions on a space X in the topology of pointwise convergence. N^{\dagger} is the set of all positive integers. The notations and terminology are the same as in [1].

Let $f: X \to Y$ be a continuous mapping from a space X into a space Y. The tightness t(f) of f is defined to be the smallest infinite cardinal number τ such that whenever $A \subset X$ and $x \in \overline{A}$ there is $B \subset A$ satisfying conditions: $|B| \le \tau$ and $f(x) \in \overline{f(B)}$.

PROPOSITION 1. For every continuous mapping $f:X\to Y$ we have: $t(f)\le t(X)$ and $t(f)\le t(Y)$.

The (relative) Lindelöf number $\ell(Z,X)$ of a subspace ZcX is the smallest infinite cardinal number τ such that for every open covering γ of X one can find a subfamily $\mu \in \gamma$ with the properties: $Z \in U\mu$ and $|\mu| \leq \tau$.

If $f:X\to Y$ is a continuous mapping, then the dual mapping $f^{\#}$ from $C_p(Y)$ to $C_p(X)$ is defined by the rule: if $g\in C_p(Y)$, then $(f^{\#}(g))(x)=g(f(x))$ for all $x\in X$.

THEOREM 1. For each continuous mapping $f:X\to Y$ the following inequality holds: $t(f)\leq \ell(f^\#(C_p(Y),C_p(X)).$

Proof. Let
$$\tau = \ell(C_p(Y), C_p(X))$$
, $A \subset X$ and $X \in A$. The set $\Phi = \{g \in C_p(X): g(x_0) = 1\}$

AMS Subject Classification (1980): 54C35, 54A25

is closed in C $_p(X)$. For every $x \in X$ we put: $V_{_X} = \{h \in C_{_p}(X) \colon h(x) > 0\}.$

The set V_{ν} is open in $C_{\nu}(X)$.

 $x \in B$. On the other hand, we have:

Take any $g \in \Phi$. From $x_0 \in A$ and the continuity of g it follows that there exists a point $x \in A$ such that g(x) > 0. Then $g \in V_X$ and this implies $\Phi \subset \cup \{V_X : x \in A\}$.

Thus the family $\{C_p(X) \setminus \Phi\} \cup \{V_X : x \in A\}$ is an open covering of the space $C_p(X)$. By our assumption we can find a subset B c A such that

 $|B| \leq \tau \text{ and } f^{\sharp}(C_p(Y)) \land \Phi \subset \cup \{V_X : x \in B\}.$ Let us show that $f(x_0) \in \overline{f(B)}$. Assume to the contrary $f(x_0) \notin \overline{f(B)}$. Then there exists a neighbourhood V of $f(x_0)$ in Y with $f^{-1}(V) \land B = \varnothing$. We fix a function $\psi \in C_p(Y)$ satisfying the conditions: $\psi(f(x_0)) = 1$ and $\psi(Y \setminus V) \subset \{0\}$. Let us put $\varphi = f^{\sharp}(\psi) \in f^{\sharp}(C_p(Y))$. From $\varphi(x_0) = \psi(f(x_0)) = 1$ it follows that $\varphi \in \Phi \land f^{\sharp}(C_p(Y)) \subset \cup \{V_X : x \in B\}$. Hence $\varphi(x) > 0$ for some

 $B \subset X \setminus f^{-1}(V)$ and $\varphi(X \setminus f^{-1}(V)) = \psi(f(X \setminus f^{-1}(V)) \subset \psi(Y \setminus V) \subset \{0\}$ which is a contradiction.

COROLLARY 1. (D. Pavlovskij, see [1]) For every space X we have $t(X) \leq \ell(C_p(X)).$

In what follows Y is a subspace of a space X and $\pi: C_p(X) \to C_p(Y)$ is the restriction mapping [1], i.e. $\pi(f) = f | Y$ for every $f \in C_p(X)$.

