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Abstract. Let C_(X) denote the space of all real-valued continuous func-
tions on a space X in the topology of pointwise convergence (see [3],[41). We
investigate when Cp(X) and CP(Y) are linearly homeomorphic or just homeomorphic.

1. Notations and terminology

In what follows X,Y,Z,X',Y' are always understood to be non-empty Tychonoff
spaces, I is the unit segment [0,1] with the usual topology, N is the set of
all positive integers, N = N'u{0}, K, Cantor’s perfect set, E" n-dimensional
euclidean space, S = {0,1/n:n ehﬁ} is the simplest infinite compact space - con-
verging sequence, (® stands for tﬁe operation of the free topological sum.

If A is a closed subset of X, then X/A is the quotient space in the cate-
gory of Tychonoff spaces obtained from X by identifying A to a point. Thus X/A
is endowed with the strongest Tychonoff topology with respect to which the iden-
tification mapping X—X/A is continuous.

We also use the following notations: C (X;&) = {fGC : flA

[FH]

0} and
C LAY, = C (XA {ah = {£€C (X/n):£(8)=0}. Whenever & denotes a set, this
set is assumed to be non-empty.

If L and M are linearly homeomorphic linear topological spaces, we write:
L=M. If X and Y are homeomorphic topological spaces we write X=Y. Topological
spaces X and Y are said to be l-equivalent (notation: XrlJY) if C (X) is 1i-
nearly homeomorphic to C (Y)Y. ITE € (X) is just homeomerphic to C (Y) we say X
and Y are t-equivalent (notat1on Xﬁv'Y) Adding one new 1solated p01nt to a
space X we obtain a space denoted by S

If ¥ is a locally compact non-compact space we denote by eLY the Alexand-

roff one-point compactification of Y. If Y is compact we put olY = Y'.
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A subspace A<X is said to be t-embedded (l-embedded) in the space X if
there exists a continucus (a linear continuous) mapping ‘-P:Cp(A)-—; Cp(X) such
that g = Y(g)|A for every geC (A). Such mapping ‘¥ is called a continuous ex-
tender (a linear continuous extender) from A to X. It is not difficult to show
that if A is t-embedded into X then A is closed in X.

2. Extenders and 1- and t-equivalences

We show how extenders can be used to construct non-trivial pairs of t-equi-

valent (of l-equivalent) spaces and derive some corollaries.

PROPOSITION 2.1. If A is t-embedded in X, then Cp(X),r:-'.,Cp(XIA)Ox Cp(ﬁ) and
X xa@a.

PROOF. Fix a continuous extender “f:C (A)—-Cp(}() and define mappings
Y :C (X)—C _(A)xC_(X;4) and qa':cp(A)xcp(x;A)—vcp(x) by the following rules:
Y (£) = (F]A,£P(F]A)) and W'((g,h) =‘P(g)+h. The mappings ¥ and V' are ob-
viously continuous and V' is the inverse to V. Hence CP(X)""' g {A)XCP(X;A).
Clearly c (X;A)= C_(X/A) . It follows that C (X) = Cp(X/A) xc (A). Taking
into account that C (X/A)f‘*—’ C (X/A) 0% E1 and C xh = Cp(){)x E we obtain:
C (%" )NC (X/A)xC (A) which 1mp1:.es that X+ 15 t-equivalent to X/A @ A.

In the same way we get

PROPOSITION 2.2, If A is l-embedded in X then C (X)l:::’-C (X/A) X C ()
and X+ HX/A @A.

PROPOSITION 2.3. If A is t-embedded (l-embedded) in X and A @Ar—t’-« A
(A@ALR) then XL X @A (then XL X @ A).

PROOF C (x)~ C (X/A) x C (A) = C (XIA) x Cp(A)xCp(A)P& Cp(x)x Cp(A).
Thus X~ X @A

EXAMPLE 2.1. S @ S.«-l.- 3. Indeed, if we take A to be the set consisting of
the two non-isolated points in S@ S, then (3@ S)/A@ & is homeomorphic to 3.
Also (S @®5S)" is homeomorphic to S. Hence S@ s.-}. S.

PROPOSITION 2.4.([9]). If X contains a non-trivial converging sequence 3,
+ 1

then X~X@S and X' ~ X.

