Leonid Bobkov ABOUT THE COINCIDENCE OF WEIGHT AND NETWORK WEIHGT FOR MAPPINGS

(Received 25.06.1990.)

Abstract. We give sufficient conditions for the coincidence of weight and network weight for a mapping. In particular, we prove the equality w(f) = nw(f) for each Čech-complete mapping f.

All spaces in this paper are topological spaces and all mappings are continuous. If $f': X' \to Y$, $X \subset X'$ and $f' \mid X=f$, then f is a submapping of f'. The following definitions for mappings were introduced by B. A. Pasynkov [1].

Let $f: X \to Y$ be a mapping from a space X into a space Y. Then:

- 1) f is called a T_2 -mapping (or a Hausdorff mapping) if for every pair of different points $x, x' \in X$ with f(x) = f(x'), there exist open neighbourhoods U of x and V of x' such that U \cap V = \emptyset .
- 2) f is called regular if for every closed set F \subset X and every point $x \in X \setminus F$ there exists an open set $0=0(f(x)) \subset Y$ such that x and the set F \cap f⁻¹(0) have disjoint neighbourhoods.
- 3) f is normal if for every pair of disjoint closed subsets A.B \in X and every point $y \in Y$ there exists a neighbourhood 0 of y for which the sets $A \cap f^{-1}(0)$ and $B \cap f^{-1}(0)$ have disjoint neighbourhoods.
- 4) f is bicompact if it is a closed mapping and all the fibers $f^{-1}(y)$, $y \in Y$, are compact subsets of X.
- 5) A family N of subsets of X is a network for f if the family $\{A \cap f^{-1}(0): A \in N \text{ and } 0 \text{ is open in } Y \text{ is a network in } X \text{ (in the sense of Arhangel'skii)}. If all the sets <math>A \in N \text{ are open, then } N \text{ is called a base of } f$. The network weight of f [weight of f], denoted f [w(f)], is the smallest cardinal number of the form f [N], where f is a network for f [a base for f].

AMS Subject Classification (1980): 54C10, 54A25

6) An external base for a submapping $f: X \to Y$ of a mapping $f': X' \to Y$ is a family $\mathcal B$ of open subsets of X' with the property: for every $x \in X$ and every its X'-neighbourhood U there exist $V \in \mathcal B$ and an open set $0 \in Y$ for which $x \in V \cap f'^{-1}(0) \in U$.

LEMMA. Let $f': X' \to Y$ be a Hausdorff bicompact mapping and $f: X \to Y$ a submapping of f'. If Y has the following property

(*) for every Z c Y, every open cover of Z has a τ -disjoint open refinement, τ a cardinal,

then the following conditions are equivalent:

- (1) $nw(f) \le \tau$ and there exists a family λ of open subsets of X' with $|\lambda| \le \tau$ such that for every $x \in X$ and every $x' \in {f'}^{-1}f(x)$, $x' \ne x$, one can find a set $U \in \lambda$ for which $x \in U$ and $x' \notin U$.
- (2) There exists a family \mathcal{F} of closed subsets of X' with $|\mathcal{F}| \leq \tau$ such that for every $x \in X$ and every $x' \in {f'}^{-1}f(x)$, $x' \neq x$, there exist $F_1, F_2 \in \mathcal{F}$ and an open set OcY for which $x \in F_1 \cap {f'}^{-1}(0)$, $x' \in F_2 \cap {f'}^{-1}(0)$ and $F_1 \cap F_2 \cap {f'}^{-1}(0) = \emptyset$.
- (3) There exists a family μ of open subsets of X' with $|\mu| \leq \tau$ such that for every $x \in X$ and every $x' \in f'^{-1}f(x)$, $x' \neq x$, there are sets V_1 , $V_2 \in \mu$ for which $x \in V_1$, $x' \in V_2$ and $V_1 \cap V_2 = \varnothing$.
 - (4) There exists an external base $\mathcal B$ for f having cardinality $\leq \tau$.

Proof. (1) \Rightarrow (2). Let N be a network for f with $|N| \le \tau$. Put

$$\mathcal{F} = \{F = [A]: A \in \mathcal{N}\} \cup \{X' \setminus U: U \in \lambda\}$$

and prove that \mathcal{F} satisfies (2). Take $U \in \lambda$ with $x \in U$ and $x' \notin U$. Let $F_2 = X' \setminus U$. then $x' \in F_2 \in \mathcal{F}$. The mapping f' is regular and thus there is a neighbourhood 0 of f(x) such that in the set $f'^{-1}(0)$ the point x and the set $F_2' = F_2 \cap f'^{-1}(0)$ have disjoint neighbourhoods V and W, respectively. Take $A \in \mathcal{N}$ and a neighbourhood O_1 of f(x) such that $f' \in A \cap f'^{-1}(0) \in V$. From $f' \in A \cap f'^{-1}(0) \in A \cap f'^{-1}(0) \in A \cap f'^{-1}(0) \in A \cap f'^{-1}(0) \in A \cap f'^{-1}(0)$. Then $f' \in A \cap f'^{-1}(0) \in A \cap f'^{-1}(0)$. Then $f' \in A \cap f'^{-1}(0) \in A \cap f'^{-1}(0) \in A \cap f'^{-1}(0)$. Then $f' \in A \cap f'^{-1}(0) \in A \cap f'^{-1}(0) \in A \cap f'^{-1}(0)$. We obtain $f(x) \in A \cap f'^{-1}(0) \in A \cap f'^{-1$

