We define ($\lambda,\mu$)-statistical convergence and ($\lambda,\mu$)-statistical Cauchy double sequences on intuitionistic fuzzy normed spaces (IFNS in short), where $\lambda=(\lambda_n)$ and $\mu=(\mu_m)$ be two non-decreasing sequences of positive real numbers such that each tending to $\infty$ and $\lambda_{n+1}\leq\lambda_n+1$, $\lambda=1$; $\mu_{m+1}\leq\mu_m+1$, $\mu=1$. We display example that shows our method of convergence is more general for double sequences in intuitionistic fuzzy normed spaces.