Slavik V. Jablan

POINT GROUPS OF SIMPLE AND MULTIPLE ANTIHOMOLOGY $H_{3\ 0}$ 7

(Received 16.10.1989)

By the use of the antisymmetric characteristic method (AC-method), point groups of simple and multiple antihomology H_{30} , are derived.

1. INTRODUCTION

Crystallographic point groups of simple and multiple antisymmetry G_{30} are discussed in the works [1,2,3,4]. By the use of the AC-method, the complete derivation of simple and multiple antisymmetry point groups G_{30} , without crystallographic restriction, is given [5].

Crystallographic homology groups introduced by V.I.Miheev [6] are discussed, in detail, by P.A.Zabolotnyj and his colleagues and generalized to the simple and multiple antihomology groups [7,8,9,10,11]. In this work, by the use of the AC-method, all the point groups of simple and multiple antihomology H_{30} , without crystallographic restriction, are derived.

2. HOMOLOGY POINT GROUPS H3 0

Every point group of homology $H \in H_{3.0}$ can be derived from the AMS Subject Classification (1980): Primary 20H15

corresponding point group of symmetry $G \in G_3$ by some affine transformation, and $H \cong G$. All homology groups derived from the same symmetry group G forme the homology class of G. Since all the point groups of symmetry G_3 can be divided into 10 symmetry classes [1,5,12], the same principle will be used for classifying the point groups of homology H_3 o. Every point group of homology is uniquely defined and denoted by a system of its elements [6,7,8,9,10,11], where a reflection is denoted by R, a slanting reflection by r, an inversion by C, a (circular) rotation of order n by S_n , a (circular) slanting rotation by s_n , an elliptic rotation by s_n , an elliptic slanting rotation by s_n , and the corresponding rotatory reflections respectively by S_n , s_n , s

3. AC-METHOD

After some adjustment, the AC-method [5,13] can be used for a derivation of simple and multiple antihomology groups: <u>Definition 1</u> Let all products of the generators of a homology group H be formed, and then separate the subsets of transformations that are equivalent with respect to homology. After all powers of generators are reduced by $(mod\ 2)$, the resulting system is called the antihomology characteristic AC(H) of the group H.

A formation of AC(H) and reduced AC(H) [5,13] will be illustrated by example of two already discussed crystallographic point groups of homology [7,8,9,10,11]. Let us consider first the homology group $H_1 = (E_4, R_1, r_2, R_3, r_4)$. This group can be defined by a minimal generator set $\{E_4, R_1\}$ as $H_1 = (E_4, R_1, r_2, R_3, r_4) = (E_4, R_1, E_4, R_1, E_4, R_1, E_4, R_1)$.

In line with Definition 1,

$$AC(H_1) = \{E_4\}\{R_1, R_3\}\{r_2, r_4\} = \{E_4\}\{R_1, E_4^2R_1\}\{E_4R_1, E_4^3R_1\} =$$

$$= \{E_4\}\{R_1, R_1\}\{E_4, R_1, E_4, R_1\} = \{E_4\}\{R_1\}\{E_4, R_1\} = \{E_4\}\{R_1\}.$$

For the group

$$H_2 = (E_6, R_1, r_2, r_3, R_4, r_5, r_6) = (E_6, R_1, E_6 R_1),$$

 $AC(H_2) = \{E_6\}\{R_1, R_4\}\{r_2, r_3, r_5, r_6\} =$

 $= \{ E_6 \} \{ R_1 , E_6^3 R_1 \} \{ E_6 R_1 , E_6^2 R_1 , E_6^4 R_1 , E_6^5 R_1 \} =$

 $= \{E_6\}\{R_1, E_6R_1\}\{E_6R_1, R_1, R_1, E_6R_1\} = \{E_6\}\{R_1, E_6R_1\}\{R_1, E_6R_1\} =$

 $= \{ E_6 \} \{ R_1 , E_6 R_1 \} = \{ R_1 , E_6 R_1 \}.$

<u>Theorem 1</u> Groups that posses isomorphic AC generate the same number of simple and multiple antihomology groups of the M^m -type, with the same structure.

