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Connections between antisymmetry, (3)-symmetry, (32)-symmetry
groups and curvilinear symmetry groups, defined by P.L.Dubov, are
astablished. Curvilinear symmetry groups of categories G2o, &21,
@2, are derived. By applying, respectively, curvilinear symmetry
groups of categories Gzo, G21 on finite segment patterns LPF and
strip segment patterns LPS, corresponding curvilinear finite
segment patterns LPFC and curvilinear strip segment patterns
LPSC, are enumerated and visually interpreted.

1. INTRODUCTION

After 1introducing the notion of a strictly convex, stright and
concave open segment (Figure 1), by P.L.Dubov [1,2] are defined
the five transformations, denoted by them as "0o", "1", "2", "3"
and "x", If the properties of convexity, strightness and
concavity of an open segment are denoted, respectively, by 1,2,3,
the curvilinear-identity transformations mentioned can be
represented by permutation cycles:

"0"=E, "1"=(23)=90, "2"=(13):e1, "3":(12)=92, "*"2(123)=ea.

The additional symbols 8y (7=0,1,2,3) point to their
relationships with corresponding antisymmetry, (3)-symmetry and

(32)-symmetry color-identity -transformations [3,4,5].

AMS Subject Classification (1980): Primary 20H15
51




(a) (b) (c)

Figure 1: (a) strictly convex, (b) stright, (c) concave open segment.

Hence, "0"=E is the identity transformation, "1"=ey, "2"=ey,
"3"=e, are the curvilinear-antiidentity transformations,
defining the groups cg (7=0,1,2) of the structure G, given by
presentation:

&7 {e;} e 2=E (i=0,1,2),
while "*"=e; is the transformation defining the group C% of the
structure Cy, given by presentation:

Cg {ea} 3-f,

€3
The same group can be generated by the transformation 93_1. Every

two of the transformations e; (7=0,1,2,3) generate the irregular

permutation group Dgz of the structure D5, given by presentation:

Dgz {ef'ej} Efzzejzz(efej)SzE (1,7=0,1,2; 7#J),
or by presentation:
Dgz {ef,93} 933597'2:(9381:)2=E (f=031|2)-

Let a discrete symmetry group G be given. Every
transformation Sj:ch=Scj, where SeG and cj is a transformation
e; (7=0,1,2,3) or product of these transformations different from
the identical transformation E, is called a curvilinear symmetry
transformation. In such a case, the symmetry group G is called
generating curvilinear symmetry group. Every curvilinear symmetry
group derived from & and isomorphic to it, 1is called a Jjunior

curvilinear symmetry group. In order to difer between curvilinear
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symmetry groups derived from G, according to the groups Cg, C;,
C%, Cg, Dgz, the symbols &9, Ei, &2, &3, 532 will be used. Since
in this work only junior curvilinear symmetry groups will be
discussed, we can call them simply curvilinear symmetry groups.
Also, we will restrict our study to curvilinear symmetry groups
with a generating symmetry group G belonging to the category Gpg,
Gyq or Gy [6]1, that means, to curvilinear symmetry groups of the

categories 520, 521 and &2.

2. CURVILINEAR SYMMETRY GROUPS

From the afore mentioned properties of curvilinear symmetry
transformations and curvilinear symmetry groups, we can conclude
that between curvilinear symmetry groups Ef (7=0,1,2) and Jjunior
antisymmetry groups G'derived from the same group G, curvilinear
symmetry groups 53 and junior {(3)-symmetry groups G(a) as well as
curvilinear symmetry groups asz and junior (32)-symmetry groups
6(32), there is the isomorphism transforming curvilinear symmetry
transformations onto corresponding antisymmetry, (3)-symmetry, or
(32)-symmetry transformations, acting upon elements of the
symmetry group G as the identical automorphism. Therefore, the
complete curvilinear symmetry theory, introduced by P.L.Dubov,
can be reduced to the well known antisymmetry, (3)-symmetry and
(32)-symmetry theory. Moreover, for obtaining all the curvilinear
symmetry groups of any category &n‘._, it is enough to use
antisymmetry, (3)-symmetry and (32)-symmetry groups already
derived from symmetry groups of the same category G, _ . The main
source of that informations are the works on the general P-
symmetry theory, or their particular cases: antisymmetry, (3)-
symmetry. and (32)-symmetry [3,4,5,7,8,9,10,11:12,13]. Such a
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treatment of curvilinear symmetry groups 1is in full agreement
with an interpretation of P-symmetry transformations as regular
changes of some geometrical property, commuting with symmetries

of generating symmetry group.

