A. Bella, Lj. Kočinac A SHORT NOTE ON PERFECT SPLITTABILITY (Received 20.06.1990.)

Abstract. We give a general theorem about perfect splittability of topological spaces. We also answer the question whether a space that is perfectly splittable over the class of strongly Frechet-Urysohn spaces is itself strongly Frechet-Urysohn.

A topological space X is said to be [perfectly] splittable over a class \mathcal{P} of topological spaces if for every A \subset X there are a space Y \in \mathcal{P} and a [perfect] continuous mapping $f: X \to Y = f(X)$, such that $f^{-1}f(A) = A$ (see [1], [3], [5]). All spaces will be Hausdorff. τ is a cardinal.

In [5], it was shown the following result:

PROPOSITION 1. If a space X is perfectly splittable over the class \mathcal{P} , then $X \in \mathcal{P}$ for the following classes \mathcal{P} of spaces Y: (i) Y is a Moore space, (ii) Y is a σ -space, (iii) Y is metrizable, (iv) $w(Y) \leq \tau$, (v) $nw(Y) \leq \tau$.

Here we prove a theorem which provides direct proofs of all these assertions and has other intersting consequences (see also [3]).

THEOREM 1. If X is perfectly splittable over the class of all spaces of cardinality $\leq \tau$, then $|X| \leq \tau$.

Proof. Let A \subset X. Choose a perfect mapping f from X onto a space Y with $|Y| \leq \tau$ such that $f^{-1}f(A) = A$. So, $A = \cup \{f^{-1}(y): y \in f(A)\}$ is the union of $\leq \tau$ compact sets. Now we use the following result recently shown by J. Gerlits, A. Hajnal and Z. Szentmiklóssy: if any subset of a space X is the union of $\leq \tau$ compact sets, then $|X| \leq \tau$. (In [4], it was shown: if $\tau^{\omega} = \tau$, then $|X| \leq \tau$ iff every A \subset X is the union of $\leq \tau$ compact sets.)

AMS Subject Classification (1980): 54C10

NOTE. In terms of splittable versions of cardinal functions (see [3], [5]) the above result can be reformulated as follows: for every space X we have $|X| = |X|_{D.S}$.

In the proof of the following theorem we will use a known lemma.

LEMMA. If S is a set of cardinality $\leq 2^{\tau}$, then there exists a point separating family γ of subsets of X such that $|\gamma| \leq \tau$.

THEOREM 2. Let \mathcal{P} be a class of topological spaces which is hereditary, τ -multiplicative and with each compact member (of \mathcal{P}) has cardinality $\leq 2^{\tau}$. If a space X is perfectly splittable over \mathcal{P} , then $X \in \mathcal{P}$.

Proof. In fact, we will prove that $X \in \mathcal{P}$ if X is splittable over \mathcal{P} and there exists a perfect mapping $f\colon X \to Y$ from X onto some member $Y \in \mathcal{P}$. For every $y \in Y$ the set $A_y = f^{-1}(y)$ is compact and since it is also perfectly splittable over spaces having cardinality $\leq 2^T$, by Theorem 1 we have $|A_y| \leq 2^T$. By Lemma, in every A_y one can find a point separating family y_y of subsets of A_y with $|y_y| \leq \tau$. Let $y_y = \{A_{y,\alpha} : \alpha \in \tau\}$. For every $\alpha \in \tau$, put $A_\alpha = \cup \{A_{y,\alpha} : y \in Y\}$ and fix a space $Y_\alpha \in \mathcal{P}$ and a mapping $f_\alpha\colon X \to Y_\alpha$ such that $f_\alpha^{-1}f_\alpha(A_\alpha) = A_\alpha$. Let φ be the diagonal product of f and all f_α , $\alpha \in \tau$. Then φ is a perfect mapping from X onto a space in \mathcal{P} . We are going to prove that φ is one-to-one. Take $a,b \in X$, $a \neq b$. There exist two possibilities:

- (1) $f(a) \neq f(b)$. Clearly, then $\varphi(a) \neq \varphi(b)$.
- (2) $f(a) = f(b) = y \in Y$. Then $a,b \in A$. Since γ_y is a point separating family, there is some $A_{y,\alpha} \in \gamma_y$ with $a \in A_{y,\alpha}$, $b \notin A_{y,\alpha}$, so that $a \in A_{\alpha}$ and $b \notin A_{\alpha}$. This means $\varphi(a) \neq \varphi(b)$. Hence, φ is a homeomorphism between X and $\varphi(X) \in \mathcal{P}$, i.e. $X \in \mathcal{P}$. The theorem is proved.