Hence we can simply conclude that

$$AC(H_1) = \{E_4\}\{R_1\} \cong \{A\}\{B\}, 2.1, N_1(H_1) = 3, N_2(H_1) = 6;$$

 $AC(H_2) = \{R_1, E_6, R_1\} \cong \{A, B\}, 2.2, N_1(H_2) = 2, N_2(H_2) = 3 [13].$

4. DERIVATION OF SIMPLE AND MULTIPLE ANTIHOMOLOGY POINT GROUPS $H_{3 \ 0}$ 7

Crystallographic point groups of homology H_{30} (n=1,2,3,4,6) are well known [7,8,9,10,11]. For the derivation of all point groups of homology (without crystallographic restriction), distributed into 7 infinite classes, two of them, n and nm, i.e. homology groups of the category H_{20} , are sufficient. All the remaining classes can be obtained by the use of antihomology which makes possible the dimensional transition $H_{20}^{1} \longrightarrow H_{320}$ [4]. The category H_{30} consists of homology groups H_{320} , treated as H_{30} , and polyhedral homology groups derived from the symmetry groups [3,q] and [3,q]+ (q=3,4,5) [5,12].

For the every class is given a list of the corresponding

homology groups H, comprising AC(H) and its AC-isomorphism class number [13]. The existential conditions for simple and multiple antihomology groups of the M^m -type are the same as for their generating symmetry groups [5].

1) n

```
n=1 (S<sub>1</sub>);

n=2 (S<sub>2</sub>) AC: \{S_2\}, 1.1;

(e_2) AC: \{e_2\}, 1.1;

n\ge 3 (S<sub>n</sub>) AC: \{S_n\}, 1.1, n=2k;

(E_n) AC: \{E_n\}, 1.1, n=2k;

(S_n) AC: \{S_n\}, 1.1, n=2k;

(S_n) AC: \{S_n\}, 1.1, n=2k;

(S_n) AC: \{S_n\}, 1.1, n=2k;
```

By the use of antihomology, by interpreting the antiidentity transformation as a reflection or slanting reflection in the invariant plane of the homology rosette n, homology groups of the classes \tilde{n} $(\underline{n} \longrightarrow \tilde{n})$ and n:m $(n \times \underline{1} \longrightarrow n:m)$, are obtained:

2) n

$$n=2$$
 (C) AC: {C}, 1.1;
 $n=2k$ ($k \ge 2$) ($S_{\overline{n}}$) AC: { $S_{\overline{n}}$ }, 1.1;
($E_{\overline{n}}$) AC: { $E_{\overline{n}}$ }, 1.1;
($S_{\overline{n}}$) AC: { $S_{\overline{n}}$ }, 1.1;
($S_{\overline{n}}$) AC: { $S_{\overline{n}}$ }, 1.1.

3) n:m

If H is a homology group derived from G, and if AC(G) is trivial [5,13], then, certainly, $AC(H)\cong AC(G)$ (e.g. homology groups of the classes 1,2,3).

4) nm

$$n=1$$
 (R) AC: {R}, 1.1;
AC: {r}, 1.1;
 $n=2$ (S₂, R₁, R₂) AC: {R₁, S₂ R₁}, 2.2;
(S₂, r₁, r₂) AC: {r₁, S₂ r₁}, 2.2;
(e₂, r₁, r₂) AC: {r₁, e₂ r₁}, 2.2.

At every n≥3 there are 6 "standard" groups:

At n=2k+1 there is one more homology group:

$$(E_n, R_1, r_2, \ldots, r_n)$$
 AC: $\{R_1\}$, 1.1.

At n- an even natural number ($n \ge 4$) there are certain additional homology groups deserving to be considered apart. If n is an even number given by decomposition:

 $n=2\exp ap_1\exp a_1\dots p_k\exp a_k$,

where p_1, \ldots, p_k are distinct prime numbers $(p_i \ge 3, i=1, \ldots, k)$, then there are also h homology groups. By h is denoted the number of nontrivial factors d of n, such that n/d is an even number. For every such d there is the homology group:

$$H=(E_n,R_1,r_2,...,r_d,R_{d+1},r_{d+2},...,r_{2d},...,R_{n-d},r_{n-d+1},...,r_n).$$

Theorem 2 $AC(H)=\{R_1,E_nR_1\}$, 2.2, at d- an odd natural number, and $AC(H)=\{R_1\}\{E_n\}$, 2.1, at d- an even natural number.