(2) \Rightarrow (3). Let $F_a, F_b \in \mathcal{F}$. Take the greatest open set $O_{ab} \subset Y$ with the property $F_a \cap F_b \cap f'^{-1}(O_{ab}) = \emptyset$. The mapping f' is normal, and thus every point $y \in O_{ab}$ has a neighbourhood $O(y) \subset O_{ab}$ such that in the set

 $\begin{array}{lll} & f^{\prime}^{-1}(O(y)) \ \ \text{the sets} \ F_{a} \ \cap \ f^{\prime}^{-1}(O(y)) \ \ \text{and} \ \ F_{b} \ \cap \ f^{\prime}^{-1}(O(y)) \ \ \text{have disjoint neighbourhoods.} \end{array}$ The open cover $\{O(y): \ y \in O_{ab}\} \ \ \text{of} \ O_{ab}, \ \ \text{according to} \ \ (*)$ has an open τ -disjoint refinement $\Omega_{ab} = \cup \ \{\Omega_{abc}: \ c \in C, \ |C| \le \tau \ \},$ where all Ω_{abc} are disjoint systems. For each Ω_{abc} take two X'-open disjoint sets U'_{abc} and U''_{abc} as follows: if $V \in \Omega_{abc}$, then in its inverse image $f'^{-1}(V)$, the sets $F_{a} \cap f'^{-1}(V)$ and $F_{b} \cap f'^{-1}(V)$ have disjoint neighbourhoods U'(V) and U''(V); we put $U'_{abc} = \cup \ \{U'(V): \ V \in \Omega_{abc}\}$ and $U''_{abc} = \cup \ \{U''(V): \ V \in \Omega_{abc}\}$. Let $\mu_{ab} = \{U'_{abc}: \ c \in C\} \cup \{U''_{abc}: \ c \in C\}$ and $\mu = \bigcup_{abc} \mu_{abc}$. Then μ satisfies (3).

(3) ⇒ (4). Let \$\mathcal{B}\$ consist of all different members of \$\mu\$ and all their (different) finite unions and intersections. We will show that \$\mathcal{B}\$ is an external base for \$f\$. Take a point \$x \in X\$ and a \$X'\$-neighbourhood \$U\$ of \$x\$. The set \$M = f'^{-1}f(x) \ U\$ is bicompact, so that from this and from (3) it follows that we may choose a finite number \$V_1, \ldots, V_0\$ of neighbour hoods of some points \$x_1, \ldots, x_n \in M\$ and neighbourhoods \$W_1, \ldots, W_n\$ of \$x\$ such that \$V_1 \cap W_1 = \varnatheta, 1 \leq i \leq n\$, and \$V = V_1 \cup \ldots \ldot V_n\$ is a neighbourhood of \$M\$. Then \$U = U \cup V\$ is a neighbourhood of \$f'^{-1}f(x)\$. Let \$W = W_1 \ldots \ldots \ldot N_n\$. Then \$V \cap W = \varnatheta\$. Since \$f'\$ is a closed mapping, there is a neighbourhood \$O\$ of \$f(x)\$ for which \$f'^{-1}(0) \in U^*\$. Then \$W \cap f'^{-1}(0) \in U\$, i.e. \$\mathcal{B}\$ is an external base of \$f\$ such that \$|\mathcal{B}| \leq \tau\$.

 $(4)\Rightarrow (1). \text{ Let } \mathcal{B} \text{ be as in } (4). \text{ We are going to prove } \text{ that } \mathcal{B} \text{ may be } \lambda \text{ from } (1). \text{ Let } x\in X \text{ and } x'\in {f'}^{-1}f(x), \ x'\neq x. \text{ As } f' \text{ is a } T_1\text{-mapping we can choose a neighbourhood } U \text{ of } x \text{ with } x'\notin U. \text{ By } (4), \text{ there exist a set } V\in \mathcal{B} \text{ and an open set } 0\in Y \text{ such that } x\in {f'}^{-1}(0)\cap V\subset U. \text{ Then } x\in V \text{ and } x'\notin V. \text{ On the other hand, it is easily seen that } \mathcal{B}_X=\{B\cap X:B\in \mathcal{B}\} \text{ is a base for the mapping } f \text{ and } |\mathcal{B}_Y|\leq \tau.$

The lemma is proved.

A mapping $f:X\to Y$ is Čech-complete if it has a Hausdorff bicompactification $uf:uX\to Y$ (X $\subset uX$, uf|X=f) such that X is a G_S -set in uX.

THEOREM. Let $f:X\to Y$ be a Čech-complete mapping and $nw(f)\le \tau$. If the space Y has property (*), then $w(f)\le \tau$ (and thus w(f)=nw(f)).

NOTE. If in the above theorem Y is the one-point space, we get the following known result of Arhangel'skii: for every Čech-complete space X we have w(X) = nw(X).

REFERENCES

[1] B.A. PASYNKOV, The extension of some concepts and statements concerning spaces to mappings, In: Mappings and functors, MGU, Moscow, 1984, 72-102.

Leonid Bobkov

O JEDNAKOSTI TEŽINE I MREŽNE TEŽINE PRESLIKAVANJA

Teorema Arhangel'skog o jednakosti težine i mrežne težine Čech-komletnih topoloških prostora prenosi se na slučaj neprekidnih Čech-kompletnih preslikavanja.

ul. Krupskoi 46-26 183053 Murmansk USSR