REMARK. In [3], it was shown an analogous result using the assumption " $\psi(Y) \leq \tau$ for every $Y \in \mathcal{P}$ " instead of "every compact member of \mathcal{P} has cardinality $\leq 2^{\tau}$ ". The countable version of Theorem 2 was announced by A. Arhangel'skii and B. Šapirovskii (we do not know their proof).

In [5], it was proved: if a space X is perfectly splittable over the class of Frechét-Urysohn spaces, then X is also Frechét-Urysohn. In [2], it is proved that a regular scattered space is sequential if it is closed splittable over he class of sequential spaces. Here we give a similar result for the strongly Frechét-Urysohn case.

Recall that a space X is said to be strongly Fréchet-Urysohn if, whenever $(A_n: n \in \omega)$ is a decreasing sequence of subsets of X and $x \in X$ a point with $x \in \cap \{\bar{A}_n: n \in \omega\}$, then there exist $x_n \in A_n$ such that the se-

quence $(x_n: n \in \omega)$ converges to x. A space X is strongly Frechét-Urysohn if and only if X × I is Frechét-Urysohn [6] (where I is the closed unit interval).

THEOREM 3. If a Tychonoff space X is perfectly splittable over the class $\mathcal P$ of strongly Frechét-Urysohn spaces and $\psi(X) \leq \omega$, then $X \in \mathcal P$.

Proof. Let $(A:n \in \omega)$ be a decreasing sequence of subsets of X accumulating at x \in X. Put A = \cup {A:n \in ω } and take a space Y \in $\mathcal P$ and a perfect mapping $f:X \to Y$ such that $f^{-1}f(A) = A$. Since X is a Tychonoff space and $\psi(X) \leq \omega$, it follows that each singleton is a zero-set and so there exists a continuous mapping $g: X \to I$ such that $\{x\} = g^{-1}(0)$. Let us put $Z = Y \times I$ and let h be the diagonal product $f \triangle g$. Then $h: X \rightarrow Z$ is perfect, Z is strongly Frechét-Urysohn (see [6; 4.D.4]) and we have A = $h^{-1}h(A)$ and $\{x\} = h^{-1}h(x)$. Clearly $h(x) \in h(\overline{A})$ for every $n \in \omega$, and consequently there exist $y_n \in h(A_n)$ such that the sequence $(y_n : n \in \omega)$ converges to h(x). For every $n \in \omega$ pick a point $x \in h^{-1}(y) \cap A$. We claim that $(x:n \in \omega)$ converges to x and this is obviously enough to show that X is strongly Frechét-Urysohn. So let U be a neighbourhood of x. By the closedness of h and the fact $h^{-1}h(x) = \{x\}$, there exists a neighbourhood V of h(x) such that $h^{-1}(V) \in U$. Because (y_n) converges to h(x) there is $n^* \in \omega$ such that for every $n > n^*$ one has $y_n \in V$ and thus x \in U as well. The claim is proved and so the proof of the theorem is complete.

REFERENCES

- A.V. ARHANGEL'SKII, Some new trends in the theory of continuus mappings, Continuous functions on topological spaces, LGU, Riga, 1986, 5-35 (in Russian).
- [2] A. BELLA, Tightness and splittability, this volume, 115-120.
- [3] A. BELLA, F. CAMMAROTO & Lj. KOČINAC, Remarks on splittability of topological spaces, (to appear).
- [4] Ju. BREGMAN, A. ŠOSTAK & B. ŠAPIROVSKII, A theorem on partition into compact-scattered subspaces and cardinality of topological spaces, Tartu Ülik. Toimetised 836(1989), 79-90.
- [5] Lj. KOČINAC, Perfect P-splittability of topological spaces, Zbornik rad. Fil. fak. (Niš), Ser. Mat. 3(1989), 19-24.
- [6] E.A. MICHAEL, A quintaple quotient quest, Gen. Topol. Appl. 2(1972), 91-138.

Dipartimento di Matematica, Universita di Messina, Italia Filozofski fakultet, Univerzitet u Nišu, 18000 Niš, Yugoslavia