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N(κ)-contact Riemann solitons with certain potential vector fields
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Abstract. In the present article we find the nature of N(κ)-contact metric manifolds admitting Riemann
solitons with some restrictions on the potential vector fields. The cases, when the potential vector field
is collinear with the Reeb vector field and when it is infinitesimal contact transformation are specially
treated. Moreover, it is proved that if the potential vector field is a gradient vector field, then the manifold
considered is isometric to a product manifold. The validity of the obtained results are ensured with two
non-trivial examples.

1. Introduction

The theory of solitons is primarily associated with non-linear partial differential equations. But after
the introduction of the famous theory of Hamilton’s Ricci flow [19] the study of Ricci soliton [22, 23] and
Yamabe soliton [1] has taken a leading role in the research area of geometric partial differential equations
and Riemannian geometry. A Ricci soliton is a self similar solution, upto diffeomorphisms and scaling, of a
Ricci flow which is a pseudo-parabolic heat type partial differential equation. The similar definition applies
for a Yamabe soliton. Different aspects of Ricci solitons and Yamabe solitons in the context of contact and
symplectic geometry have been studied by several authors [9, 10, 13, 17, 21, 24, 31–33]. Recently Falcitelli,
Sarkar and Halder [16] studied conformal Ricci solitons in the perspective of α-Kenmotsu manifolds [16].
As a natural trend of Mathematics the concept of Ricci solitons was extended to Riemann solitons by Udrişte
[28, 29] and subsequently it has been studied by several geometers [6–8, 14, 15, 25, 30]. The similarities
and dissimilarities between Ricci solitons and Riemann solitons are pointed out by Udrişte [29]. It is
known that Ricci solitons are generalizations of Einstein manifolds while Riemann solitons are natural
generalizations of spaces of constant sectional curvature. In [6], Blaga analyzed Riemann solitons with
some types of potential vector fields. Potential vector fields play a pivotal role to determine the nature of
solitons. Sometimes the restrictions imposed on potential vector fields give finer results.

On the other hand N(κ)-contact manifolds form an important class of contact manifolds. Such manifolds
bear more information than Sasakian manifolds because here κ is any real number and in particular case
for κ = 1, it is Sasakian. So our study will also be applicable for Sasakian manifolds which are backbone
of contact geometry. These facts motivate us to study N(κ)-contact metric manifolds admitting Riemann
solitons with certain potential vector fields. Here we establish some classification results.

The paper is organized as follows: After introduction, we give some basic definitions and curvature
properties of N(κ)-contact metric manifolds in the Section 2. In Section 3, we derive some characterizations
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of Riemann solitons on N(κ)-contact metric manifolds. Next section deals with gradient Riemann solitons.
In the last section, we give two examples to support our results.

2. Preliminaries

A (2m + 1)-dimensional differentiable manifold M equipped with a (1, 1) tensor field ϕ, a vector field ζ,
a 1-form η satisfying [12]

ϕ2(V1) = −V1 + η(V1)ζ, η(ζ) = 1, (1)

for any vector field V1 ∈ χ(M), the set of all vector fields on M, is known as an almost contact manifold. An
almost contact manifold is called an almost contact metric manifold if it admits a Riemannian metric 1 such
that

1(ϕV1, ϕV2) = 1(V1,V2) − η(V1)η(V2). (2)

As a consequence of (1) and (2), we obtain the following:

ϕζ = 0, 1(V1, ζ) = η(V1), η(ϕV1) = 0,

1(ϕV1,V2) = −1(V1, ϕV2),

(∇V1η)(V2) = 1(∇V1ζ,V2),

for any vector fields V1, V2 ∈ χ(M).
An almost contact metric manifold is called a contact metric manifold if the almost contact metric

structure (ϕ, ζ, η, 1) satisfy the following condition [12]

1(V1, ϕV2) = dη(V1,V2),

for all vector fields V1, V2 ∈ χ(M). For a contact metric manifold M, we define a symmetric (1, 1)-tensor
field h by h = 1

