Zbornik radova Filozofskog fakulteta u Nisu
Serija Matematika 4(1990), 15-24

Stanimirovié Predrag
EVALUATION OF LISP-EXPRESSIONS IN TURBO PASCAL
(Received 05.05.1989; Revised 05.03.1990.)

Abstract. A LISP-expression has a value if its structure
corresponds to determines rules, The value of a LISP-expression is a
LISP-expression. In this work we described criteria vhich must be
satisfied by a LISP-expression if it is to have a value. We also,
desc.oibe means of computing that value in a LISP-interpreter written in

TURBO PASCAL.

0. Introduction

The implemented version of LISP is named MLISP. MLISP interpreter
is an endless loop in TURBO PASCAL. On every pass the following actions

are performed:

(1) A complete MLISP-expression is read.

(2) The entered expression is translated in an internal form.

(3) Interpreter attempts to compute its value in an internal form.
(4) If the value was successfully computed, its internal form is

translated to the external form.

The interpreter is made up from the function eval and other
functions which implement the MLISP-functions. The main part of the
interpreter is eval. Its argument is the internal form of an expression,

and its result is Lhe internal form of of the value of the expression.

Process of taking a symbolic expression, or list, and performing a
computation on it is called evaluation. The result of evaluation of a

MLISP-expression is named its value.

AMS Subject Classification (1980): 68F99

15

1. The internal form of MLISP-expressions

Cells are the most important LISP-objects. A cell is a compound of

two objects. The first object is called car (head) and the second is

called cdr (tail). In PASCAL a cell is represented by a pointer variable
which is defined as a record containing two pointers.

The pointer variabble x~ which represents a cell contains the
following two fields:

o x".left is a pointer which points to the car;

e ¥x".right is a pointer which points to the cdr.

1.1. The internal form of lists

A list is a sequence of MLISP-expressions written in a pair of
parentheses. Elements of a list are separated by spaces.

List are represented using binary trees. Binary tree have nodes
Wwith exactly two pointers in them, i.e. have cells. One of the pointers
points to the left subtree, and one points to the right subtree.

Binary trees have terminal nodes. In the case of LISP, terminal
nodes are atoms, LISP uses binary trees to represcnt lists as follows:
The left subtree of a node points to the first element (car) of a list,

and the right subtree points to the rest (cdr) of list.

EXAMPLE: Internal form of the list (a b ¢) is represented as the
following binary tree:

F% l ni1
a b o}
The direction of the pointers is from the left to the right and

downward.

Lists can be nested. If an element of a list is itself a list, the
left pointer of corresponding node to the top level list points to the
binary tree which itself represent a list.

If the binary tree identified by the pointer x represented the

internal form of a list, then:

(1) x".left is the left branch of the binary tree and represents

the internal form of the head (first element) of the list

(2) x*.right is the right branch of the binary tree and represents

the internal form of the tail (rest) of the list.

16

EXAMPLE: Graphic illustration of internal forms of some lists.

lists illustration of the internal forms
o
(a1 22 ... an) mljﬂtpjﬁﬁ

al az2 an

(a b (c d) 5) Lf_j_)Llu—)L b
b 5
d

(quote(a (b c))) m—>

e}

c

8]

o

[}

W
Te———

N
e

N

1.2. Internal form of atoms

An atom is a LISP object which is not a cell.

The internal form of an atom is a pointer variable which is defined
as a record. The internal form x* of an atom is a record with the
following field list:

- x™.left;

- x*.right;

- x*.type;

- variant part.

For all the types of atoms is x".left = nil and x“.right = nil.

This indicate that the pointer variable x* is the internal form of an
atom.

In this way, an atom is represented as a cell whose car and cdr are
equal to nil.

The field x".type is defined as follows:

(1) is x".type = strin for strings;

(2) is x".type = name for built-in functions;

(3) x*.type = num for integers;

(4) x*.type = sym for variables, user-defined functions and
symbols.

2 Serija matematika Erg

The variant part of the record x” 1s defined as follows:
(1) If x".type = strin or x*.type = name or x".type = sym there
is a field x".a.
(2) If x".type = num there is a field x".r.
The field x*.r is an integer, and field x".a, 1is a string

containing the name of the atom with the internal form x.

2. Evaluation of lists

In the programming language MLISP the head of the

list is an operator, and the tail represent list of the arguments.

The list evaluates applying the operator to the arguments.

An operator can be :
(1) subr;
(2) fsubr;
{3) a user-defined function.
The operator is a subr if it is applied to the evaluated arguments;

the operator is a fsubr if it is applied to the unevaluated arguments.

2.1. An operator which is SUBR

The remaining list of elements are evaluated and passed as
arguments to the corresponding function.

