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Abstract. In the present work, two optimal control systems with economic applications are investigated,
concerning the minimum cost of production and storage. The framework of distributional systems is
used in the study of controllability, applying Lie geometric methods. In both cases of holonomic and
nonholonomic distributions, Pontryagin’s Maximum Principle leads to optimal solutions. In the case of
a non-linear equation, a numerical solution is used. Finally, some numerical examples with graphical
representations are given.

1. Introduction

It is well known that geometric Lie methods have been used since the last century in many research
fields including optimal control theory. Distributional systems or driftless control affine systems are
intensely studied, having applications in robotics, economics or sub-Riemannian geometry. In fact, the sub-
Riemannian geometry can be regarded as the geometry of driftless control affine systems with quadratic
cost and non-integrable (nonholonomic) distribution, which is bracket generating [3, 6]. Also, the case of
integrable (holonomic) distribution provided very interesting applications and controllability information
can be found in the structure of the Lie algebra formed by the vector fields that generate the distribution.
In [4] the link between Lie theory and control is given. Control theory methods viewed from a geometrical
point of view can be found, for example in [1, 7]. The framework of Lie algebroids is used in the investigation
of distributional systems in the papers [9–12, 14, 16]. Applications of optimal control in economics have
been studied in many scientific works, see for instance [2, 5, 17–19]. The framework of distributional
systems in the study of optimization problems of production and storage costs can be found in [9]-[16].
One of the most used methods in solving an optimal control problem is Pontryagin’s Maximum Principle.
We say that a curve denoted by c(t) = (x(t),u(t)) is an optimal trajectory of the control system, if there is a
lift of x(t) to the dual space (x(t), p(t)) which satisfies the Hamilton-Jacobi-Bellman equations.

The main purpose of this paper is to study two optimal control systems with economic applications,
concerning the minimum cost of production and storage. In the paper we will use geometric Lie methods
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to investigate the controllability properties of systems in the both case of holonomic and nonholonomic
distributions and Pontryagin’s Maximum Principle to find the optimal solutions. We will see that if the
distribution is integrable, the control system is not controllable and the distribution generates a foliation in
three-dimensional space In the case of nonholonomic distribution, which is also strong bracket generating,
the control system is mathematicaly controllable, but the positive conditions of trajectories, given by
economical aspects lead to some final restriction. The work is organized in three sections as follows.
In the second section some preliminaries about optimal control are presented, including distributional
systems with holonomic and nonholonomic distribution. In the third section, which contains the novelty
of the paper, two optimal control systems are investigated. The controllability problem is solved and
optimal solutions are given. In the case of nonholonomic distribution, for a nonlinear equation a numerical
solution is presented. At the end of each studied problem, several numerical examples with graphical
representations are given.

2. Optimal Control

In what follows, we consider M to be an n-dimensional and smooth manifold and we will deal with
control systems given by differential equations, which depend on certain parameters, in the form

dxi

dt
= f i(x,u),

where x ∈M is the state of our system and u ∈ U ⊂Rm is the controls. If we consider two points of M, given
by x0 and x1, then an optimal control problem consists in determining trajectories of the control system that
joins the points x0 and x1 and, at the same time, minimizes a functional cost

min
∫ T

0
L(x(t),u(t))dt, x(0) = x0, x(T) = x1,

where L is called the Lagrangian function. Control theory studies dynamic systems whose evolution over
time can be influenced by some external variables. One of the most used tools for study optimal solutions for
a control system is Pontryagin’s Maxim Principle, which generates necessary, but not sufficient conditions
for finding optimal solutions. For an optimal trajectory, given by a curve c(t) = (x(t),u(t)), this gives a lift on
the dual space (x(t), p(t)) that satisfies the so-called Hamilton-Jacobi-Bellman equations. The Hamiltonian
function has the form

H(x, p,u) =
〈
p, f (x,u)