2Lζϕ, where Lζϕ denotes the Lie derivative of ϕ in the direction ζ and satisfy the following
relations

hζ = 0, hϕ + ϕh = 0, trace(h) = trace(hϕ) = 0,

∇V1ζ = −ϕV1 − ϕhV1. (3)

The notion of κ-nullity distribution on a Riemannian manifold was coined by Tanno [26]. In a Rieman-
nian manifold M, the κ-nullity distribution is defined by

N(κ) : q −→ Nq(κ) = {V3 ∈ TqM : R(V1,V2)V3 = κ[1(V2,V3)V1 − 1(V1,V3)V2]},

for any vector fields V1, V2 ∈ TqM, where κ is a real number and TqM is the Lie algebra of all vector fields at
q. A (2m+1)-dimensional contact metric manifold is called N(κ)-contact metric manifold if the characteristic
vector field ζ belongs to the κ-nullity distribution. So, for an N(κ)-contact metric manifold, we have

R(V1,V2)ζ = κ{η(V2)V1 − η(V1)V2}. (4)

If κ = 1, then the manifold is Sasakian manifold and for κ = 0, the manifold is locally isometric to the
product of a flat (m + 1)-dimensional manifold and a m-dimensional manifold with scalar curvature 4,
provided m>1. In case m = 1 and κ = 0, the manifold is flat [2]. For proper N(κ)-contact metric manifold,
κ<1. For more details see [2–4, 12].

For a N(κ)-contact metric manifold of dimension (2m + 1),m ≥ 1, we have [12]

h2 = (κ − 1)ϕ2,
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(∇V1ϕ)(V2) = 1(V1 + hV1,V2)ζ − η(V2)(V1 + hV1),

R(V1,V2)ζ = κ{η(V2)V1 − η(V1)V2}, (5)

R(ζ,V1)V2 = κ{1(V1,V2)ζ − η(V2)V1},

S(V1,V2) =2(m − 1){1(V1,V2) + 1(hV1,V2)}
+{2mκ − 2(m − 1)}η(V1)η(V2),

(6)

S(V1, ζ) = 2mκη(V1), (7)

(∇V1η)(V2) = 1(V1 + hV1, ϕV2), (8)

(∇V1 h)(V2) ={(1 − κ)1(V1, ϕV2) + 1(V1, hϕV2)}ζ
+η(V2){h(ϕV1 + ϕhV1)},

(9)

r = 2m(2m − 2 + κ), (10)

for any vector fields V1, V2, ∈ χ(M), where R, S and r are the Riemannian curvature, Ricci tensor and scalar
curvature, respectively.

Remembering Blair ([5], p-72) and Tanno [27], we give the following definition

Definition 2.1. A vector field Z on a N(κ)-contact metric manifold M is called an infinitesimal contact transformation
if it fulfills

LZη = fη,

for some smooth function f on M. If f = 0, then the vector field Z is called a strict infinitesimal contact transformation.

The notion of Riemann flow was coined by Udrişte [28, 29]. The Riemann flow on a Riemannian
manifold M of dimension (2m+1) is defined by

∂
∂t

G(t) = −2R(1(t)),

G = 1
21 ⊗ 1, where ⊗ denotes the Kulkarni-Nomizu product defined by

(P1 ⊗ P2)(V1,V2,V3,V4) =P1(V1,V4)P2(V2,V3) + P1(V2,V3)P2(V1,V4)
−P1(V1,V3)P2(V2,V4) − P1(V2,V4)P2(V1,V3),

(11)

for any vector fields V1, V2, V3, V4; and R is the Riemannian curvature tensor of type (0,4) corresponding to
the Riemannian metric 1.

In 2016, Hirică and Udrişte [18] introduced the notion of Riemann solitons. In a Riemannian manifold
of dimension (2m+1), a Riemannian metric 1 is called a Riemann soliton if the following equation holds

2R + λ1 ⊗ 1 + 1 ⊗ LZ1 = 0, (12)

LZ being the Lie derivative along the smooth vector field Z and λ is a constant. The vector field Z is known
as a potential vector field. A Riemann soliton is denoted by (1,Z, λ). The soliton is said to be expanding or
steady or shrinking according as λ>0 or λ = 0 or λ<0.