Proof:

$$H = (E_{n}, R_{1}, r_{2}, \dots, r_{d}, R_{d+1}, r_{d+2}, \dots, r_{2}, r_{2}, \dots, R_{n-d}, r_{n-d+1}, \dots, r_{n}) =$$

$$= (E_{n}, R_{1}, E_{n}, R_{1}, \dots, E_{n}, r_{d-1}, R_{1}, E_{n}, r_{d+1}, R_{1}, \dots, E_{n}, r_{d-1}, R_{1}, \dots, R_{n}, r_{d-1}, R_{n}, \dots, R_{n}, r_{d-1}, \dots, R_{n}, r_{d-1}, \dots, R_{n}, r_{d-1}, \dots, R_{n}, \dots, R_{n}, r_{d-1}, \dots, R_{n}, \dots, R_{$$

$$E_{n}^{n-d-1}R_{1}, E_{n}^{n-d}R_{1}, \dots, E_{n}^{n-1}R_{1})$$

$$AC(H) = \{E_{n}\}\{R_{1}, R_{d+1}, \dots, R_{n-d}\}\{r_{2}, \dots, r_{d}, r_{d+2}, \dots, r_{2}d, \dots, r_{n-d-1}, r_{n-d+1}, \dots, r_{n}\} =$$

$$= \{E_{n}\}\{R_{1}, E_{n}^{d}R_{1}, \dots, E_{n}^{n-d-1}R_{1}\}\{E_{n}R_{1}, \dots, E_{n}^{d-1}R_{1}, E_{n}^{d+1}R_{1}, \dots, E_{n}^{d-1}R_{1}, \dots, E_{n}^{n-d-1}R_{1}\}.$$

At d- an odd natural number,

$$AC(H) = \{E_n\}\{R_1, E_nR_1\}\{R_1, E_nR_1\} = \{E_n\}\{R_1, E_nR_1\} = \{R_1, E_nR_1\}, 2.2.$$

At d- an even natural number.

$$AC(H) = \{E_n\}\{R_1\}\{E_nR_1\} = \{E_n\}\{R_1\}, 2.1$$

Hence, at d- an odd number, $N_1(H)=2$, $N_2(H)=3$, and at d- an even number, $N_1(H)=3$, $N_2(H)=6$. Therefore, at $n=2\exp ap_1\exp a_1\dots p_k\exp a_k$ there are $h=a(a_1+1)\dots (a_n+1)+5$ homology groups of the class nm, consisting of $(a_1+1)\dots (a_n+1)+3$ groups with d- an odd number, and $(a-1)(a_1+1)\dots (a_n+1)+2$ groups with d- an even number. These h homology groups generate $(3a-1)(a_1+1)\dots (a_n+1)+12$ antihomology groups of the M-type, and $3(2a-1)(a_1+1)\dots (a_n+1)+21$ multiple antihomology groups of the M-type.

The remaining 3 infinite classes of homology point groups 5) $\tilde{n}m$, 6) mn:m, 7) n:2, can be derived from the class 4) nm by the use of antihomology ($\underline{n}m$, $\underline{n}m \longrightarrow \tilde{n}m$; $nm \times \underline{1} \longrightarrow mn:m$; $n\underline{m} \longrightarrow n:2$).

At n=2 there is only one homology group. At $n=2\exp ap_1\exp a_1\dots p_k\exp a_k$ there are $(2a-1)(a_1+1)\dots (a_n+1)+7$ homology groups. Since AC of every symmetry group of the class $\widehat{\mathbf{n}}\mathbf{m}$ is trivial and isomorphic to $\{A\}\{B\}$, 2.1, $N_1(H)=3$, $N_2(H)=6$. Therefore, at $n=2\exp ap_1\exp a_1\dots p_k\exp a_k$, there are $3(2a-1)(a_1+1)\dots (a_n+1)+21$ antihomology groups of the M^1 -type and $6(2a-1)(a_1+1)\dots (a_n+1)+42$ multiple antihomology groups of the M^2 -type.