The following result was obtained by A.V. Arhangel'skii and E.G. Pytkeev (see [1]): for every space X, $\sup\{\ell(X^n):n\in N^t\}=t(C_p(X))$. The next theorem extends this assertion to the case of relative invariants which, incidentally, testifies that the definitions of relative cardinal invariants involved in the theorem were chosen correctly:

THEOREM 2. For any subspace Y of a space X we have: $\sup\{\ell(Y^n,X^n)\colon n\in\mathbb{N}^+\}\ =\ t(\pi).$

Proof. The proof of the inequality $t(\pi) \leq \sup\{\ell(Y^n, X^n): n \in \mathbb{N}^+\}$ requires only trivial changes in the proof of the corresponding inequality in the Arhangel'skii-Pytkeev theorem given in [1]. So we pase to the proof of the remaining inequality.

Let $t(\pi) = \tau$ and $n \in \mathbb{N}^+$. We have to show that $\ell(Y^n, X^n) \leq \tau$. Let γ be any open covering of the space X^n . We are going to choose a subfamily of γ of cardinality $\leq \tau$ covering Y^n .

A finite system μ of open sets in X is called γ -small if for every $V_1,\ldots,V_n\in\mu$ there exists $G\in\gamma$ such that $V_1\times\ldots\times V_n\subset G$. Let us denote

by & the family of all finite γ -small systems of open sets in X. For $\mu \in \mathcal{E}$ we put

 $\mathbf{A}_{\mu} = \{ \mathbf{f} \in \mathbf{C}_p(\mathbf{X}) \colon \mathbf{f}(\mathbf{X} \setminus \cup \mu) = \{0\} \} \,.$ Let $\mathbf{A} = \cup \{ \mathbf{A}_{\mu} \colon \mu \in \mathcal{E} \}$. Then $\overline{\mathbf{A}} = \mathbf{C}_p(\mathbf{X})$ — this is proved by an argument in the proof of Arhangel'skii-Pytkeev theorem in [1]. Consider the function $f_1 \in C_p(X)$ defined by $f_1(X) = \{1\}$. As $f_1 \in \overline{A}$ and $t(\pi) = \tau$, there exists $B \subset A$ such that $|B| \le \tau$ and $\pi(f_1) \in \overline{\pi(B)}$. We can also fix a family $\mathcal{E} \subset \mathcal{E}$ satisfying the conditions: $|\mathcal{E}_0| \leq \tau$ and B c $\cup \{A_\mu: \mu \in \mathcal{E}_0\}$.

Let $\mu \in \mathcal{E}_0$. For every $\xi = (V_1, \dots, V_n) \in \mu^n$ fix $G_{\xi} \in \gamma$ such that

 $(y_1, \dots, y_n) \in Y^n$. The set $U = \{f \in C_p(Y): f(y_i) > 0 \text{ for all } i \le n\}$ is open in $C_p(Y)$ and $\pi(f_1)|Y \equiv 1 \in U$. From $\pi(f_1) \in \overline{\pi(B)}$ it follows that $\pi(B) \cap U \neq \emptyset$. Fix any $g \in \pi(B) \cap U$ and any $f \in \pi^{-1}(g) \cap B$. As $g \in U$ and $\begin{array}{l} \displaystyle f^*\mid Y=g \text{ we have } \displaystyle f^*(y_i^{})=g(y_i^{})>0 \text{ for all } i\leq n. \text{ From } \displaystyle f^*\in B\subset A \text{ it follows that } \displaystyle f^*\in A_{\mu_0}\in \mathcal{E}_0. \text{ Then } \displaystyle f^*(X\setminus \cup \mu_0^{})=\{0\} \text{ which implies } y_i^{}\in \cup \mu_0^{} \end{array}$ for every $i \le n$. For each i = 1, ..., n fix $V_i \in \mu_0$ such that $y_i \in V_i$. Then $(y_1, \ldots, y_n) \in V_1 \times \ldots \times V_n \subset G_{\xi} \in \gamma_{\mu_n} \subset \gamma^*$. The proof is complete.

REFERENCES

[1] A.V. ARHANGEL'SKII, Topological spaces of functions, MGU, Moscow, 1989 (In Russian).

I.Ju. Gordienko

DVE TEOREME O RELATIVNIM KARDINALNIM INVARIJANTAMA U C TEORIJI

Dve poznate teoreme o vezi izmedju topoloških osobina prostora X i C_(X) prenose se na slučaj relativnih topoloških invarijanti. Specijalno pokazan je analogon teoreme Arhangel'skii-Pytkeeva o tesnomi prostora

Chair of General Topology and Geometry Mech.-Math. Faculty Moscow State University Moscow, USSR