Milena Jelić

\mathcal{E}_{B} -CONNECTEDNESS IN BITOPOLOGICAL SPACES

(Received 24.05.1989.)

Abstract. In this paper the concept of ξ -connectedness of bitopological spaces is introduced and studied.

Introduction

In [4] Perwin has given a characterization of pairwise connected bitopological spaces in terms of bicontinuous functions: a bitopological space (X,T_1,T_2) is pairwise connected if every bicontinuous function from X into $(D,\mathbb{Z}/D,\mathbb{Z}/D)$ is constant. In this paper D stands for the set $\{0,1\}$ endowed with the left-hand topology $\mathbb{Z}/D = \{\emptyset,D,\{0\}\}$ and the right-hand topology $\mathbb{Z}/D = \{\emptyset,D,\{1\}\}$. The class of topological (bitopological) spaces which contain more than one point will be denoted by $\mathbb{Z}(\mathbb{Z}_B)$. The set of all bicontinuous functions from (X,T_1,T_2) into (E,U_1,U_2) will be denoted by BC(X,E).

The bitopological quasicomponent of a point x in (X,T_1,T_2) is the set of all points y in X such that x and y cannot be separated by a separation of X [8]. This quasicomponent will be denoted by Q_x .

A subset A of (X,T_1,T_2) is called p-open if $A=H_1\cup H_2$, where $H_i\in T_i$ for i= 1,2. It is obvious that each open set in topology T_i is p-open, but the converse is not necessarily true [1].

Preuss introduced and studied \mathcal{E} -connectednedness oftopological spaces. A topological space X is \mathcal{E} -connected if every continuous function from X into Y is constant, for every Ye \mathcal{E} [6].

2. Results

DEFINITION 2.1. A bitopological space (X,T_1,T_2) is pairwise ξ -connected

(briefly $\mathcal{E}_{\rm B}$ -connected) if every bicontinuous function from X into (E,U₁,U₂) is constant for each E \mathbf{e} $\mathcal{E}_{\rm B}$.

REMARK. Every \mathcal{E}_B -connected bitopological space is pairwise connected, but the converse is not necessarily true. If \mathcal{E}_B = {D} then each pairwise connected bitopological space is \mathcal{E}_B -connected.

DEFINITION 2.2. A subset G of bitopological space (X,T_1,T_2) is \mathcal{E}_B -open if there exist $E\in\mathcal{E}_B$, $f\in BC(X,E)$ and a p-open set V in E such that $f^{-1}(V)=U$. The complement of an \mathcal{E}_B -open set is \mathcal{E}_B -closed.

REMARK. Every \mathcal{E}_{B} -open set is p-open, but the converse is not necessarily true. If \mathcal{E}_{B} = {D} then each p-open set is \mathcal{E}_{B} -open.

DEFINITION 2.3. A bitopological space X is \mathcal{E}_B -connected between (non - empty) subsets A and B if U_j -cl $f(A) \cap U_i$ -cl $f(B) \neq \emptyset$ for each $E \in \mathcal{E}_B$, each f in BC(X,E) and $i \neq j$, i,j=1,2. If one of the sets A and B (or both) consists of a single point, then X is \mathcal{E}_B -connected between a point and a subset, respectively between a subset and a point (or between two points).

PROPOSITION 2.4. Let \mathcal{E}_{B} be the class of PT spaces. Then the following statements are equivalent:

(i) X is \mathcal{E}_{R} -connected,

(ii) X is \mathcal{E}_{R} -connected between every two subsets,

(iii) X is \mathcal{E}_{B} -connected between every two disjoint subsets,

(iv) X is \mathcal{E}_B -connected between each T_i -closed and each T_j -closed subset such that they are disjoint for $i \neq j$, i, j=1,2,

(v) X is \mathcal{E}_{B} -connected between every \mathbf{T}_{k} -closed set A and every point p in X=A, k=1,2,

(vi) X is \mathcal{E}_{B} -connected between every two distinct points.

PROOF. (i) \Rightarrow (vi) Let x,y \in X, x \neq y, \in \mathcal{E}_B and $f \in$ BC(X,E). Since X is \mathcal{E}_B -connected we have f(x)=f(y). Hence $U_j-cl\{f(x)\} \cap U_j-cl\{f(y)\} \neq \emptyset$ for $i\neq j$, i,j=1,2. This means that X is \mathcal{E}_B -connected between any two points.

(vi) \Rightarrow (i) Suppose that X is not \mathcal{E}_B -connected. Then there exist $E \in \mathcal{E}_B$, $f \in BC(X,E)$ and two distinct points $x,y \in X$ such that $f(x) \neq f(y)$. Since E is a PT_1 space, $U_i - c1\{f(x)\} \cap U_j - c1\{f(y)\} = \{f(x)\} \cap \{f(y)\} = \emptyset$, i.e. X is not \mathcal{E}_B -connected between x and y.