Internal forms of values of the arguments are formed in the
procedure evlis. During evaluation of an argument the function eval is
called.

Any argument is or an atom or a list and has an operator and
arguments.

Internal forms of the opertors are stored in the array oper.
Internal forms of values of arguments of an operator are stored in the
corresponding element of the array argument.

Variable d is used as an index into these arrays. The value of d is
incremented by one when the left parenthesis is detected, and
decremented by one when the right parenthesis is detected. The initial
value of d is one.

EXAMPLE. For the initial expression (+ (- 2 (¥ 3 4 1)) (* 3 5)) the
value fo d is 1.

For subexpressions (- 2 (* 34 1)) and (* 3 5) the value of d is 2.
Finally, for (¥ 3 4 1) the value of d is 3.

18

The operator corresponding to d is oéper[d]~.a. The corresponding
functions in TURBO PASCAL are called using elements of the queue

argument[d] as arguments.

2.2. Procedure EVLIS

Input te this procedure is the internal form of the tail of the the
evaluated list. The outputs are:
- the queue argument[d] whose elements are the internal forms of
values of the subexpressions corresponding to d, and
- the number of evaluated arguments corresponding to the d, denoted
as brv[dl. The value of variable brvid] is used in the syntax analysis.
While the queue argument[d] is formed, pointers argl[d] and argl[d]
are used. The pointer argld] points to the first element of the queue
argument[d], while arglld] points to the last element of the queue.
A description of the procedure evlis with formal parameter x
follows:
STEP 1. Set the initial values:
*brvld] :=0;
arg[d]~.left:=nil; argld].right:=nil;
*arglld]:=argld].
STEP 2. A while-loop which terminates in either of two cases:
*all of arguments are evaluated, or
*a syntax error was detected in argument, i.e. the
argument evaluates to the pointer err.
In the body of the while-loop STEP A and STEP B are
executed.
STEP A.
If then the current argument is an atom then Al is
executed, else A2 is executed.
Al. Evaluate the atom using ewval.
A2. (1) Increment d by one.
(2) Evaluate the list.
(3) Decrement d by one.
STEP B.
If the internal form of the value of the current

argument is not equal to err, the following steps are

done:

z* 18

(1) Abandon the evaluated argument.
(command x:=%x".drugi).
(2) Place the internmal form of the value of the current
argument at the end of the queue arglld]:
(3) Increment brv[d] by one.
STEP 3. If the while-loop is terminated after x=nil set
argument[d]:=argld]”.drugi.

2.3. An operator which is FSUBR

In such a case two methods of evaluation are used, denoted as Al
and AZ:
Al. Cerresponding function in TURBO PASCAL is caled with the internal

form of the tail of the starting list used as argument.

EXAMPLE: Expressions with the function cond as a head are evaluated

in this way.

AZ. The internal form of value is taken as equal to the corresponding

pointer from the internal form of the tail of the list.

EXAMPLE: If the head of the expression is the function quote, and
the internal form of the tail is the pointer a2, then the internal form

of the value is equal the pointer a2*.prvi.

2.4. Definition and use of user-defined functions

That is once a function defined, we can put it in the begining of

a list, and the interpreter will apply the function to those arguments.
A function is defined by an expression with the function defun as a
head. A call to defun look like this:
(defun symbol (vl v2 ... vn) (body). (2. 1.9
Such an expression is called the functional definition of a symbol
Elements of this expression have the following meaning:
1. The atom symbsl is the name of the user—defined function.
2. (vl v2 ... vn) is list of formal parameters.
3. body is a MLISP-expression. It is caled the body of the
functional definition and will be used in aplication of the

function.

20

The internal form of this expression is illusstrated here:

- L [

2z A L F= 9 ¢ ¢ —[]| the internal}
ime str iform of the i
defun simb : i body i
Vi A] AT - - '
str str
vl vn

The result of evaluation of this expression is the atom symbol.
We can call symbel as follows:

(symbol argl arg? ... argn). (2.2.)

Every user-defined function gets an unique number j (starting from

o

2) associated with it. This is achiewed by the following actions:

Al. When the interpreter is started, j is inicialized to one.
A2. During evaluation of expression (2.1.) j is incremented by one.
Variable j is used:
¥-as an index inte array mnames, containing names of
user-defined functions;
*¥-as an index Into array v, containing internal forms of

bodies of functional definitions.

During the evaluation of expression (2.1.) the interpreter

executes steps A, B, C, D and E as follows:

The value of j increment to one.
Name symbol is assigned to the variable names|jl.
Variable nvarljl contains the number of variables in the
last functional definition. At this point it is initialized
to zero.
For each variable vl to wvn the following steps are
performed:
*-pvar[jl is incremented by one.
*-Name of variable is assigned to varlj, brpljll.