If the vector field Z is the gradient of a smooth function f , then the soliton is said to be a gradient
Riemann soliton. Thus for the gradient Riemann soliton the equation (12) reduces to

R +
λ
2
1 ⊗ 1 + 1 ⊗ ∇2 f = 0,

∇
2 f being the Hessian of the function f .
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3. Riemann solitons on N(κ)-contact metric manifolds with certain potential vector fields

In this section we study Riemann solitons on N(κ)-contact metric manifolds. Before entering the main
topic we prove the following Lemma.

Lemma 3.1. If N(κ)-contact metric manifolds admit Riemann solitons, then the divergence of the potential vector
field is constant.

Proof. Let M be a N(κ)-contact metric manifold of dimension (2m + 1) admitting Riemann soliton. Then,
from (11) and (12), we obtain

2R(V1,V2,V3,V4) + 2λ{1(V1,V4)1(V2,V3) − 1(V1,V3)1(V2,V4)}
+1(V1,V4)(LZ1)(V2,V3) + 1(V2,V3)(LZ1)(V1,V4)
−1(V1,V3)(LZ1)(V2,V4) − 1(V2,V4)(LZ1)(V1,V3) = 0.

(13)

Contracting V1 and V4 in the above equation, we obtain

2S(V2,V3) + 2(2mλ + divZ)1(V2,V3) + (2m − 1)(LZ1)(V2,V3) = 0, (14)

where ‘div’ is the divergence operator. Again contracting the above equation, we get

divZ = −
r + 2m(2m + 1)λ

4m
. (15)

Using (10) in (15), we get

divZ = −
(2m − 2 + κ) + (2m + 1)λ

2
, (16)

which is a constant.

Using (16) in (14), we obtain

2S(V2,V3)+{(2m − 1)λ − (2m − 2 + κ)}1(V2,V3)
+(2m − 1)(LZ1)(V2,V3) = 0.

(17)

Theorem 3.2. If a (2m+1)-dimensional N(κ)-contact metric manifold admits Riemann solitons and the potential
vector field is pointwise collinear with the Reeb vector field ζ, then the potential vector field is a constant multiple of
the Reeb vector field ζ.

Proof. Let the potential vector field Z be pointwise collinear with the Reeb vector field ζ, i.e., Z = ρζ, where
ρ is a function on the manifold. Then from (17), we get

2S(V2,V3)+{(2m − 1)λ − (2m − 2 + κ)}1(V2,V3) + (2m − 1){(V2ρ)η(V3)
+(V3ρ)η(V2) + ρ1(∇V2ζ,V3) + ρ1(∇V3ζ,V2)} = 0.

(18)

Using (3) in (18), we obtain

2S(V2,V3)+{(2m − 1)λ − (2m − 2 + κ)}1(V2,V3) + (2m − 1){(V2ρ)η(V3)
+(V3ρ)η(V2) − 2ρ1(ϕhV2,V3)} = 0.

(19)

Putting V3 = ζ in (19) and using (7), we get

4mκη(V2)+{(2m − 1)λ − (2m − 2 + κ)}η(V2)
+(2m − 1){(V2ρ) + (ζρ)η(V2)} = 0.

(20)
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Again putting V2 = ζ in (20), we obtain

(ζρ) =
2(m − 1) − (4m − 1)κ − (2m − 1)λ

2(2m − 1)
. (21)

Using (21) in (20), we infer

(V2ρ) =
2(m − 1) − (4m − 1)κ − (2m − 1)λ

2(2m − 1)
η(V2), (22)

which implies

dρ =
2(m − 1) − (4m − 1)κ − (2m − 1)λ

2(2m − 1)
η. (23)

Taking exterior derivative of (23) and then taking wedge product with η, we get

2(m − 1) − (4m − 1)κ − (2m − 1)λ
2(2m − 1)

η ∧ dη = 0. (24)

Since η ∧ (dη)m is the volume element, we have η ∧ dη , 0. Thus from (24), we get

λ =
2(m − 1) − (4m − 1)κ

2m − 1
. (25)

Using (25) in (22), we have

(V2ρ) = 0,

from which we conclude that ρ is a constant.