In a similar way we prove (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi). [Note that this implication chain holds for any class \mathcal{L}_{p} .]

PROPOSITION 2.5. Let X be a bitopological space. Consider the following statements:

(i) X is $\mathcal{E}_{\mathrm{B}}\text{-connected},$ (ii) The $\mathcal{E}_{\mathrm{B}}\text{-open sets in X are only X and \emptyset},$

(iii) If X = AVB, where A and B are \mathcal{E}_{B} -open sets, then X=A or X=B,

(iv) If $X = A \cup B$, with A and B \mathcal{E}_{B} -closed sets, then X=A or X=B. Then the implication chain (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) holds for any class \mathcal{E}_{p} . Moreover

(a) If \mathcal{E}_{B} is the class of PT spaces, then (ii) \Rightarrow (i),

- (b) If , \mathcal{E}_R is the class of spaces with the property bicl{x}n bicl{y}=0 for every two distinct points x and y (in each $E \in \mathcal{E}_{R}$), then (iii) \Rightarrow (i),
- (c) If \mathcal{E}_B is the class of PR₁ spaces such that $U_i cl\{x\} \cap U_i cl\{y\} = \emptyset$ for every two distinct points x and y, $i \neq j$, i, j=1,2, then $(iv) \Rightarrow (i)$.
- PROOF. (i) \Rightarrow (ii) Let G be an \mathcal{E}_{B} -open set in X such that $\emptyset \neq G \neq X$. Then there exist $E \in \mathcal{E}_B$, $f \in BC(X,E)$ and a p-open set $W \subset E$ such that $G = f^{-1}(W)$. Let $x \in G$ and y G X \ G. Then $f(x) \neq f(y)$ and f is not constant. Therefore X is not \mathcal{E}_B -connected, which is a contradiction.
- (a) Let X is not \mathcal{E}_{B} -connected. Then there exist $\mathbf{E} \in \mathcal{E}_{B}$, $\mathbf{f} \in BC(X,E)$ and points x,y in X such that $f(x) \neq f(y)$. Since E is a PT space, there is a set GEU1 with $f(x) \in G$, $f(y) \not= G$ or a set $V \in U_2$ with $f(x) \not= V$, $f(y) \in V$. Then $f^{-1}(G) \neq \emptyset$, $f^{-1}(V) \neq \emptyset$, fcontradiction.
- (i) \Rightarrow (iii) is evident so that we shall prove (b). Suppose that X is not \mathcal{E}_{B} -connected. Then there are E $\mathbf{e}\mathcal{E}_{\mathsf{B}}$, f \mathbf{e} BC(X,E) and two distinct points x,y \mathbf{e} X such that $f(x) \neq f(y)$. Since bicl $\{f(x)\} \cap bicl\{f(y)\} = \emptyset$ (in E), the sets A = $f^{-1}(E \setminus bicl\{f(x)\})$ and $B = f^{-1}(E \setminus bicl\{f(y)\})$ are E_B -open, because one has $A = f^{-1}(E \setminus (U_1 - \operatorname{cl}\{f(x)\} \cap U_2 - \operatorname{cl}\{f(y)\})) = f^{-1}(V), \text{ where } V \text{ is p-open in } E \text{ (and } V) = f^{-1}(V)$ similarly for B). Now $X = A \cup B$, $X \neq A$, $X \neq B$, which is a contradiction.
 - (i)⇒(iV) and (c) may be proved in a similar way.

COROLLARY. If \mathcal{E}_{B} is the class of PT₁ spaces, then (iii) \Longrightarrow (i) in Proposition 2.5. If \mathcal{E}_{B} is the class of PT₂ spaces, then (iv) \Rightarrow (i) in Proposition 2.5.

DEFINITION 2.6. a) A set GCX is called an \mathcal{E}_{B} -open neighbourhood of a subset B of X if B**c**G and G is \mathcal{E}_{B} -open.

- b) A set WCX is said to be an \mathcal{E}_B -closed neighbourhood of a subset BCX if there exist $E \in \mathcal{E}_B$, $f \in BC(X,E)$ and a p-open set $O \subset E$ such that $W = f^{-1}(U_V - clo)$ and $B \subset f^{-1}(0)$ for k=1,2.
- c) A set VCX is called a special \mathcal{E}_{B} -open neighbourhood of a subset BCX if there exist $E \in \mathcal{E}_B$, $f \in BC(X,E)$ and a p-open neighbourhood 0 of $U_k - c1\{f(B)\}$ such that $V = f^{-1}(0)$ for k=1,2.