PROOF. Each metrizable compact subspace of any space X is l-embedded in X
(this f‘ollows easily fr'om results in [7]). Taking into account example 2.1 we
got: Xl X1@s and A @sitdrestixe@sdi

From Propositions 2.1 and 2.4 we derive




THEOREM 2.1. If X contains a non-tr1V1al converglng sequence and A is t-
embedded (1-embedded) in X then X.& X/A @ A (then ¥ X/MPA) .

PROBLEM 2.1. Can Theorem 2.1 be extended to all ‘infinite spaces X?

It is well known (J.Dugundji [7]) that every closed subspace of any me-
trizable space X is l-embedded in X. From Theorem 2.1 we get now

THEOREM 2.2. For every infinite metrizable space X and closed subspace
AcX, Xk X/A@ A,

REMARK 2.1. Proposition 2.2 and Theorem 2.2 provide a broad generaliza-
tion of Okunev's construction in which retracts were used (see[107,[47).

COROLLARY 2.1, If A is a closed subspace of a metrlzable space X and
A®AL A then X@ANX (if & B BeS § then x@alx).

It is also true that every closed subspace of any stratifiable space X
is l-embedded in X [6]. But there is no reason why a non-discrete stratifiable

space should contain a non-trivial converging sequence. So that applying Pro-
position 2.2 we only get

COROLLARY 2.2. If A is a closed subspace of a stratifiable space X then
X/A @ A.

PROBLEM 2.2. Ts it true that X+n£ X for every infinite stratifiable space
X2

By Proposition 2.4, the answer to Problem 2.2 is "
stratifiable k-spaces.

yes" for all infinite

Proposition 2.4 can be obviously generalized into the following assertion

PROPOSITION 2.5. If X contains a non-trivial converging sequence then

for every finite discrete space Y we have: Xob I®eY.

EXAMPLE 2.2. Let P be the n-dimensional euclidean sphere, where n3 1.Fix

a point p¥e Pn’ take keI'J+, endow the finite set {W,,-.,k} with discrete topo-

logy and in the product space X = P k‘{1 ..k} identify to a point the set A=

# {(p*,i Jii=1,...,k}. The quotient space X/A will be denoted by P(n,k). By
Theorem 2.1 we have: Xru XA@A, i.e. Xru P(n,k) @ A. Clearly, the space

P(n,k) contains a converging sequence. Also, the space A is finite and discrete,

Applying Proposition 2.5, we conclude that P(n.k) @ Al P(n,k) and Xrl'P(n,k).
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EXAMPLE 2.3. Let A be the equator of the sphere P . Then A is homeomorphic
to Pn_1 and the quotient space P /A is homeomorphlc to P(n 2). Herlme Pnn}.“a P(n,2)
@A =Pn,2)® Pn—‘l' By Example 2 2, P(n, 2)~ B &)P Thus, an Pn@ B G')Pn—‘\
If n=1, then the set Pn—1 = Po consists of two points. It fol}ows that P.l
P'h @ P1. Arguing by induction let us assume that Pn—? @ Pn—1~ P
Then P @P_ & P_ by Corollary 2.1 as P, _,
Hence P r-l.a P @P (43? r\}-; P &-)P for all neN The space P(n,2) also contains

From P eu P(n,2) @ P it follows now by

for some n.
n-1

is homeomorphic to a subspace of Pn'

topologlcal copy of the space P e
means of Corollary 2.1 that P N P(n 2). F‘r’om Pnr-l-: Pn@Pn we get by induction :
Pnﬁ]; an{1 —" § ol 1 ke N Taking into account Example 2.2 we conclude that

P(n,k) is l-equivalent to Pn for all n,kEN+.

EXAMPLE 2.4. Let ¥ be a finite complex of dimension ny 1 and let X =IK[| be
the corresponding space. We shall show that Xc-%' Pn' Denote by €' the subcomplex
of K formed by all simplexes belonging to K the dimension of which is less then
n. Put & =]K'| . Then Xe-l- X/A ® A, where X/A is obviously homeomorphic to the
space P (see Example 2.3), where k is the number of n-dimensional simplexes
in K. By Example 2.3, Pln, k)r-.— P and X'-l-' P @ A. As dimh = dimk' = n—1<n we can
argue by induction and assume that it is a].r-eady established that A~ P -1 if
4 Er 92 Obv:t.ously if n_‘l then A is finite and Xr-la P by Proposition 2.5. For‘ ny 2
we have: X~P @ANP @P 1

was already establlshed in Example 2.3. The result establishsd in this example

-1—' Pn by Corollary 2.1 — the last equivalence

was obtained by D. Pavlovskij by a more complicated argument (see [111, [12]1).