〉
− L(x,u), p ∈ T∗M,

and the maximization condition given by

H(x(t), p(t),u(t)) = max
s

H(x(t), p(t), s),

implies ∂H∂u = 0, where the optimal trajectories satisfy the following equations

ẋ =
∂H
∂p
, ṗ = −

∂H
∂x
. (1)

2.1. Distributional systems
A distributional system (driftless control affine system) has the following form [8]

ẋ(t) =
m∑

i=1

ui(t)Xi(x(t)), (2)

where x = (x1, ..., xn) represent the local coordinates and u(t) = (u1(t), ...,um(t)) ∈ U ⊂ Rm, m ≤ n, is called
the control. Also, X1...Xm represent the smooth vector fields on the manifold M, which are called the input
vector fields. Using [8] we have:
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Definition 2.1. A control system is called controllable if for every two points x0 and x1 on the manifold M, there
exists a finite T and a control u : [0,T]→ U such that for x satisfying x(0) = x0 we have that x(T) = x1.

We can say that the control system is controllable, if for any two states x0, x1, there is a curve, which is
the solution of the system of differential equations (2) and which, at the same time, connects x0 to x1. In
other words, controllability is the ability to drive a system from any given initial state to any given final
state in a finite time, using the available control functions. We recall that [8]

Definition 2.2. A distribution denoted ∆ on a smooth manifold M is an application that assigns to each point in M
a subspace of the tangent space at that point x→ ∆(x) ⊂ TxM.

We say that ∆ is locally finitely generated if there is a family of vector fields {X j} j=1,m which generates ∆.
The dimension of ∆ is k if dim∆(x) = k, for all points x in M. We recall the Lie bracket given by

[h, f ](x) =
∂ f
∂x

(x)h(x) −
∂h
∂x

(x) f (x),

A distribution ∆ on M is said to be involutive if for x ∈ M and h(x), f (x) ∈ ∆(x) it results
[
h, f

]
(x) ∈ ∆(x). If

the involutive distribution is also locally finitely generated by the vector fields {Xk}k=1,m then it results

[Xr,Xs] (x) =
m∑

i=1

Li
rs(x)Xi(x),

and the Lie bracket can be written as a linear combination of the system vector fields. We recall that
a foliation denoted {Fα}α∈A on the manifold M is a partition of M =

⋃
α∈A

Fα of M into disjoint connected

submanifolds Fα, which are called leaves.

Definition 2.3. The distribution ∆, which has constant dimension on M, is named holonomic (or integrable) if there
exists a foliation {Fα}α∈A on M whose tangent space is ∆, that is TxF = ∆(x), where F is the leaf passing through x.

Theorem 2.4. (Frobenius) If the distribution ∆ has constant dimension, then ∆ is integrable if and only if it is
involutive.

Using [8] we have:

Definition 2.5. The distribution ∆ generated by vector fields {X1, ...,Xm} on M is called bracket generating if the
iterated

Xr, [Xr,Xs], [Xr, [Xs,Xk]], · · ·, 1 ≤ r, s, k ≤ m,

span the tangent bundle TM of M in any point.

Now, with the help of the Lie brackets of the vector fields we have

∆ ⊂ ∆2
⊂ · · · ⊂ ∆k

⊂ · · · ⊂ TM,

where

∆2 = ∆ + [∆,∆] , ...,∆k+1 = ∆k +
[
∆,∆k

]
,

and [
∆,∆k

]
= span{[Y,Z] : Y ∈ ∆, Z ∈ ∆k

}.

For any k ≥ 2 for which ∆k = TM, then ∆ is bracket generating distribution and k is named the step of
the distribution. In this case the distribution ∆ is called nonholonomic (non-integrable). This condition is
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also mentioned in the specialized literature with the name strong Hörmander condition, or Lie algebra rank
condition. For k = 2 the distribution is called strong bracket generating.

Next, if we return to the case of distributional systems, where the vector fields Xk, k = 1,m, generate a
distribution with constant rank ∆ on the connected manifold M. We can characterize the controllability
using the properties of Lie algebra generated by the vector fields.