27

DEFINITION 2.7. Let X be a bitopological space and x & X. Then the bitopological \mathcal{E}_{B} -quasicomponent of x is the set \mathcal{E}_{B} -Q_x = $\{y:f(x)=f(y) \text{ for each } E \in \mathcal{E}_{B}$ and each f &BC(X,E)}.

LEMMA 2.8. Let \mathcal{E}_{B} be the class of PT spaces, X a bitopological space, x & X and

 $\begin{array}{l} {\bf A_x} = \{y : y \in X \ \& \ y \ \text{is in each} & \begin{picture}(100,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0)$ Then $\mathcal{E}_{B}-Q = A \cap B$.

PROOF. Let $y \in A_X \cap B_X$ and $y \notin E_B - Q_X$. Then there exist $E \in E_B$ and $f \in BC(X, E)$ such that $f(x) \neq f(y)$. Since E is PT then there exists either (i) an U₁-open neighbourhood G of f(x) such that f(y) & G, or (ii) an U2-open neighbourhood V of f(y) such that f(x) V. Then:

 $\mathcal{E}_{\mathbf{R}}$ -open neighbourhood of x with $y \notin g^{-1}(G)$ which contradicts (i) $f^{-1}(G)$ is an the fact y & A,;

(ii) $f^{-1}(V)$ is an \mathcal{E}_{B} -open neighbourhood of y and $x \not\in f^{-1}(V)$ which contradicts the fact y & B.

Now, let G be an \mathcal{E}_{B} -open neighbourhood of x and y \mathcal{E}_{B} -Q_x. Then there exist $E \in \mathcal{E}_B$, $f \in BC(X,E)$ and a p-open set $V \subset E$ such that $G = f^{-1}(V)$. Then f(x) = f(y)and $f(x) \in V$. Therefore $y \in f^{-1}(V) = G$ and $y \in A_x$. Similarly, $y \in B_x$.

LEMMA 2.9. Let \mathcal{E}_{R} be the class of PT₁ spaces, X a bitopological space, $x \in X$, A_x , B_x as in Lemma 2.8. Then the following hold:

(i) $\mathcal{E}_{B} - Q_{x} = A_{x} = B_{x}$. (ii) $\mathcal{E}_{B} - Q_{x} = \{y \in X: X \text{ is } \mathcal{E}_{B} - \text{connected between } x \text{ and } y\}$.

PROOF. (i) is trivial so that we shall prove (ii). Let X be \mathcal{E}_{R} -connected between x and y. Then there are E $\in \mathcal{E}_B$ and f \in BC(X,E) such that U_i -cl $\{f(x)\}$ \cap $U_{j}-\mathrm{cl}\left\{f(y)\right\} \neq \emptyset, \text{ for } i\neq j, \text{ } i,j=1,2. \text{ As E is PT}_{1} \text{ we have } U_{k}-\mathrm{cl}\left\{f(x)\right\} = \left\{f(x)\right\} \text{ for } i\neq j, \text{ } i,j=1,2. \text{ As E is PT}_{1} \text{ we have } U_{k}-\mathrm{cl}\left\{f(x)\right\} = \left\{f(x)\right\} \text{ for } i\neq j, \text{ } i,j=1,2. \text{ As E is PT}_{1} \text{ we have } U_{k}-\mathrm{cl}\left\{f(x)\right\} = \left\{f(x)\right\} \text{ for } i\neq j, \text{ } i,j=1,2. \text{ As E is PT}_{1} \text{ we have } U_{k}-\mathrm{cl}\left\{f(x)\right\} = \left\{f(x)\right\} \text{ for } i\neq j, \text{ } i,j=1,2. \text{ As E is PT}_{1} \text{ we have } U_{k}-\mathrm{cl}\left\{f(x)\right\} = \left\{f(x)\right\} \text{ for } i\neq j, \text{ } i,j=1,2. \text{ As E is PT}_{1} \text{ we have } U_{k}-\mathrm{cl}\left\{f(x)\right\} = \left\{f(x)\right\} \text{ for } i\neq j, \text{ } i,j=1,2. \text{ As E is PT}_{1} \text{ we have } U_{k}-\mathrm{cl}\left\{f(x)\right\} = \left\{f(x)\right\} \text{ for } i\neq j, \text{ } i,j=1,2. \text{ As E is PT}_{1} \text{ we have } U_{k}-\mathrm{cl}\left\{f(x)\right\} = \left\{f(x)\right\} \text{ for } i\neq j, \text{ } i,j=1,2. \text{ } i \in \mathbb{N} \text{ for } i\neq j, \text{ } i,j=1,2. \text{ } i \in \mathbb{N} \text{ } i$ k=1,2 and every point x in X. Therefore f(x)=f(y), i.e. $y \in \mathcal{E}_{R}-Q_{x}$. The converse is true for every class En.