If X is a compact space and Y is an open subspace of X then X/(X\Y) is oY
— the one point compactification of Y. From Theorem 2.2 we now get more explicite

result:

THEOREM 2.3. If X is an infinite metrizable compact space and Y is open in
X, then X (X\Y) @elY.

COROLLARY 2.3. Let }(.1
subspaces of X‘I and XE’ respectively, such that Y1 is homeomorphic to YE and
3l
\ Yg. Then X1~ X2.

and X2 be metrizable compact spaces and Y‘I’YZ open

X1\ Y1 is l-equivalent to X2

The following assertion is technically quite important.

THEOREM 2.4, TIf compact spaces X and Y are l-equivalent then for any

space Z we have: Xx Zr}d YxZ.

An outline of the proof. Fix a linear homeomorphism “P: C (X)——iC (). Take
any f‘eCp(XK Z). For arbitrary ze 7 define f‘zeCp(X) by the rule f‘ (z) f{x,z)

6




for all xeX. Put g ='P(f,) eCp(Y) and gly,2z) = g (y) for all yeY. Applyins
some basic results from [1] we can show that the function g is continuous.
linear homeomorphism :Cp(XX Z)—> Cp(Yx Z) can be now defined by the rule:
Y(f) = g.

This argument doesn’t work for t-equivalence (we cannot refer to [1] in
that case). The following question arises:

PROBLEM 2.3. Suppose that X and Y are t-equivalent compact spaces., Is it
true then that Xx Z '_j ¥Yx Z for every space Z 7

3. l-equivalence and stability concepts

Now we shall introduce some strong stability concepts related to l-equi-
valence.

Let us call a space X l-additive if X @ X .—-1., X and X+ .—-L X. Let us say

that X is strongly l-additive if X@ 4 «-33 X for every l-embedded subspace A
of X. Similarly t-additive and strongly t-additive spaces are defined. It is
clear that every strongly l-additive space is l-additive.

Let T be a space. A space X will be called T-stable if ¥ is l-equivalent
to Xx T. Of particular interest to us will be S-stable spaces and N-stable
spaces (where S is the converging sequence with the limit and N is the dis-
erete space of natural numbers). The importance of these concepts is based on
the following facts.

PROPOSITION 3.1.If a compact space X is S-stable then it is strongly
l-additive.

PROOF. Clearly X" & (Xx5)* L Xx5 L . Let A be l-embedded in X.

Then X ~& y g - X/A @ A. By Theorem 2.4 we have:

XXS S (X/A@M)XS = (X/AXS) @ (AXS) = (WAXS) @ (AXS) @ A =
(MADAXS) @A~ XxS) @A A X@4.
From X o X xS it follows now that X s X@A.

The following assertion is obvious.
PROPOSITION 3.2. If X ~ Y then XXN & Yx 1.

Arguing as in the proof of Proposition 3.1 and applying Proposition 3.2
we obtain

PROPOSITION 3.3. Every N-stable space is strongly l-additive.

PROPOSITION 3.4. For every space X the space XX N is N-stable.




PROOF. Obviously Nx N is homeomorphic to N; hence (XxN)xN is
homemorphic to XX N and XX N (XXN)xN.

PROPOSITION 3.5. For every space X the space XX S is S-stable.

PROOF. To prove that (Xx38)x S = Xx(Sx5S) is l-equivalent to Xx S we need
only to show that S-}a Sx S8 =— the rest will follow from Theorem 2.4. By Theorem
2.2, SxS3 (5xS)/A @ A, where & = (sx8)\{(1/n,1/m):n,meN*}. Clearly, both

spaces (SxS)/A and A are homeomorphic to S. Hence Sx S & 8 @ S i 18,

Let us say that a space Y is l-dominated (t-dominated) by a space X if there
existé a subspace X1 < X which is l-embedded (t-embedded) in X and l-equivalent
(t-equivalent) to Y. If Y is 1-dominated by X and X is l-dominated by Y, the spa-
ces X and Y are called l-equidimensional.