Theorem 2.6. (Chow-Rashevsky) If the distribution ∆ = span{X1, ...,Xm} is bracket generating (nonholonomic),
then the driftless control affine system is controllable.

In the case of the integrable distribution ∆with constant rank, the control system is not controllable and
∆ determines a foliation on the manifold M having the property that any trajectory is contained in a single
leaf of the foliation, and the restriction of ∆ at each leaf of the foliation is bracket generating.

3. Application to optimization of production and storage costs

Suppose that an economic process includes the manufacture of three products P1, P2, P3 in given final
quantities and in a given period of time, such that the rate of production for third product depends on
the production rates of the first two (which are controllable) by a fixed law. It is known that the unit
production costs for the first two products have a linear increase with the level of production and the costs
of production operations for the third product are sufficiently small and are not taken into account. We
know the storage unit costs for each type of product denoted with (β1, β2, β3) and and we have no restrictions
on production capacity, having the possibility to rent certain machines, but with the increase of production
costs for P1 and P2. An optimal production plan is sought with the manufacture of the products in the
specified quantities in the fixed period of time, so that the total cost of storage and production is minimal.
We will have the notations: T is the fixed period of time required to manufacture the products; si, i = 1, 3
are the final quantities required; xi(t), are the manufactured quantities until time t; pi(t) are the production
rates at time t; (c1, c2) are the production costs per unit for the first two products. We can also make the
assumption that we have no initial quantity of each product type. We have the rate of production for third
product given by the equation ẋ3 = (u1 + u2)(x1 + x2), where u1,u2 are control variables given by ẋ1 = u1,
ẋ2 = u2. The unit production costs are given by ci = αipi, where α1, α2 > 0, i = 1, 2 . Considering the initial
stock zero for all products, that is xi(0) = 0 we have

xi(t) =

∫ t

0
pi(y)dy,

and the rate of change of stock level ẋi(t) is the production rate and it results ẋi(t) = pi(t). Also, the total cost
of production is given by c1p1 + c2p2 = α1(p1)2 +α2(p2)2 = α1(ẋ1)2 +α2(ẋ2)2 = α1(u1)2 +α2(u2)2. It follows that
the total cost generated by production and storage has the form α1(u1)2 + α2(u2)2 + β1x1 + β2x2 + β3x3. From
the above, From the previous ones, an optimal control system results, in the form:

ẋ1 = u1

ẋ2 = u2

ẋ3 = (u1 + u2)(x1 + x2)
xi(0) = 0, xi(T) = si
u1,u2

≥ 0, α1,α2, β1, β2, β3 > 0.

(3)

We are interested in finding an optimal production plan with minimum cost, given by

min
u(·)

∫ T

0

(
α1(u1(t))2 + α2(u2(t))2 + β1x1 + β2x2 + β3x3

)
dt.
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We are looking for the optimal trajectories that leave from the initial point (0, 0, 0) and arrive at the final
point (s1, s2, s3). The control system (3) can be rewritten in the following form:

ẋ = u1X1 + u2X2, x =

 x1

x2

x3

 ∈ R3, X1 =

 1
0

x1 + x2

 , X2 =

 0
1

x1 + x2

 ,
min

u(·)

∫ T

0 F (u(t))dt, F (u) = α1(u1(t))2 + α2(u2(t))2 + β1x1 + β2x2 + β3x3.

(4)

The distribution ∆ = span{X1,X2} has constant dimension, dim∆ = 2, for all points x ∈ R3. Also,in the
canonical frame

{
∂
∂x1 ,

∂
∂x2 ,

∂
∂x3

}
the vector fields are given by

X1 =
∂

∂x1 + (x1 + x2)
∂

∂x3 , X2 =
∂

∂x2 + (x1 + x2)
∂

∂x3 .