Corollary 3.3. Let a N(κ)-contact metric manifold of dimension (2m+1) admit Riemann solitons. If the potential
vector field is the Reeb vector field ζ, then the soliton is steady, provided m = 1. For m>1, the soliton is expanding.

Proof. If the potential vector field is the Reeb vector field ζ, then from (19), we get

2S(V2,V3)+{(2m − 1)λ − (2m − 2 + κ)}1(V2,V3)
−2(2m − 1)1(ϕhV2,V3) = 0.

(26)

Putting V2 = V3 = δi in (26), where {δi}, i = 1, 2, · · · , (2m+ 1) is the orthonormal basis of the tangent space at
each point of the manifold. Then summing over i, we get

2r + {(2m − 1)λ − (2m − 2 + κ)}(2m + 1) = 0. (27)

Using (10) in (27), we get

λ = −
2m − 2 + κ

2m + 1
. (28)

Again, substituting V2 = V3 = ζ in (26), one obtains

κ =
(2m − 1)λ − 2(m − 1)

4m − 1
. (29)

Applying (29) in (28), we infer

λ =
(m − 1)(2m − 1)

2m2 . (30)

From the foregoing equation, we see that for m = 1, λ = 0 and when m>1, we find λ>0.
The above equation ensures the validity of the corollary.
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Theorem 3.4. If the metric (1,Z, λ) of a (2m+1)-dimensional N(κ)-contact metric manifold is a Riemann soliton,
then

κ =
2(m − 1)
4m − 1

−
2m − 1
4m − 1

λ.

Proof. From (17), we have

(LZ1)(V2,V3) = −
2

2m − 1
S(V2,V3) −

(2m − 1)λ − (2m − 2 + κ)
2m − 1

1(V2,V3). (31)

Taking covariant derivative of (31) along the arbitrary vector field V1, we have

(∇V1LZ1)(V2,V3) = −
2

2m − 1
(∇V1 S)(V2,V3). (32)

From Yano [30], we have

(LZ∇V11 − ∇V1LZ1 − ∇[Z,V1]1)(V2,V3) = − 1((LZ∇)(V1,V2),V3)
−1((LZ∇)(V1,V3),V2).

Due to symmetry property of LZ∇, we have from the above formula

21((LZ∇)(V1,V2),V3) =(∇V1LZ1)(V2,V3) + (∇V2LZ1)(V1,V3)
−(∇V3LZ1)(V1,V2).

(33)

Taking covariant derivative of (6) along the vector field V1, we obtain

(∇V1 S)(V2,V3) =2(m − 1)1((∇V1 h)(V2),V3)
+{2mκ − 2(m − 1)}{(∇V1η)(V2)η(V3)
+η(V2)(∇V1η)(V3)}.

(34)

Using (8) and (9) in (34), we obtain

(∇V1 S)(V2,V3) =2κ{1(V1, ϕV2)η(V3) − 1(V1, ϕV3)η(V2)}
+2mκ{1(V1, hϕV2)η(V3) + 1(V1, hϕV3)η(V2)}.

(35)

Using (32) and (35) in (33), we obtain

1((LZ∇)(V1,V2),V3) = −
4κ

2m − 1
{1(V1, ϕV2) +m1(V1, ϕV2)}η(V3).

From the above equation, we have

(LZ∇)(V1,V2) = −
4κ

2m − 1
(1(V1, ϕV2) +m1(V1, hϕV2))ζ. (36)

Putting V = ζ in the above equation, we infer

(LZ∇)(V1, ζ) = 0. (37)

Therefore,

∇V2 (LZ∇)(V1, ζ) =(∇V2LZ∇)(V1, ζ) + (LZ∇)(∇V2 V1, ζ)
+(LZ∇)(V1,∇V2ζ) = 0.

(38)
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Using (3) and (37) in (38), we get

(∇V2LZ∇)(V1, ζ) = (LZ∇)(V1, ϕV2) + (LZ∇)(V1, ϕhV2).