At n=2, in the class mn:m there are 3 homology groups:

 $H_1 = (S_2, R_1, R_2) \times (R)$ AC: $\{R, R_1, S_2, R_1\}, 3.7$;

 $H_2 = (S_2, r_1, r_2) \times (R)$ AC: $\{R\}\{r_1, S_2, r_1\}, 3.2;$

 $H_3 = (e_2, r_1, r_2) \times (r)$ AC: $\{r, r_1, e_2, r_1\}, 3.7.$

 $N_1(H_1)=N_1(H_3)=3$, $N_2(H_1)=N_2(H_3)=10$, $N_3(H_1)=N_3(H_3)=28$;

 $N_1(H_2)=5$, $N_2(H_2)=24$, $N_3(H_2)=84$ [13].

In line with $nmx\underline{1} \longrightarrow mn:m$, at $n \ge 3$ every group H_1 of the class mn:m is a direct product $H_1 = H_X(R)$ or $H_1 = H_X(r)$. Moreover, $AC(H_1)=AC(H)\{R\}$ or $AC(H_1)=AC(H)\{r\}$. At n=2k+1 $(n\geq 3)$ in the class nm there are 7 homology groups with trivial $AC(H)=\{A\}$, 1.1, so that in the class mn:m there will be also 7 homology groups H_1 with trivial $AC(H_1)=\{A\}\{B\}$, 2.1. At n- an even number of the form $n=2\exp ap_1\exp a_1\dots p_k\exp a_k$, having in mind that $AC(H_1)=AC(H)\{R\}$ or $AC(H_1)=AC(H)\{r\}$, in line with Theorem 3 [13] we have: $N_1(H_1)=2N_1(H)+1$, $N_2(H_1)=4N_2(H)+6N_1(H)$, $N_3(H_1)=28N_1(H)$. Since there are $(a_1+1)...(a_n+1)+3$ homology groups of the class nm with $N_1(H)=2$, $N_2(H)=3$, and for all remaining $(a-1)(a_1+1)...(a_n+1)+2$ homology groups of the same class $N_1(H)=3$, $N_2(H)=6$, at every such n there are h homology groups of the class mn:m, which generate $(7a-1)(a_1+1)...(a_n+1)+29$ antihomology groups of the M^1 -type, $6(7a-3)(a_1+1)...(a_n+1)+156$ multiple antihomology groups of the M^2 -type and 84(2a-1)(a_1 +1)...(a_n +1)+588 multiple antihomology groups of the MB-type.

At n=2 in the class n:2 there are 3 homology groups:

 (S_2, S_2', S_2'') AC: $\{S_2, S_2', S_2 S_2'\}, 2.3;$

 $(S_2, e_2', e_2")$ AC: $\{e_2', S_2 e_2'\}, 2.2;$

(e₂,e₂',e₂") AC: {e₂,e₂',e₂e₂'}, 2.3.

In line with the relationship $n_{\overline{m} \to n}:2$, the complete discussion about homology groups of the class $n_{\overline{m}}$ can be

immediately transferred to the class n:2. Hence, at n- an odd number $(n\geq 3)$ there are 7 homology groups which generate 7 antihomology groups of the M^1 -type. At n- an even number of the form $n=2\exp ap_1\exp a_1\dots p_k\exp a_k$ there are h homology groups of the class n:2 which generate $(3a-1)(a_1+1)\dots(a_n+1)+12$ antihomology groups of the M^1 -type and $3(2a-1)(a_1+1)\dots(a_n+1)+21$ multiple antihomology groups of the M^2 -type.