The Lie bracket is

[X1,X2] =
[
∂

∂x1 + (x1 + x2)
∂

∂x3 ,
∂

∂x2 + (x1 + x2)
∂

∂x3

]
=
∂

∂x3 −
∂

∂x3 = 0,

and it turns out that we are dealing with an involutive ∆ distribution. Using Frobenius’ theorem, we obtain
that the distribution∆ is integrable and it generates a foliation in three dimensional space. As a consequence,
it follows that two points can be joined by an optimal trajectory if and only if they belong to the same leaf of
the foliation. In other words, the economic system is not controllable, which means that only a certain final
amount of stock can be reached. Moreover, using the system (3) it results ẋ3 = (ẋ1 + ẋ2)(x1 + x2) which leads

through integration to x3 = 1
2

(
x1 + x2

)2
+ c, c ∈ R, which are surfaces in R3, which give a foliation. Also,

using the initial condition xi(0) = 0, i = 1, 3 it results x3 = 1
2

(
x1 + x2

)2
. From the final conditions xi(T) = si,

i = 1, 3 it results that the system is mathematically controllable if and only if s3 =
1
2 (s1 + s2)2.

To obtain the optimal solution, we apply Pontryagin’s Maximum Principle. The Hamiltonian function
on the dual space has the form

H =
3∑

i=1

piẋi
− F ,

from which it results

H = p1u1 + p2u2 + p3(u1 + u2)(x1 + x2) − α1(u1)2
− α2(u2)2

− β1x1
− β2x2

− β3x3,

where we have denoted by p1, p2, p3 the momentum variables on cotangent space. The condition ∂H
∂u = 0

yields the following equations
∂H
∂u1 = 0⇒ p1 + p3(x1 + x2) − 2α1u1 = 0⇒ u1 =

p1+p3(x1+x2)
2α1

,
∂H
∂u2 = 0⇒ p2 + p3(x1 + x2) − 2α2u2 = 0⇒ u2 =

p2+p3(x1+x2)
2α2

.

In what follows, we replace the expressions of u1, u2 in the Hamiltonian function and after some
calculations it results:

H =
(p1 + p3(x1 + x2))2

4α1
+

(p2 + p3(x1 + x2))2

4α2
− β1x1

− β2x2
− β3x3.

Using the equations (1) we obtain

ẋ1 = ∂H∂p1
=

p1+p3(x1+x2)
2α1

,
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ẋ2 = ∂H∂p2
=

p2+p3(x1+x2)
2α2

,

ẋ3 = ∂H∂p3
=

(
p1+p3(x1+x2)

2α1
+

p2+p3(x1+x2)
2α2

) (
x1 + x2

)
,

ṗ1 = −
∂H
∂x1 = −

(p1+p3(x1+x2))p3

2α1
−

(p2+p3(x1+x2))p3

2α2
+ β1,

ṗ2 = −
∂H
∂x2 = −

(p1+p3(x1+x2))p3

2α1
−

(p2+p3(x1+x2))p3

2α2
+ β2,

ṗ3 = −
∂H
∂x3 = β3.

We we denote

µ1 = p1 + p3(x1 + x2), µ2 = p2 + p3(x1 + x2),

and it results

ẋ1 =
µ1

2α1
, ẋ2 =

µ2

2α2
, (5)

and by direct computation

µ̇1 = β1 + (x1 + x2)β3, µ̇2 = β2 + (x1 + x2)β3, (6)

From (5) and (6) we obtain

ẍ1 =
µ̇1

2α1
=
β1

2α1
+ (x1 + x2)

β3

2α1
, (7)

ẍ2 =
µ̇2

2α2
=
β2

2α2
+ (x1 + x2)

β3

2α2
, (8)

which lead to

ẍ1 + ẍ2 = (x1 + x2)
(
β3

2α1
+
β3

2α2

)
+
β1

2α1
+
β2

2α2
.