Using (36) in the above equation, we obtain

(∇V2LZ∇)(V1, ζ) = −
4κ

2m − 1
[((κ − 1)m − 1)(1(V1,V2)

−η(V1)η(V2))ζ − (m + 1)1(V1, hV2)ζ].
(39)

It is well known that [30]

(LZR)(V1,V2)V3 = (∇V1LZ∇)(V2,V3) − (∇V2LZ∇)(V1,V3). (40)

By (39) and (40), we infer

(LZR)(V1, ζ)ζ = 0. (41)

Again taking Lie-derivative of R(V1, ζ)ζ = κ(V1 − η(V1)ζ) along the vector field Z, we obtain

(LZR)(V1, ζ)ζ = − κ[(LZη)(V1)ζ − η(V1)LZζ]
−R(V1,LZζ)ζ − R(V1, ζ)LZζ.

(42)

Putting V3 = ζ in (31) and using (7), we obtain

(LZη)(V2) = 1(V2,LZζ) −
(4m − 1)κ + (2m − 1)λ − 2(m − 1)

2m − 1
η(V2). (43)

Using (43) in (42), we have

(LZR)(V1, ζ)ζ = − κ[1(V1,LZζ)ζ −
(4m − 1)κ + (2m − 1)λ − 2(m − 1)

2m − 1
η(V1)ζ

−η(V1)LZζ] − R(V1,LZζ)ζ − R(V1, ζ)LZζ.
(44)

From (41) and (44), we obtain

R(V1,LZζ)ζ + R(V1, ζ)LZζ = −κ[1(V1,LZζ)ζ

−
(4m − 1)κ + (2m − 1)λ − 2(m − 1)

2m − 1
η(V1)ζ − η(V1)LZζ].

Contracting the above equation, we have

S(LZζ, ζ) =
{(4m − 1)κ + (2m − 1)λ − 2(m − 1)}κ

2(2m − 1)
.

By virtue of equation (7), the above equation reduces to

1(LZζ, ζ) =
(4m − 1)κ + (2m − 1)λ − 2(m − 1)

4m(2m − 1)
. (45)

Putting V2 = V3 = ζ in (31) and using (7), we obtain

1(LZζ, ζ) =
(4m − 1)κ + (2m − 1)λ − 2(m − 1)

2(2m − 1)
. (46)

Comparing (45) and (46), we obtain

κ =
2(m − 1)
4m − 1

−
2m − 1
4m − 1

λ. (47)

This completes the proof of the theorem.
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Since κ<1, from (47), we can state the following corollary

Corollary 3.5. Let a (2m+1)-dimensional N(κ)-contact metric manifold admits Riemann solitons.
For 2(m−1)

4m−1 <κ<1, the soliton is shrinking.
For κ = 2(m−1)

4m−1 , the soliton is steady.
For κ< 2(m−1)

4m−1 , the soliton is expanding.

In three-dimensional N(κ)-contact metric manifolds, κ = − 1
3λ. Thus we can state the following

Corollary 3.6. If κ>0, then the soliton is shrinking.
If κ = 0, then the soliton is steady.
If κ<0, then the soliton is expanding.

Theorem 3.7. If a (2m + 1)-dimensional N(κ)-contact metric manifold admits Riemann solitons, then the potential
vector field Z is an infinesimal contact transformation.

Proof. Substituting V3 = ζ in (17), one obtains

(LZ1)(V2, ζ) = −
(4m − 1)κ + (2m − 1)λ − 2(m − 1)

2m − 1
η(V2). (48)

Applying V2 = ζ in (48), we have

1(LZζ, ζ) =
(4m − 1)κ + (2m − 1)λ − 2(m − 1)

2(2m − 1)
. (49)

The above equation gives

LZζ =
(4m − 1)κ + (2m − 1)λ − 2(m − 1)

2(2m − 1)
ζ. (50)

Now, Lie derivative of η(V2) = 1(V2, ζ) over Z confers

(LZη)(V2) = (LZ1)(V2, ζ) + 1(V2,LZζ). (51)

Equations (48) and (50) together with equation (51) gives

(LZη)(V2) = −
(4m − 1)κ + (2m − 1)λ − 2(m − 1)

2(2m − 1)
η(V2), (52)

which conferms that the potential vector field Z is an infinitesimal contact transformation.

