Yuri Pershin

CONTIGUITIES AND PROXIMITIES ON MAPPINGS.

T,-COMPACTIFICATIONS OF MAPPINGS

(Received 06.02.1990.)

Abstract. Some notions and assertions concerning topological spaces are extended to continuous mappings. In particular, we show that there is a natural one-to-one correspondence between the family of all Ivanov proximities on a mapping f and the set of all compactifications of f.

1. Let X and Y be topological spaces, $\mathcal T$ the topology on Y and $f\colon X\to Y$ a continuous mapping such that $f\in T_0$ [1] and $f\in R_0$ (i.e. for any closed subset F of X and any $x\in X\setminus F$ there exists a set $0\in \mathcal T$ such that $f(x)\in 0$ and $\left[\{x\}\right]_Y\cap F\cap f^{-1}(0)=\varnothing$).

REMARK 1. If f is a regular (completely regular, normal T_0^-) mapping [1], then, obviously, $f \in R_0$.

REMARK 2. For any closed (in particular, perfect) T_-mapping [1] f one has f \in R_0.

THEOREM 1. Let $f \in T_0$. Then the following conditions are equivalent: 1. There exists a T_1 -compactification [1] of f; 2. $f \in R_0$.

2. Let $f:X\to Y$ be a mapping such that $f\in T_0$ and $f\in R_0$. For any $0\in \mathcal{T}$ let $\mathrm{Fin}_2^\infty\mathrm{Or}(f,0)$ denote the family of all ordered systems γ , $|\gamma|>1$, of closed subsets of $f^{-1}(0)$.

DEFINITION 1. For any $0 \in \mathcal{T}$ let σ_0 : $Fin_2^{\infty}Or(f,0) \to \{0,1\}$ be a mapping satisfying axioms (C1)-(C5) from [2] ($\sigma_0(\gamma) = 0$ iff γ is a contiguity system [2]) and the following axioms (CM1)-(CM3):

CM1. If $\gamma = \{F_1, \dots, F_n\} \in Fin_2^{\infty}Or(f, 0), \ \sigma_O(\gamma) = 1, \ O' \in \mathcal{I}, \ O' \subset O,$ then $\sigma(F_1 \cap f^{-1}(O'), \dots, F_n \cap f^{-1}(O')) = 1$;

AMS Subject Classification (1980): 54C05, 54E05

CM2. If $\gamma = \{F_1, \dots, F_n\} \in \operatorname{Fin}_2^\infty \operatorname{Or}(f, 0)$ and for any $y \in 0$ there is a neighbourhood 0' of y, 0' < 0, such that σ_0 , $(F_1 \cap f^{-1}(0'), \dots, F_n \cap f^{-1}(0'))$ = 1, then $\sigma_0(\gamma)$ =1;

CM3. If $F \subset X$ is closed, then $x \in F$ iff for any $0 \in \mathcal{I}$ with $f(x) \in \mathcal{O}$ it holds $\sigma_0([\{x\}]_X \cap f^{-1}(0), F \cap f^{-1}(0)) = 0$.

The system $\sigma = \{\sigma_0: 0 \in \mathcal{I}\}\$ is said to be a contiguity on f.

EXAMPLE 1.Let for any $0 \in \mathcal{T}$ and any $\gamma = \{F_1, \dots, F_n\} \in \operatorname{Fin}_2^\infty \operatorname{Or}(f, 0)$ the following formula holds: $\sigma_0^i(\gamma) = 1$ iff $\cap \{F_i : 1 \le i \le n\} = \emptyset$. Then the system $\sigma^i = \{\sigma_0^i : 0 \in \mathcal{T}\}$ is a contiguity on mapping f - the contiguity "on the intersection" (compare with [2]).

Let cl(f,0) be the family of all closed subsets of $f^{-1}(0)$, $0 \in \mathcal{I}$, and $cl(f,y) = \cup \{cl(f,0): 0 \in \mathcal{I}, y \in 0\}$, $cl(f) = \cup \{cl(f,y): y \in Y\}$. Let σ be a contiguity on f.

DEFINITION 2. Let $y \in Y$, $\mu \in cl(f,y)$. The pair (μ,y) is said to be a contiguity system (or σ -system) of f (over y) if the following conditions are satisfied:

- a) For any neighbourhood 0 of y , $f^{-1}(0) \subset \mu$;
- b) If $\gamma = \{F_1, \dots, F_n\} \subset \mu$, then there exists a neighbourhood 0 of y such that for any neighbourhood 0' of y with 0' \subset 0 the following holds: $\sigma_0, (F_1 \cap f^{-1}(0'), \dots, F_n \cap f^{-1}(0')) = 0$.

PROPOSITION 1. A. If for any σ -system (μ, y) of f, $(\cap \mu) \cap f^{-1}(y) \neq \emptyset$ holds, then f is a perfect mapping.

- B. The following conditions are equivalent:
- b1) f is a perfect mapping;
- b2) $(\cap \mu) \cap f^{-1}(y) \neq \emptyset$ for $\sigma = \sigma^1$ and any σ -system (μ, y) of f.