3. CURVILINEAR SYMMETRY GROUPS OF CATEGORIES Gpg, Gpy, G

For denoting antisymmetry, (3)-symmetry and (32)-symmetry groups
as well as corresponding curvilinear symmetry groups,
group/subgroup symbols G/H or G/H1/H, will be used. In order to
differ curvilinear symmetry groups &f (7=0,1,2) possessing the
same symbol G/H, additional symbols (G/H)j are used.

A1l the discrete symmetry groups of rosettes Gyn belong to
one of the infinite classes: Cn(n) or Dn(nm) (neN). From them,
the three infinite classes of antisymmetry groups [7]:
Can/Ch((2n)/n), D,/C (Am/n), Dy,/D,((2n)m/nm),
the one infinite class of (3)-symmetry groups:

C3n/Chr((3n)/n),

as well as the one infinite class of (32)-symmetry groups:
D3n/Dp( (3n)m/nm),

are derived. Since to every antisymmetry group &' they correspond
three curvilinear symmetry groups %0, &1, 52, we have the amounts

of curvilinear symmetry groups, given in Table 1i:

Table 1

G n G" (i=0,1,2) fed 32 G

Cpin) 6k 3 1 4
Bkt 0
6 kt2 3 _ 3
6k-3 1 1
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Dn(nm) 6k 6 1 7
6k+1 3 3
6kt2 6 6
6k-3 3 1 4

According to this, there are the i1 curvilinear symmetry
groups of rosettes at every n=6k, 3 curvilinear symmetry groups
at n=6kx1, 9 curvilinear symmetry groups at n=6k*2 and 5
curvilinear symmetry groups at n=6k-3 (neN). Between them they
are thg 37 curvilinear symmetry groups satisfying the
crystallographic restriction (n=1,2,3,4,6), derived by
P.L.Dubov [1,2].

From the seven discrete symmetry groups of friezes 621 are

derived the following 17 antisymmetry groups [3,8,10]:
pii1/pi1, pig/pilil, pim/pim, pim/pig, pim/pil, pi12/pi2, pi2/plii,
pmi/pmi, pmi/pii1, pmg/pmi, pmg/pi2, pmg/plig, pmm/pmm, pmm/pmg,
pmm/pmi, pmm/pi2, pmm/pim,
the three (3)-symmetry groups:
p1i/p11, pig/plg, pim/pim,
as well as the four (32)-symmetry groups:
pi2/pi12/p11, pmi/pmi/pil, pmg/pmg/pig, pmm/pmm/pim.
To them correspond the 51 curvilinear symmetry group &f
(7=0,1,2), 3 curvilinear symmetry groups &3 and 4 curvilinear
symmetry groups 332, that means, 1in total, the 58 curvilinear
symmetry groups of the category 521.

From the symmetry groups of ornaments Gy there are derived
the 46 antisymmetry groups:
pi/pl, p2/p2, p2/p1, pa/pg, pg/pil, pm/cm, pm/pmi, pm/pim, pm/pg,

pm/pl1, cm/pm, cm/pg, cm/pi1, pgg9/pg, P9g9/p2, pmg/pmg, pmg/pgg,
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pmg/pm, pmg/pg, pmg/p2, pmm/pmm, pmm/cmm, pmm/pmg, pmm/pm,
pmm/p2, cmm/pmm, cmm/pmg, cmm/pgg, cmm/cm, cmm/p2, p4/p4, pd/p2,
P49/p4, p4g/cmm, pdg/pgg, pim/pém, p4m/p4g, pa4m/p4, p4m/cmm,
p4m/pmm, p3mi/p3, p3im/p3, p6/p3, p6m/p6, p6m/p3im, p6m/p3m,

the eight (3)-symmetry groups:

p1/p1, pa/pg, pm/pm, cm/cm, p3/p3, p3/p1, p3im/p3mi, p6/p2,

as well as the fifteen (32)-symmetry groups:

p2/p2/p1, pa/pa/p1, pm/pm/pl, cm/cm/pl, pgg/pag/pg, pmg/pma/pm,
pmg/pmg/pg, pmm/pmm/pm, cmm/cmm/cm, p3ml/p3im/p3, p3mi/cm/pi,
p3im/cm/pi, p6/p6/p3, pém/p6m/p3mi, p6m/cmm/p2.