One can find many examples of S-stable spaces with the help of the following

assrtion.

PROPOSITION 3.6. If X is compact and the space Xx S is l-dominated by the
space X, then X .-}, XxS, i.e. the space X is S-stable.

To prove this we need one of our basic results:

THECREM 3.1. If X and Y are l-equidimensional spaces and at least one of
them is strongly l-additive, then X and Y are l-equivalent.

PROOF. We fix X{:X which is l-equivalent to Y and l-embedded in X and
Y1=Y which is l-equivalent to X and l-embedded in Y. Assume that Y is strongly

l-additive. Then Y @ Y r\ln X.I ® X‘l and it follows from Proposition 2.3 that

% o X@)(1--1-X(4'_!)Y.Ontheother‘hand,Yr-!‘-aY@Y1r~:.L-Y@XasY

is strongly l-additive. Hence X .-.];, Y.

COROLLARY 3.1. If X and Y are compact l-equidimensional spaces and at least
one of them is S-stable, then X r-~L b &

COROLLARY 3.2. If X and Y are l-equidimensional spaces and at least one of
them is N-stable, then X & ¥,

PROOF of Proposition 3.6. Obviously X is l-dominated by Xx S. By the assum-
ptions, Xx S is also l-dominated by X. The space Xx S is S-stable by Proposition
3.5. It remains to apply Corollary 3.1.

The same argument together with a reference to Proposition 3.4 constitutes
the proof of
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PROPOSITION 3.7. If X is a space such that the space Xx N is l-dominated
by the space X, then X & XxN, i.e. X is N-stable.

Proposition 3.7 and Proposition 3.6 are quite instrumental in finding stron-
gly l-additive spaces.

REMARK 3.71. A non-empty compact space X 1s never N-stable. Indeed, Xx N is
not compact and it is known [11, [4]1 that a compact space and a non-compact
space cannot be l-equivalent. Thus the conéept of N-stability is of no help when
we are looking for strongly l-additive compact spaces. We have to rely here on
the less elementary concept of S-stability.

EXAMPLE 3.1. The space S is not N-stable. Indded, it is compact (see the

argument above).

EXAMPLE 3.2. The discrete space N is not S-stable. Indded, by a result of
V.V. Tkaduk [13], [2] , if a discrete space is t-equivalent to a space Y, then
Y is also diserete. As the space Nx S is not discrete we conclude that Nx 3 is

not t-equivalent to N.

EXAMPLE 3.3. The Hilbert cube I’H"h is S-stable: Ian S can be homeomorphi- .

cally embedded in I°% (see [8] ). Tt follows that Ip“’ is strongly l-additive.

COROLLARY 3.3. (V.Valov [14]) If a space Y which is metrizable compact con-
tains a subspace which is l-equivalent to Iy” , then Y Hir i H“.

EXAMPLE 3.4. The Cantor parfect set KO is S-stable: K %S is homeomorphic

to a subspace of K, (see [81) .

Now we can easily prove the following result from [5] :

THEOREM 3.2. Every two uncountable zero-dimensional compact metrizable spaces
X and Y are l-equivalent.

PROOF. The space X contains a topological copy of the Cantor perfect set KO
and KO contains a topological copy of the space X. Thus X and KO are l-equidi -
mensional spaces. As KO is S-stable it follows from Corollary 3.1 that X & KO.

The same is true for Y. Hence X rL_ pi

Theorem 3.2 cannot be extended to compact metrizable spaces of positive di-

mension. But we have the following result:

THEOREM 3.3. If X is uncountable locally compact separable metrizable space,

then for every zero-dimensional metrizable compact space Y we have X @ Y L %,

9




PROCOF. The space X contains a topological copy of Xy {8] « Thus X L X® KO
and X ® Y X ® K, ® Y. By Theoren 3:2, K, ® Y o Kge It follows that

1 1 1 0
X ® (K, ® Y) =~ X @ Ky «> X. Hence X & X @ Y.