DEFINITION 3. A σ -system (μ, y) of f is said to be a σ -end of f (or maximal contiguity system of f) (over $y \in Y$) if for any σ -system (ν, y) of f with $\nu > \mu$ we have $\nu = \mu$.

Let $\sigma_f(X)$ be the family of all σ -ends of f and let $\sigma f: \sigma_f(X) \to Y$ be a mapping such that $\sigma f(\mu,y) = y$ for any $(\mu,y) \in \sigma_f(X)$. The mapping σf is said to be put up by means of the contiguity σ on f.

For any $F \in cl(f)$ let $\Phi(F) = \{(\mu, y) \in \sigma_F(X): F \in \mu\}$ (see also [2]).

LEMMA 1. The family $B = \{(\sigma_{\widehat{\mathbf{f}}}(\mathbf{X}) \setminus \Phi(F)) \cap (\sigma f)^{-1}(0) : 0 \in \mathcal{I}, F = \overline{F} \subset \mathbf{X}\}$ is a base of some topology $\mathcal{I}(\sigma)$ on $\sigma_{\widehat{\mathbf{f}}}(\mathbf{X})$.

DEFINITION 4. An extension $g:Z\to Y$ of a mapping $f:X\to Y$ is said to be a correct extension of f if $B(g)=\{Z\setminus [A]_X:A\subset X\}$ is a base [1] of g.

PROPOSITION 2. Any T_2 -compactification [1] g of a mapping f is a correct extension of f.

THEOREM 2. The mapping of:($\sigma_f(X)$, $\mathcal{I}(\sigma)$) \to Y is a correct T -compactification of f:X \to Y.

THEOREM 3. There is a natural one-to-one correspondence between the family of all contiguities on a continuous $(T_0^- \text{ and } R_0^-)$ mapping f and the family of all correct $T_1^-\text{compactifications}$ of f. To every correct $T_1^-\text{compactification}$ $g:Z \to Y$ we assign the contiguity $\sigma = \{\sigma_0: 0 \in T\}$ on f for which the following condition holds: if $0 \in T$, $\{F_1, \ldots, F_n\} \in Fin_2^\infty Or(f, 0)$ then $\sigma_0(F_1, \ldots, F_n) = 1$ iff $\{f:T_1, \ldots, f:T_n\} \cap g^{-1}(0) = \emptyset$.

If |Y| = 1, $f \in T_1$, then Theorem 3 coincides with Theorem 6 in [2].

3. Let $\operatorname{Fin}_2^0 \operatorname{Cr}(f,0)$ be the family of all systems $\gamma \in \operatorname{Fin}_2^\infty \operatorname{Cr}(f,0)$ such that $|\gamma| = 2$.

DEFINITION 5. For any $0 \in \mathcal{T}$ let $\delta_0: Fin_2Or(f,0) \to \{0,1\}$ be a mapping such that for any $\gamma \in Fin_2Or(f,0)$ one and only one of equalities $\delta_0(\gamma)=0$ or $\delta_0(\gamma)=1$ holds and the following axioms are satisfied:

IP1. $\delta_{O}(F,H) = \delta_{O}(H,F)$;

IP2. $\delta_{\Omega}(F, H \cup \Phi) = 1$ iff $\delta_{\Omega}(F, H) = \delta_{\Omega}(F, \Phi) = 1$;

IP3. $\delta_0(f^{-1}(0), \emptyset) = 1$;

 $\text{IP4. If } \delta_0(\texttt{F},\texttt{H}) \,=\, 1, \ 0' \in \mathcal{I}, \ 0' \in 0, \ \text{then } \delta_0', (\texttt{F} \cap \textbf{f}^{-1}(0'), \texttt{H} \cap \textbf{f}^{-1}(0')) \,=\, 1;$

IPS. If $\{F,H\} \in \operatorname{Fin}_2\operatorname{Or}(f,0)$ and for any $y \in O$ there is a neighbourhood O' of y, O' c O, such that $\delta_{O'}(F \cap f^{-1}(O'), H \cap f^{-1}(O')) = 1$, then $\delta_{O}(F,H) = 1$;

IP6. If F is closed in X, then $x \in F$ iff for any $0 \in \mathcal{T}$ containing f(x) the following holds: $\delta_{\bigcap}([\{x\}]_X \cap f^{-1}(0), F \cap f^{-1}(0)) = 0$.

The system $\delta = \{\delta_0 : 0 \in \mathcal{I}\}\$ is said to be an Ivanov proximity on f.

REMARK 3. Let $\sigma = \{\sigma_0: 0 \in \mathcal{I}\}$ be a contiguity on f and let for any $0 \in \mathcal{I}$ and any $\{F,H\} \in Fin_0 Or(f,0)$ the condition

(1)
$$\delta_{O}(F, H) = \sigma_{O}(F, H)$$

holds. Then the system δ = $\{\delta_{\bigcap} : 0 \in \mathcal{I}\}$ is an Ivanov proximity on f.

Let δ be an Ivanov proximity on f. Let $P(\delta)$ be the family of all contiguities on f for which condition (1) holds.