To them correspond the 138 curvilinear symmetry groups &i
(7=0,1,2), 8 curvilinear symmetry groups 53 and 15 curvilinear
symmetry groups aﬁz, that means, in total, the 161 curvilinear

symmetry groups of the category Gy,

4. CURVILINEAR SEGMENT PATTERNS

In a search for plane figures possessing a curvilinear symmetry
group of the category &20, 521.0r 52, the natural choice will be
curvilinear segment patterns obtained from the finite segment
patterns LPF, strip segment patterns LPS and periodic segment
patterns LPP [14].

They are the 10 homeomeric types of finite segment patterns:
LPF1n~1 (n22), LPF1n-2 (nz3), LPF2a-1 (nz1), LPF2p-2 (n22),
LPF2n=-3 (n21), LPF2,-4 (n22), LPF3n-1 (nz2), LPF3n-2 (n22),
LPF3r-3 (n22), LPF3n-4 (n23).

The first two of them possess the symmetry group Ch(n), and the
others the symmetry group D (nm). In order to derive all the

different curvilinear symmetry segment patterns LPFC, we can

start with three possible trivial
56
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the strictly convex, stright and concave segment pattern,
satisfying the generating symmetry group G, to subject them under
the action of all the curvilinear symmetry groups derived from G.
Since the curvilinear symmetry groups &f (7=0,1,2) derived from
symmetry group G, transforme a convex, stright and concave
segment pattern onto the same series of LPFC, if we denote by
N(G) the number of curvilinear symmetry groubs derived from G,
and by N(LPF) the number of different LPFC obtained from an LPF
with the symmetry group G, we can conclude that, in all the non-
axceptjona1 cases, holds the relationship:

N(LPF)=3+N( &) .

Between the LPFC derived, there are E(G) non-trivial LPFC, that
means, LPFC with a curvilinear symmetry group derived from G.
There are two possibilities for exceptions. The first exceptional
cases occur when the stright open segment L of LPF is transformed
by some non-identical element of the symmetry group G onto
itself. There will be the case with LPF of the types LPF3,-1
(nz2), LPF3n-2 (n22), LPF3,-3 (n22), LPF3:-4 (n23). At LPF of the
types LPF3n-1 (n22), LPF3a-3 (n22), there is a reflection of the
symmetry group Dn(nm) with reflection 1line containing the segment
L, so the segment L must be stright. Therefore, at every nz2,
for every LPF of the type LPF3n-1 or LPF3s-3, there is only one
LPFC, ‘and none non~-trivial. At LPF belonging to the types
LPF3r-2 (n2z2), LPF3n-4 (n23), there is a reflection of the
symmetry group Dn(nm), perpendicular to L, transforming L onto
itsel1f, so for these two types holds the relationship:
N(LPF)=N(G) .

Between such the LPFC obtained there are N(G)—S non-trivial LPFC.

The second exceptional cases occur when reflections of the
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symmetry groups there are not mutually equivalent. There will be,
at n- an even natural number, with LPF of the type LPF2s-2, where
reflections of the symmetry group D,(nm) can be divided into that
with reflection lines containing segment endpoints, and the
others not containing them. This non-equivalence of the
reflections results in 12 (9) LPFC at n=6k*2 and 13 (10) at n=6K.

From the 10 homeomeric types of finite segment patterns,
they are obtained the 12 (6) LPFC at n=1, 53 (33) LPFC at n=2,
46 (20) LPFC at n=6k-3, 65 (39) LPFC at n=6kt2, 38 (12) LPFC at
n=6kt1 and 73 (47) LPFC at n=6k (keN), where in parentheses are
the corresponding numbers of non-trivial LPFC. Al11 the non-
trivial LPFC obtained at n=4 from LPF [14, Figure 7.4.2] are

visually illustrated by Figure 2.
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It is also possible to differ between LPFC with curvilinear
symmetry groups 53, derived from the LPF of the type
LPFin-2, at n=6k-6 or n=6k (keN), by the use of the
transformations ey and e3_1. In that case, there will be one more

LPFC at n=6k-3 and n=6k (Figure 3).

Flgure 3: (a) LPFC1a-2 (3/1)3, (b) LPFC13-2 (3/1)-3.