0

EXAMPLE 3.5. The space J of irrational numbers with the usual topology is
N-stable: the space Jx N is homeomorphic to a closed subspace of the space J
(see [8] ). It remains to apply Propesition 3.4 and Corcllary 3.2.

THEOREM 3.4. If X is a zero-dimensional complete separable metric space
which is not & -compact, then X . dJ.

PROOF. The space X contains a closed subspace homeomorphic to J (see [81).
On the other hand, X is homeomorphic to a closed subspace of J. Thus X and J
are l-equidimensional. The space J being N-stable it follows that X «-J'—‘ J.

EXAMPLE 3.6. The space Q of rational numbers with usual topology is obvi-
ously N-stable and hence this space is strongly l-additive. Using this fact we
can prove

THEOREM 3.5. A closed subspace X of the space Q is l-equivalent to Q if
and only if X contains a closed subspace homeomorphic to Q.

Let ﬁ) be a class of topological spaces. A space X will be called {.(P,l)—

universal, if Xe P and every ve P is l-equivalent to a subspace X,‘CX which
is l-embedded in X.

PROPOSITION 3.8. Let P be a elass of spaces such that XxNe P ror every
Xe P. Then any two (@,l)—universal spaces Xo and YO are l-equivalent.

PROOF . As X, is (@,l)—univer'sal, the space X x N is l-equivalent to a
Subspace of XO which is l-embedded in XO. It follows from Proposition 3.7 that
X0 is N-stable. Being (?,1)—univer‘sal the spaces XO and YO are obviously l-equi-
dimensional. Corollary 3. 2 now implies that XO ﬁla YO.

PROPOSITION 3.9. Let » be a class of compact spaces such that )(J(Segj for
every X e P, Then any two (.'73,1)—universal spaces X and YO are l=-equivalent.

PROOF. We argue in the same way as in the proof of Proposition 3.8: the
only difference is that instead of Cerollary 3.2 we invoke Corollary 3.1.

THEOREM 3.6. Let ne N and let P be the class of all metrizable compact

spaces of dimension < n. Then any two (?,l)-univer‘sal spaces X and Y are
l-equivalent.
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PROOF. This follows from Proposition 3.9.

There are many other classes of spaces satisfying the assumptions in Pro-
positions 3.8 or 3.9.
Tn conclusion let us state three more results the proofs of which will be

published elsewhere.

THEOREM 3.7. Every Tychonoff cube I'C , where 'L':-,‘r{o , is S-stable and

hence strongly l-additive space.

THEOREM~3.8. For every two non-empty open subspaces ¥ and Y of the eucli-
dean space En, where rleN+, the one-point compactifications oL¥ and LY are

l-equivalent.

THEOREM 3.9. If X is the space of a countable CW-complex K such that dimX=
:ne,N+ and the set of n-dimensional simplexes of K is infinite, then X is l-equi=-

valent to the euclidean space B,

This result can be extehded to polytopes.
T would like to mention that some results of this paper related to S-sta-

bility and l-equidimensionality are close to results of V.Valov in [147.
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A.V. Arhangel’skii

0 LINEARNC TOPOLOSKOJ I TOPOLOSKOJ
KLASIFIKACIJI PROSTORA cp(x)

Neka cp(x) oznadava prostor svih neprekidnih realnoznaénih funkeija defi-
nisanih na datom topolodkom prostoru ¥ snabdeven topologijom obilne konvergen-
cije. U radu se izucdava kada su prostori Cp(X) i CD(Y) linearno homeomorfni —
tada se kaZe da su X i Y l-ekvivalentni — ili samo topolo3ki homeomorfni —
tada se kaZe da su X i Y t-ekvivalentni. Daje se niz rezultata i primera u ve-
zi sa ovim ekvilalentnostima. Pokazuje se kako ekstendori mogu biti korisdeni
za konstruisanje netrivijalnih parova t-ekvivalentnih i l-ekvivalentnih pros-
tora. Ispituje se i veza izmedu l-ekvivalentnosti i stabilnosti u odnosu na pro-

izved.

Chair of General Topology and Geometry
Mech.-Math. Faculty

Moscow State University

Moscow, USSR

12




	1.pdf (p.1-30)
	2.pdf (p.31-60)
	3.pdf (p.61-90)
	4.pdf (p.91-101)