From (52), we may establish the following corollary

Corollary 3.8. If the potential vector field Z of a Riemann soliton is strict infinitesimal contact transformation, then
λ = 2(m−1)

2m−1 −
(4m−1)κ

2m−1 .

4. Gradient Riemann solitons on N(κ)-contact metric manifolds

In this section we consider gradient Riemann soliton as the metric of a N(κ)-contact metric manifold
and prove the following results:

Theorem 4.1. If a (2m+1)-dimensional N(κ)-contact metric manifold admits a gradient Riemann soliton, then the
manifold is locally isometric to the product of a flat (m+1)-dimensional manifold and a m-dimensional manifold with
scalar curvature 4, provided m>1. For m = 1, the manifold is flat.
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Proof. Let M be a (2m+1)-dimensional N(κ)-contact metric manifold which admit gradient Riemann solitons.
Let the potential vector filed Z be the gradient of a non-zero smooth function f : M → R, that is, Z = D f ,
where D be the gradient operator. Then, from (14), we have

∇V2 D f = −
1

2m − 1
(Q + 2mλ + divD f )V2. (53)

Taking covariant derivative of (53) along the vector field V1, we obtain

∇V1∇V2 D f = −
1

2m − 1
(∇V1 QV2 + V1(divD f )V2 + (2mλ + divD f )∇V1 V2). (54)

Interchanging V1 and V2 in (54), we get

∇V2∇V1 D f = −
1

2m − 1
(∇V2 QV1 + V2(divD f )V1 + (2mλ + divD f )∇V2 V1).

Also, from (53), we have

∇[V1,V2]D f = −
1

2m − 1
(Q + 2mλ + divD f )[V1,V2].

Therefore,

R(V1,V2)D f = −
1

2m − 1
((∇V1 Q)(V2) − (∇V2 Q)(V1)

+V1(divD f )V2 − V2(divD f )V1).
(55)

From (6), we have

QV2 = 2(m − 1)(V2 + hV2) + (2mκ − 2(m − 1)η(V2)ζ). (56)

Taking covariant derivative of (56) along the vector field V1, we obtain

(∇V1 Q)(V2) = 2κ(1(V1, ϕV2)ζ − η(V2)ϕV1)
+ 2mκ(1(V1, hϕV2)ζ + η(V2)hϕV1).

(57)

Using (57) in (55), we get

R(V1,V2)D f = −
1

2m − 1
[2κ(21(V1, ϕV2)ζ − η(V2)ϕV1 + η(V1)ϕV2)

+2mκ(η(V2)hϕV1 − η(V1)hϕV2) + V1(divD f )V2 − V2(divD f )V1].
(58)

Taking inner product of (58) with the vector field ζ, we obtain

1(R(V1,V2)D f , ζ) = −
1

2m − 1
[4κ1(V1, ϕV2) + V1(divD f )η(V2)

−V2(divD f )η(V1)].
(59)

Again taking inner product of (5) with D f , we get

1(R(V1,V2)ζ,D f ) = κ((V1 f )η(V2) − (V2 f )η(V1)). (60)

As 1(R(V1,V2)V3,V4) = −1(R(V1,V2)V4,V3) for any vector fields V1, V2, V3, V4 on M, from (59) and (60), we
get

1
2m − 1

[4κ1(V1, ϕV2) + V1(divD f )η(V2) − V2(divD f )η(V1)]

=κ((V1 f )η(V2) − (V2 f )η(V1)).
(61)
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Replacing V1 by ϕV1 and V2 by ϕV2 in the above equation, we obtain

κ1(ϕV1,V2) = 0,

which gives κ = 0. Thus, in view of [2], the statement of the theorem is proved.

Corollary 4.2. If a N(κ)-contact metric manifold admits gradient Riemann soliton with smooth potential function
f , then divergence of D f is a constant, where D denotes gradient operator.

Proof. Putting V1 = ζ in (61) and using κ = 0, we get

V2(divD f ) = ζ(divD f )η(V2). (62)

Contracting (58), we get

S(V2,D f ) =
2m

2m − 1
V2(divD f ).