D. The internal form of the expression body, i.e.
x".right®.right*.right”.left is assigned to the variable
vl jl.

E. The internal form of the value of the expression (2.1.) is

equal to the pointer x*.right®.left.

21

EXAMPLE: Graphic illustration of values of the wvariable j and

arrays names and var after evaluation of the following expressions:

>(defun s(x) (+ x 13))
>(defun jed(u,v) (= u (+ v 3)))
>(defun s(y) (atom y))

J |imena v prom

2 s ——a[ll_};atll_fAA[llij prom[2, 11=x
+ X 13

3 Jed —)m——)@j——) prom[3, 1]=u
= W DeOenEm et
P

4 s —aTj_-) prom[4,1]=y

atom v

During the evaluation of the expression (2.2.) the interpreter

executes steps Al and Bl, as follows:

Al.Atom symbol is compared with the elements of the array names and

B1.

index 1 is decremented by one. The initial value of 1 is j.
Search is terminated when names[l]=symbol. The value of 1, found
in this way, corresponds to the last functional definition of
the symbol simb. The internal form of the wvalue of the
expression (2.2.) is equal to eval(v[1]).

Evaluation of the formal parameter vi during evaluation of the

expression v[1l] is performed in the following way:

STEP 1.
Evaluate each of the arguments argl to argn using the procedure

evlis.

STEP 2.
Compare atom vi with the elements of the aray wvarll,12] and
decrement index 12 by one. Initial value of 12 is nvar[l].

Search is terminated when var[l,12] = vi.

STEP' 3.
The internal form of the value of the formal parameter wi is

equal to the corresponding value in the queue vr:

22

3. Evaluation of atoms

Integers, strings, subrs, and fsubrs evaluate to themselves. The

internal forms of values of these atoms are equal to the internal forms
of these atoms. In practice, if the pointer x is the internal form of
guch an atom, then eval(x)=x.

The value of a symbol in MLLISP is the wvalue of

expression which bound to that atom. MLISP has the special Tunction set

which binds the wvalue of one of one’'s own arguments to the other
argument. For example, the equvalent of "r &« (a (b) ¢)" is accomplished
in MLISP by:

>(set (quote r) (quote(a (b) c)))

B((b)ec)
We can query MLISP about value of r:

>r

@(a(b)c)

The first arguments in the expressions which head is the function
set are elements of the array stack. The internal forms of the values of
the second arguments are elements of array wvi.

The elements of arrays stacj and vl are defined paralelled. An
element of array stack and the corresponding element of array vl
logically constitute an ordered pair.

Evaluation of the symbol r proceeds as follows.

Compare atom r with the elements of the array stack and decrement
index 11 by one. Search starts with 11:=j1. Search is terminated when
stack[11] = r. The internal form of the value of the the atom r is equal
to vi[11].

The arrays vl and stek are generated by the following algoritm:

STEP 1.

During the evaluation of the list with the function set as a
head, variable jl is incremented by one.

Initial value of jl is one. The value of jl1 is an index inte
arrays stack and vil.

STEP 2.

The first argument of the function set 1is assigned to the
variable stack[jl]. The internal form of the value of the second

argument is assigned to the pointer wvi[ji].

23

REFERENCES

[1] LAVROV & SILAGADZE, Jazik LISP i ego realizacija, Nauka, Moskva,
1981,

[2] J. FODERARD, The Franz LISP manual, University of California,
Berkely California, 1979.

[3] DAVID GRIES, Compiler Construction for Digital computers, Cornell
iniversity, Toronto 1971.

{4] ROBIN HUNTER, The design and construction of compilers, New
York, 1983.

[5] P. STANIMIROVIC, Implementacija LISP interpretatora u TURBO PASCALu,
magistarski rad.

[8] TURBO PASCAL 4,0, USERS GUIDE, Osborn, McGraw Hill, New York.

[7] ROBERT WILENSKY, Common LISPcarft, University of California,
Berkeley, W.W.Norton & Company, New York, London.

P. Stanimirovié¢
EVALUACIJA LISP-IZRAZA U TURBO PASCALU

U radu su izlozene teori jske osnove evaluacije LISP izraza. Takode,
opisana je prakticna evaluacija LISP- izraza u TURBQ PASCALu.

Filozofski fakultet
Cirila i Metodija 2
18000 Nis
Yugoslavia

24

	1.pdf (p.1-25)
	2.pdf (p.26-47)
	3.pdf (p.48-71)
	4.pdf (p.72-99)
	5.pdf (p.100-125)