By the similar approach to the 27 flat edge simple forms
FESF [15] satisfying the crystallographic restriction
(n=1,2,3,4,6), by P.L.Dubov [1,2] are derived the 284 curvilinear
flat edge simple forms FESFC, including at n=4 the 67 (42) FESFC
illustrated in the articlie [1]. Since possible non-equivalency of
reflections mentioned, it is not concerned by P.L.Dubov, these
numbers deserve the correction. Let it be noticed that at n=6k-3
there will be the 51 (26) FESFC, at n=6kt2 the 73 (48) FESFC, at
n=6kt1 the 43 (18) FESFC and at n=6k the 81 (56) FESFC.

They are the 37 homeomeric types of strip segment patterns
LPS occuring in one diffeomeric type, except for the types
LPS9-2, LPS12-2, LPS12-3, ocurring, respectively, in the 2, 3, 2
diffeomeric types [14, Figure 7.4.3]. The symmetry group of all
the LPS2 1is pilg, of the LPS3 is pim, of the LPS5 is pmi, of the
LPS7 and LPS8 is p12, of the LPS9 and LPS10 is pmg, while of the
LPS12, LPS13, LPS14 and LPS15 is pmm. The relationship:
N(LPS)=3+N(G) (M(G))
holds for all the LPS, except for the LPS5-2, LPS7-2, LPS8-1,
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LPsi10-1, LPSi0-2, LPS11-1, LPS11-2, LPS11-3, LPS12-2, LPSi12-4,
LPS12-5, LpPsSi2-7, LPS13-1, LPS13-2, LPS13-3, LPS13-4., LPS14-1,
LPS14-2, LPS14-3, LPS15-1, LPS15-2, LPS15-3. For these
exceptional LPS, occuring from the same reason mentioned in the
case of the exceptional LPF, there are the following numbers
N(LPS): N(LPS5-2)=13 (10), N(LPS7-2)=13 (10), N(LPS8-1)=7 (4),
N(LPS10-1)=7 (4), N(LPS10-2)=7 (4), N(LPS11-1)=7 (4),
FJ(LPS‘I1—2)=1 o) R’(LPS11—3)=T (4), ;;I(LF‘S12-2)=25 (22},
N(LPS12-4)=26 (22), N(LPS12-5)=25 (22), N(LPS12-7)=25 (22),
N(LPS13-1)=13 (10), N(LPS13-2)=1 (0), N(LPS13-3)=1 (0),
N(LPS13-4)=13 (10), N(LPS14-1)=10 (7), N(LPS14-2)=1 (0),
N(LPS14-3)=1 (0), N(LPS15-1)=1 (0), N(LPS15-2)=1 (0),
N(LPS15—3)=1 (0). Knowing that N(pig)=4. R(p1m)=10, E(pm1)=7,
N(p12)=7, E(pmg)=10, N(pmm):16, and taking 1in account the
exceptional cases, we can conclude that there will be the
397 (302) LPSC occuring in the 479 (372) diffeomeric types. All

the non-trivial LPSC5-2 obtained, are visually interpreted by
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It is also possible to differ between LPSC with curvilinear
symmetry groups 53 derived from LPS2-2 and LPS3-2 by use of the
transformations ey or 93_1. In that case there will be 399 (304)

LPSC occuring in the 479 (372) diffeomeric types (Figure 5).

Figure 5: (a) LPSC2-2 (plg/p11)3, (b) LPSC2-2 (pig/pi11)~3.
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There are the 209 periodic segment patterns LPP
[14, Table 7.4.1]. Because of their large number, we will
restrict our discussion on the curvilinear periodic segment
patterns LPPC to only few examples: the derivation of LPPC from
LPP with the symmetry groups pg, pm, cm and p2, that means, from
the LPP2, LPP3, LPP5, LPP5 and LPP7,LPP8. In all the non-
exceptional cases the relationship:
N(LPP)=3+N(G) (N(G)),
holds. Hence, N(LPP2-1)=11 (8), N(LPP2-2)=11 (8),
N(LPP3-1)=20 (17), N(LPP5-1)=14 (11), N(LPP5-2)=14 (11),
N(LPP5-3)=14 (11), N(LPP5-4)=14 (11), N(LPP7-1)=10 (7),
ﬁ(LPPT—3)=1o (7). The reasons for occurence of exceptions will be
the same as in the cases of LPF and LPS already discussed. Hence,
h(LPP3—2):26 (23), since there exist the two classes of
reflections belonging to the symmetry group pm, the ones
containing common segment endpoints, and others not containing
them. In the similar way, N(LPP7—2)=19 (16). In the case of the
LPP8-1, there occurs the other kind of exception. Namely, there
is a non-indentical symmetry (a half-turn) of the group &
transforming the open segment L onto itself, so that
E(LPPB—1)=7 (4). It is simply to conclude that, in comparition
with the non—-exceptional number N(LPP), factors of the first kind
increase the number N(LPP) and the others decrease it.
Combinations of the factors mentioned, producing the opposite
effects on the number R(LPP), are also possible. Such a
combination 1in the case of LPP8-2 results in the
Q(LPP8—2)=1O (7), where occurs the compensation of these opposite
effects.