Using (6) and (62) in the above equation, we obtain

2(m − 1)((V2 f ) + (hV2 f ) − (ζ f )η(V2)) =
2m

2m − 1
ζ(divD f )η(V2). (63)

Replacing V2 by hV2 in the above equation, we have

(hV2 f ) = (ζ f )η(V2) − (V2 f ). (64)

Using (64) in (63), we infer

ζ(divD f ) = 0.

Therefore, with the help of (62), we conclude that divD f is a constant.

5. Examples

Example 5.1. Let us consider the manifold M = {x, y, z ∈ R3 : z , 0} of dimension 3, where (x, y, z) are
standard coordinates in R3. We choose the vector fields δ1, δ2 and δ3 which satisfies

[δ1, δ2] = 3δ3, [δ1, δ3] = δ2, [δ2, δ3] = 2δ1.

Let the metric tensor 1 be defined by

1(δ1, δ1) = 1(δ2, δ2) = 1(δ3, δ3) = 1

and
1(δ1, δ2) = 1(δ1, δ3) = 1(δ2, δ3) = 0.

The 1-form η is defined by
η(V1) = 1(V1, δ1),

for all V1 on M. Let ϕ be the (1, 1)-tensor field defined by

ϕ(δ1) = 0, ϕ(δ2) = δ3, ϕ(δ3) = −δ2.

Then we find that
η(δ1) = 1, ϕ2V1 = −V1 + η(V1)δ1,

1(ϕV1, ϕV2) = 1(V1,V2) − η(V1)η(V2), dη(V1,V2) = 1(V1, ϕV2),
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for any vector fields V1, V2 on M. Thus (ϕ, δ1, η, 1) defines a contact structure.
Let ∇ be the Levi-Civita connection on M, then by Koszul’s formula, we obtain

∇δ1δ1 = 0, ∇δ1δ2 = 0, ∇δ1δ3 = 0,

∇δ2δ2 = 0, ∇δ2δ1 = −3δ3, ∇δ2δ3 = 3δ1,

∇δ3δ3 = 0, ∇δ3δ1 = −δ2, ∇δ3δ2 = δ1.

From the above expressions of ∇, we obtain

hδ1 = 0, hδ2 = 2δ2, hδ3 = −2δ3.

We also have
R(δ1, δ2)δ2 = −3δ1, R(δ2, δ1)δ1 = −3δ2, R(δ2, δ3)δ3 = 3δ2,

R(δ3, δ2)δ2 = 3δ3, R(δ1, δ3)δ3 = −3δ1, R(δ3, δ1)δ1 = −3δ3,

R(δ1, δ2)δ3 = 0, R(δ2, δ3)δ1 = 0, R(δ1, δ3)δ2 = 0.

Thus the manifold is a N(κ)-contact metric manifold with κ = −3. From the above expressions of R(δi, δ j)δk,
the curvature tensor R is given by

R(V1,V2)V3 =3(1(V2,V3)V1 − 1(V1,V3)V2) + 4(1(V2,V3)η(V1)ζ
−1(V1,V3)η(V2)ζ + η(V2)η(V3)V1 − η(V1)η(V3)V2),

(65)

for any vector fields V1,V2,V3.
From the expressions of curvature tensor, we get

S(δ1, δ1) = −6, S(δ2, δ2) = 0, S(δ3, δ3) = 0.

Thus
S(V1,V2) = −6η(V1)η(V2),

for any vector fields V1,V2 on the manifold.
The scalar curvature r of the manifold is given by

r = S(δ1, δ1) + S(δ2, δ2) + S(δ3, δ3) = −6.

Let us take the potential vector Z = aδ1 + bδ2 + cδ3 where a, b, c are real constants. Then

(LZ1)(δ1, δ1) = 0, (LZ1)(δ2, δ2) = 0, (LZ1)(δ3, δ3) = 0.

From the expressions of LZ along with equation (65), the equation (13) is satisfied for λ = 3. Thus 1 is a
Riemann soliton. Since λ>0, the soliton is expanding. Also,

(LZη)(δ1) = 0, (LZη)(δ2) = 2c, (LZη)(δ3) = −2b.

Hence Z is a strict infinitesimal contact transformation with b = c = 0.