Denoting y = x1 + x2 we obtain a nonhomogeneous differential equation

ÿ =
(α1 + α2)β3

2α1α2
y +
β1α2 + β2α1

2α1α2
. (9)

Considering the homogeneous equation

ÿ −
(α1 + α2)β3

2α1α2
y = 0, (10)

with characteristic equation λ2
−

(α1+α2)β3

2α1α2
= 0 with the solutions λ1,2 = ±

√
(α1+α2)β3

2α1α2
, which yield the solution

y(t) = c1e
√

(α1+α2)β3
2α1α2

t
+ c2e−

√
(α1+α2)β3

2α1α2
t
.

The solution of nonhomogeneous equation (9) has the form

y(t) = c1e
√

(α1+α2)β3
2α1α2

t
+ c2e−

√
(α1+α2)β3

2α1α2
t
−
β1α2 + β2α1

(α1 + α2)β3
. (11)

Now, replace this result in the equation (7) and it results

ẍ1 =
β1

2α1
+
β3

2α1

(
c1e

√
(α1+α2)β3

2α1α2
t
+ c2e−

√
(α1+α2)β3

2α1α2
t
−
β1α2 + β2α1

(α1 + α2)β3

)
,
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which is equivalent with

ẍ1 =
β3

2α1

(
c1e

√
(α1+α2)β3

2α1α2
t
+ c2e−

√
(α1+α2)β3

2α1α2
t
)
+
β1 − β2

2(α1 + α2)
.

By twice integration, we obtain

x1(t) =
α2

α1 + α2

(
c1e

√
(α1+α2)β3

2α1α2
t
+ c2e−

√
(α1+α2)β3

2α1α2
t
)
+
β1 − β2

4(α1 + α2)
t2 + c3t + c4. (12)

In the same way, in accordance with (8) and (9) it results

x2(t) =
α1

α1 + α2

(
c1e

√
(α1+α2)β3

2α1α2
t
+ c2e−

√
(α1+α2)β3

2α1α2
t
)
−
β1 − β2

4(α1 + α2)
t2
− c3t − c4 −

β1α2 + β2α1

(α1 + α2)β3
. (13)

and

x3(t) =
(x1(t) + x2(t))2

2
. (14)

The conditions xi(0) = 0, xi(T) = si, i = 1, 2 generate the linear system
α2(c1 + c2) + (α1 + α2)c4 = 0
α1(c1 + c2) − (α1 + α2)c4 =

β1α2+β2α1

β3

α2 (c1eα + c2e−α) + (α1 + α2)Tc3 + (α1 + α2)c4 = (α1 + α2)s1 −
(β1−β2)T2

4

α1 (c1eα + c2e−α) − (α1 + α2)Tc3 − (α1 + α2)c4 = (α1 + α2)s2 +
(β1−β2)T2

4 +
β1α2+β2α1

β3

where we have denoted α =
√

(α1+α2)β3

2α1α2
T.

By straightforward computation, we obtain the solution

c1 =
1

eα − e−α

(
s1 + s2 +

(
1 − e−α

) β1α2 + β2α1

(α1 + α2)β3

)
, (15)

c2 =
1

e−α − eα

(
s1 + s2 + (1 − eα)

β1α2 + β2α1

(α1 + α2)β3

)
, (16)

c3 =
α1s1 − α2s2

T
−

(β1 − β2)T
4

, (17)

c4 = −
α2(β1α2 + β2α1)
β3(α1 + α2)2 . (18)

The solution is optimal because the Hamilton function is convex. Now, we can discuss on answers on
an interval [0,T]. Indeed, computing c1, c2, c3, c4 is an easy process. Using them, we can compute the 3D
spatial curve (x1(t), x2(t), x3(t)) for 0 ≤ t ≤ T. Through the fact that the range of this curve should not have
any negative coordinates for practical purposes, we only accept non-negative answers for a parameter list
(s1, s2, α1, α2, β1, β2, β3,T). The economic condition of positivity of the solutions in the numerical examples
must also be taken into account, the inequalities xi(t) > 0 cannot be solved by classical methods. Below, is
a computing paradigm to achieve the corresponding curve (x1(t), x2(t), x3(t)) for such a parameters list.
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Algorithm 1 Calculate spatial curve (x1(t), x2(t), x3(t)) in the interval [0,T]
Require: (s1, s2, α1, α2, β1, β2, β3,T)