There is also the possibility to distinguish LPPC with the
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same 53, obtained by the use of the transformations eq and 93_1.
In that case, there will be one more LPPC and non-friv1a1 LPPC
between the LPPC2-2, LPPC5-3 and LPPC5-4.

As the illustration, the complete survay of LPPC5-4 is given

by Figure 6.
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Flgure 6

By the use of the same approach to the remaining 196 LPP,

the derivation of all the LPPC can be continued and completed.

5. CURVILINEAR TILINGS

The next class of figures possesing a curvilinear symmetry group
of the category &20, 521 or &2, are curvilinear tilings.
There will be one essential difference between them and
curvilinear segment patterns. At curvilinear segment patterns
every segment keeps its own referent system, making possible
differing between convex and concave segments (Figure 1). In the
case of curvilinear tilings, it is naturally to define convexity
and concavity of a tiling edge in agreement with convexity and
concavity of the adjacent tiles. We will discuss curvilinear
tilings, with which every edge is strictly convex, stright or
concave.. Since one edge is the boundary of two adjacent tiles,
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the transformations ey, €3, having a contradictory effect on
stright edges, cannot be used transforming tilings poésessing at
least one stright edge (or its part). Hence, all the suitable
curvilinear symmetry groups are EZ, and all the suitable tilings
are that possessing at least one curvilinear edge (or its part).
Beginning with the analysis of curvilinear tilings, a
natural choite will be curvilinear isohedral tilings, where every
tiling edge 1is strictly convex, concave or stright. Since the
complete discussion on curvilinear isohedral tilings exceds the
dimensions of these particular study, we are giving only the
basic idea of our aprroach to this problem, illustrated by visual
examples of the curvilinear 1isohedral tilings IHC derived from
isohedral tilings IH1i and IH41 [14, Table 6.2.1] with the
symmetry group of ornaments pi. In the case of IH1 there will be
the 5 trivial curvilinear isohedral tilings with different
possible choices of convex, stright or concave edges. Subjecting
them under the action of the one curvilinear symmetry group
(p1/p1)2 derived from pi, the 3 non-trivial IHCi1 are obtained.
Hence, ﬁ(IH1):8 (3). In the same way, N(IH41)=T (5). A11 the

IHC1 and IHC41 are illustrated by Figure 7.
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Flgure 7

Continuing the derivation of all the IHC from the 93 types
of IH [14, Table 6.2.1] as well as deriving curvilinear isohedral
tilings corresponding to the curvilinerar symmetry groups of the
categories 520 and 521, the reader must take care about possible

exceptional cases.
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Slavik V. Jablan
NEKE NAPOMENE O KRIVOLINIJSKOJ SIMETRIJI

Uspostavijene su veze izmedju grupa antisimetrije, (3)-simetrije,
(32)-simetrije i grupa krivolinijske simetrije koje je definisao
P.L.Dubov. Izvedene su grupe krivolinijske simetrije kategerija
%o, T21, &. Primenjujudi, redom, grupe krivilinijske simetrije
kategorija &0, &21 na rozetalne (kona&ne) segmentne motive LPF i
bordurne segmentne motive LPS odredjen Jje broj odgovarajugih
krivolinijskih rozetalnih (kona&nih) segmentnih motiva LPFC i
krivelinijskih bordurnih segmentnih motiva LPSC i date njihove
vizuelne interpretacije.

Slavik V. Jablan
Department of Mathematics
Phylosophical Faculty
18000 Ni¥
Cirila i Metodija 2
Yugoslavia
71




	1.pdf (p.1-30)
	2.pdf (p.31-60)
	3.pdf (p.61-90)
	4.pdf (p.91-101)