In the next example, we verify the existance of Riemann soliton on Sasakian manifold (i.e., for κ = 1).

Example 5.2. Let us consider the manifold M = {x, y, z ∈ R3 : z , 0} of dimension 3, where (x, y, z) are
standard coordinates in R3. We choose the vector fields

δ1 =
∂
∂x
+ y
∂
∂z
, δ2 =

∂
∂y
− x
∂
∂z
, δ3 =

∂
∂z
,
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which are linearly independent at each point of M. We get the following by direct computations

[δ1, δ2] = −2δ3, [δ1, δ3] = 0, [δ2, δ3] = 0.

Let the metric tensor 1 be defined by

1(δ1, δ1) = 1(δ2, δ2) = 1(δ3, δ3) = 1

and
1(δ1, δ2) = 1(δ1, δ3) = 1(δ2, δ3) = 0.

The 1-form η is defined by η(V1) = 1(V1, δ3), for all V1 on M. Let ϕ be the (1, 1)-tensor field defined by

ϕ(δ1) = −δ2, ϕ(δ2) = δ1, ϕ(δ3) = 0.

Then we find that
η(δ3) = 1, ϕ2V1 = −V1 + η(V1)δ3,

1(ϕV1, ϕV2) = 1(V1,V2) − η(V1)η(V2), dη(V1,V2) = 1(V1, ϕV2),

for any vector fields V1, V2 on M. Thus (ϕ, δ3, η, 1) defines a contact structure.
Let ∇ be the Levi-Civita connection on M, then we have

∇δ1δ1 = 0, ∇δ1δ2 = −δ3, ∇δ1δ3 = δ2,

∇δ2δ1 = δ3, ∇δ2δ2 = 0, ∇δ2δ3 = −δ1,

∇δ3δ1 = δ2, ∇δ3δ2 = −δ1, ∇δ3δ3 = 0.

From the above expressions of ∇, we obtain

hδ1 = 0, hδ2 = 0, hδ3 = 0.

Thus the components of curvature tensor are given by

R(δ1, δ2)δ2 = −3δ1, R(δ2, δ1)δ1 = −3δ2, R(δ2, δ3)δ3 = δ2,

R(δ3, δ2)δ2 = δ3, R(δ1, δ3)δ3 = δ1, R(δ3, δ1)δ1 = δ3,

R(δ1, δ2)δ3 = 0, R(δ2, δ3)δ1 = 0, R(δ1, δ3)δ2 = 0.

Hence the manifold is a N(κ)-contact metric manifold with κ = 1, i.e., a Sasakian manifold. From the above
expressions of R(δi, δ j)δk, the curvature tensor is given by

R(V1,V2)V3 = − 3(1(V2,V3)V1 − 1(V1,V3)V2) + 4(1(V2,V3)η(V1)ζ
−1(V1,V3)η(V2)ζ + η(V2)η(V3)V1 − η(V1)η(V3)V2),

(66)

for any vector fields V1,V2,V3.
The components of Ricci tensor are given by

S(δ1, δ1) = −2, S(δ2, δ2) = −2, S(δ3, δ3) = 2.

Thus
S(V1,V2) = −21(V1,V2) + 4η(V1)η(V2),

for any vector fields V1, V2.
The scalar curvature r is given by

r = S(δ1, δ1) + S(δ2, δ2) + S(δ3, δ3) = −2.

Let us take Z = xδ1 + yδ2 − 3zδ3, then

(LZ1)(V1,V2) = 21(V1,V2) − 8η(V1)η(V2), (67)

for any vector fields V1, V2 on M. With the help of equations (66), (67) and λ = 1, the equation (13) is
verified. Thus 1 is an expanding Riemann soliton.
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Suggested future works: The present work deals with certain restrictions on potential vector fields. It
will be a good problem if one can remove the restrictions and analyze the cases in future. Moreover,
(κ, µ)-manifolds is a promising field of study in this regard.
Acknowledgement. The authors are thankful to Prof. U. C. De of University of Calcutta for suggesting
the topic and giving valuable advices. The authors are also thankful to the reviewers for their valuable
suggestions toward the improvement of the paper.
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