As the final result, we can conclude that in 7 infinite classes of homology point groups H_{30} , at n=1 there are 3 homology groups which generate 2 antihomology groups of the M-type, at n=2 there are 15 homology groups which generate 33 antihomology groups of the M-type, 76 multiple antihomology groups of the Mtype and 140 multiple antihomology groups of the M^3 -type. At nan odd number ($n \ge 3$) there are 29 homology groups which generate 39 antihomology groups of the M^1 -type and 42 multiple antihomology groups of the M^2 -type. At n- an even number of the form $n=2\exp ap_1\exp a_1\dots p_k\exp a_k$ there are $(5a-1)(a_1+1)\dots (a_n+1)+34$ homology groups which generate $(19a-7)(a_1+1)...(a_n+1)+94$ antihomology groups of the M^1 -type, $6(11a-5)(a_1+1)...(a_n+1)+264$ groups of the M^2 -type multiple antihomology $84(2a-1)(a_1+1)...(a_n+1)+588$ multiple antihomology groups of the Mo-type.

As a partial result, we can conclude that there are $N_0=132+83=215$ crystallographic point groups of the category $H_{3.0}$ which generate $N_1=317+115=432$ antisymmetry groups of the M^1 -type [7,8,9,10], $N_2=820+126=946$ multiple antihomology groups of the M^2 -type and $N_3=1596+0=1596$ multiple antihomology groups of the M^3 -type, where the first number corresponds to the crystallographic groups included into 7 infinite classes, and the

second to the crystallographic polyhedral groups.

REFERENCES:

- [1] SHUBNIKOV A.V., KOPTSIK V.A.: Simmetriya v nauke i isskustve, *Nauka, Moskva*, 1972.
- [2] ZAMORZAEV A.M., SOKOLOV E.I.: Simmetriya i razlichnogo roda antisimmetriya konechnyh figur, Kristallografiya 2 (1957), 9-14.
- [3] GALYARSKIJ E.I., ZAMORZAEV A.M.: Svodka tochechnyh grupp simmetrii i razlichnogo roda antisimmetrii, Kristallografiya 8, 1 (1963), 94-101.
- [4] ZAMORZAEV A.M.: Teoriya prostoj i kratnoj antisimmetrii, *Shtiintsa, Kishinev*, 1976.
- [5] JABLAN S.V.: Simple and Multiple Antisymmetry Point Groups Gao¹, Mat. Vesnik (Beograd) **39** (1987), 301-308.
- [6] MIHEEV V.I.: Gomologiya kristalov, Gostoptehizdat, Moskva, 1961.
- [7] ZABOLOTNYJ P.A.: O gruppah gomologii i antigomologii, Kristallografiya 18, 1 (1973), 5-10.
- [8] ZABOLOTNYJ P.A.: K obobscheniyu grupp gomologii po V.I.Miheevu, Issledovaniya po diskretnoj geometrii, Shtiintsa, Kishinev, 1974, pp. 78-91.
- [9] ZABOLOTNYJ P.A.: K obobscheniyu grupp gomologii po V.I.Miheevu, Avtoref. dis... kand. fiz.-mat. nauk, Kishinev, 1977.
- [10] ZABOLOTNYJ P.A., DUMNYANU V.I.: Tochechnye kristallograficheskie gruppy gomologii i razlichnogo roda antigomologii ploskih figur, Obschaya algebra i diskretnaya geometriya, Shtiintsa, Kishinev, 1980, pp. 28-33.
- [11] GRIGOR'EVICH L.A.: Gruppy gomologii i obobschennoj antigomologii dvuhstoronnyh rozetok, *Dipl. rabota, Kishinev*, 1988.
- [12] COXETER H.S.M., MOSER W.O.J.: Generators and Relations for Discrete Groups, 4th. ed., Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [13] JABLAN S.V.: Algebra of Antisymmetric Characteristics, Publ. Inst. Math. (Beograd), (to appear).

Slavik V. Jablan

PUNKTUALNE GRUPE PROSTE I VIŠESTRUKE ANTIHOMOLOGIJE Hao 7

Primenom metode antisimetrijskih karakteristika (AK-metode), izvedene su punktualne grupe proste i višestruke antihomologije H_{30} .

Slavik V. Jablan Department of Mathematics Phylosophical Faculty 18000 Niš Čirila i Metodija 2 Yugoslavia