THEOREM 4. There are a maximal contiguity [8] $\sigma^{max} \in P(\delta)$ and a minimal [8] contiguity $\sigma^{min} \in P(\delta)$ on f.

Recall that two compactifications $g:Z\to Y$ and $g':Z'\to Y$ of a mapping $f:X\to Y$ are said to be identical (in another way g=g') if there exists a homeomorphism $h:Z\to Z'$ such that $h(X)\equiv X$ and g=g'h.

DEFINITION 6. A compactification $g:Z\to Y$ of a mapping $f:X\to Y$ is said to be put up by means of a contiguity σ on f if $g=\sigma f$.

DEFINITION 7. A (correct) T_1 -compactification $g:Z \to Y$ of a mapping $f:X \to Y$ is said to be a major compactification (see [2]) if it is put up by means of a contiguity $\sigma^{\min} \in P(\delta)$ (for some Ivanov proximity δ) on f.

PROPOSITION 3. Any T_2 -compactification (in particular, any completely regular compactification) g of a mapping f is a major compactification of f.

PROPOSITION 4. (1) Let ωf be the Wallman compactification of f (see [5], [9]). Then $\omega f = \sigma^i f$.

(2) Let $\delta^1 = \{\delta_O^1 : O \in \mathcal{T}\}$ be an Ivanov proximity on f such that for any $O \in \mathcal{T}$ and any $\{F,H\} \in Fin_2Or(f,O)$ one has $\delta_O^1(F,H) = \sigma_O^1(F,H)$. Then we have: $\omega f = \sigma^1 f = \sigma^{\max}(\delta^1)$.

THEOREM 5. There is a natural one-to-one correspondence between the family of all Ivanov proximities on a (T_0 - and R_0 -) mapping f and the family of all major (correct T_1 -) compactifications of f.

REMARK. Theorem 5 is an obvious corollary of Theorems 3 and 4.

LEMMA 2. Let $g:Z \to Y$ be a major (T_1^-) compactification of a mapping $f:X \to Y$ and let δ be an Ivanov proximity on f such that $g = \sigma^{\min}f$, where $\sigma^{\min} \in P(\delta)$. The following conditions are equivalent:

- g ∈ T₂;
- 2) There exists a NP-proximity [3] $\hat{\delta} = \{\hat{\delta}_O : O \in \mathcal{I}\}$ on f such that $\hat{\delta}_O(F,H) = \delta_O(F,H)$ for any $O \in \mathcal{I}$ and any $\{F,H\} \in Fin_Or(f,O)$.

Now the theorem of Norin-Pasynkov in [3] follows from Theorem 5, Proposition 3 and Lemma 2.

Recall that for |Y| = 1 the theorem of Norin-Pasynkov [3] coincides with a theorem of Smirnov (see [4; T.8.4.13]).

In conclusion I should like to express my gratitude to Professor B.A. Pasynkov for his formulating the problem and his help as well as to V.P. Norin for his help.

REFERENCES

- B. A. PASYNKOV, Extensions of certain notions and assertions concerning spaces to mappings, In: Mappings and functors, MGU, Moscow, 1984, 72-102 (In Russian).
- [2] V.M. IVANOVA & A.A. IVANOV, Contiguity spaces and bicompact extensions, Izvestya AN SSSR, Ser. Matem. 23(1959), 613-634 (In Russian).
- [3] V.P. NORIN & B.A. PASYNKOV, Hausdorff compactifications of mappings and proximities, Abstracts Nauchno-Methodich. Confer. Kirov 1990.
- [4] R. ENGELKING, General Topology, M., Moscow, 1986 (In Russian).
- [5] I.M. JAMES, Fibrewise Topology, Cambridge Tracts in Math. 91, Cambr. Univ. Press, 1989.
- [6] V.P. NORIN, On proximities for mappings, Vestnik Mosc. Univ., Ser. Mat. 4(1982), 33-36 (In Russian).
- [7] B.A. PASYNKOV, On proximities on mappings, Comp. Rend. Acad. Bulg. Sci. 42(1989), 5-6 (In Russian).
- [8] Y.P. PERSHIN, On contiguities and proximities for mappings, In: Sbor. Nauch. Trud. Mosc. Priborostr. Inst. (1990) (In Russian)(to appear).
- [9] N.I. ILYINA, A construction of the extension ωf of a continuous mapping f by means of ultrafilters, In: Sbornik Nauch. Trud. Mosc. St. Pedag. Inst. (1989), 115-124.

Yuri Pershin

SUSEDNOSTI I BLISKOSTI NA PRESLIKAVANJIMA.

T_1 -KOMPAKTIFIKACIJE PRESLIKAVANJA

Neki pojmovi i tvrdjenja iz teorije topoloških prostora prenose se na neprekidna preslikavanja medju topološkim prostorima. Specijalno, pokazano je da postoji prirodna uzajamno jednoznačna korespondencija izmedju skupa svih bliskosti Ivanova na preslikavanju f i jednog skupa kompaktifikacija tog f.

Department of Geometry Mathematical Faculty Moscow State Pedagogical Institute ul. Krasnoprudnaya 14 107140 Moscow, USSR