LEMMA 2.10. Let \mathcal{E}_{B} be the class of PT $_{\mathrm{2}}$ spaces, X a bitopological space and x \in X. Then \mathcal{E}_{B} -Q is the set of all points y in X such that x and y cannot be separated by & B-open sets.

PROOF. Suppose that x and y can be separated by \mathcal{E}_{B} -open sets. Then there exist E,E₁ $\in \mathcal{E}_B$, feBC(X,E), geBC(X,E₁) and p-open sets OcE, O₁cE₁ such that $x \in f^{-1}(0)$, $y \in g^{-1}(0_1)$ and $f^{-1}(0) \cap g^{-1}(0_1) = \emptyset$. Then $f(x) \in O$, $f(y) \notin O$ and $f(y) \in O_1$, $f(x) \not\in O_1$. Thus $f(x) \neq f(y)$, i.e. $y \notin \mathcal{E}_{B} - Q_x$.

Let $y \in X$ be a point such that x and y cannot be separated by \mathcal{E}_{R} -open sets.

Let $E \in \mathcal{E}_B$ and $f \in BC(X,E)$ be such that $f(x) \neq f(y)$. Since E is a PT_2 space, there exist disjoint neighbourhoods $G \in U_1$ and $V \in U_2$ of f(x) and f(y), respectively. We have $x \in f^{-1}(G) \in T_1$, $y \in f^{-1}(V) \in T_2$ and $f^{-1}(G) \cap f^{-1}(V) = \emptyset$, i.e. $f^{-1}(G)$ and $f^{-1}(V)$ are disjoint \mathcal{E}_B -open sets which is a contradiction.

DEFINITION 2.11. The bitopological \mathcal{E}_B -component of a set ACX is its maximal \mathcal{E}_B -connected subset. \mathcal{E}_B -K denotes the \mathcal{E}_B -component of a point x eX.

PROPOSITION 2.12. Let A be an ξ -connected subset of a bitopological space X. Then T_k -clA is ξ_B -connected if and only if ξ_B is the class of PT $_1$ spaces.

PROOF. Let A C X be E_B -connected and let $f:T_k$ -clA \rightarrow E be a p-continuous function, for k=1,2 and E \in E_B . Then $f(A) = \{a\} \in E$ and the set B = $f^{-1}(a)$ is T_k -closed in T_k -clA. Hence B is T_k -closed in X and A \in B \in T_k -clA. Therefore T_k -clA B and f is constant. This means that T_k -clA is E_B -connected.

Let $E \in \mathcal{E}_B$, $x \in X$. Consider the set $\mathcal{E}_B - \mathcal{K}_X$. This set is equal to $\{x\}$. Hence $\{x\} = T_k - c1 \\ \{x\}$, k = 1, 2, because $T_k - c1 \\ \{x\}$ is \mathcal{E}_B -connected and $\mathcal{E}_B - \mathcal{K}_X$ is maximal \mathcal{E}_B -connected. Therefore E is a PT₁ space.

REFERENCES

- [1] M.C. DATTA, Projective bitopological spaces, J. Australian Math. Soc. 19 (1972), 327-334.
- [2] J.C. KELLY, Bitopological spaces, Proc. London Math. Soc. 13(1963), 71-89.
- [3] M.G. MURDESHWAR & S.A. NAIMPALLY, Quasi-uniform topological spaces, Monograf Noordhoof, 1966.
- [4] W. PERWIN Connectedness in bitopological spaces, Indag. Math. 29(1969) , 369-372.
- [5] G. PREUSS, Trennung und Zusammenhang, Mon. Math. 74(1970), 70-87.
- [6] G. PREUSS, E-zusammenhangende Räume, Manuscripta Math. 3(1970), 331-342.
- [7] I.L. REILLY, On bitopological separation properties, Nanta Math. 5(1972), 14-25.
- [8] I.L. REILLY, & S.N. YONG, Quasi-components in bitopological spaces, Math. Chronicle 3(1974), 115-118.

Milena Jelić \mathcal{E}_{B} -POVEZANOST BITOPOLOŠKIH PROSTORA

U radu se definiše povezanost bitopoloških prostora u smislu Preuss-a i proučavaju osobine takvih prostora u zavisnosti od aksioma separacije.

Poljoprivredni fakultet, Nemanjina 6, 11080 Beograd-Zemun, Yugoslavia