Compute c1, c2, c3, c4 via equations (15), (16), (17), (18)
Apply (c1, c2, c3, c4) into xi(t)s in the interval [0,T]
if xi(t) have no negative value in the interval [0,T] then

Plot the spatial curve (x1(t), x2(t), x3(t)) in the interval [0,T]
else

print The parameters list (s1, s2, α1, α2, β1, β2, β3,T) does not lead to a practical answer.
end if

(a) (2, 1, 0.1, 0.1, 0.9, 0.5, 0.4, 1) (b) (2, 1, 0.1, 0.1, 0.09, 0.01, 0.4, 1) (c) (3, 2, 0.7, 0.1, 0.4, 0.01, 0.4, 1) (d) (2, 6, 0.4, 0.9, 0.4, 0.1, 0.5, 1)

(e) (2, 1, 0.9, 0.4, 0.4, 0.07, 0.01, 2) (f) (8, 3, 0.01, 0.5, 0.8, 0.15, 0.1, 6)

Figure 1: Some sample outputs for the spatial curve (x1(t), x2(t), x3(t)) in the interval [0,T] from the list of parameters
(s1, s2, α1, α2, β1, β2, β3,T). Figures a, b, c, d, and e are acceptable practical answers. But, the output f meets the space in some
negative coordinates and so is not acceptable.

3.1. The case of no storage cost

In this case we consider that we have no storage cost for any product and the production rate for the
third product has the form ẋ3 = u2x1. The optimal control system becomes

ẋ1 = u1

ẋ2 = u2

ẋ3 = u2x1

xi(0) = 0, xi(T) = si
u1,u2

≥ 0, α1,α2 > 0.

(19)

It is necessary to find the production plan with the minimum cost, given by

min
u(·)

∫ T

0

(
α1(u1(t))2 + α2(u2(t))2

)
dt,
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in which the optimal trajectories start from the initial point (0, 0, 0) and arrive at the final point (s1, s2, s3).
The control system (19) can be rewritten in the form of a distributional system

ẋ = u1X1 + u2X2, x =

 x1

x2

x3

 ∈ R3, X1 =

 1
0
0

 , X2 =

 0
1
x1

 ,
min

u(·)

∫ T

0 F (u(t))dt, F (u) = α1(u1(t))2 + α2(u2(t))2.

The distribution ∆ = span{X1,X2} has constant dimension, dim∆ = 2, for all points x ∈ R3. Also, in the
canonical frame

{
∂
∂x1 ,

∂
∂x2 ,

∂
∂x3

}
we get

X1 =
∂

∂x1 , X2 =
∂

∂x2 + x1 ∂

∂x3 .

The Lie bracket is given by

[X1,X2] =
[
∂

∂x1 ,
∂

∂x2 + x1 ∂

∂x3

]
=
∂

∂x3 .

We will denote X3 = [X1,X2] = ∂
∂x3 and it follows that the distribution ∆ = span{X1,X2} is nonholonomic

with constant rank 2. Moreover, [X1,X3] = [X2,X3] = 0 and it results that ∆ is strong bracket generating,
because {X1,X2, [X1,X2]} span the entire space R3. Indeed,

∣∣∣∣∣∣∣∣
1 0 0
0 1 0
0 x1 1

∣∣∣∣∣∣∣∣ = 1,

and {X1,X2,X3} is a base in R3. By using the Chow-Rashevsky theorem and the fact that the distribution ∆ =
span{X1,X2} is strong bracket generating, we obtain that the system (19) is controllable by mathematically
point of view.

To obtain the optimal solution, we apply Pontryagin’s Maximum Principle. The Hamiltonian function
on the cotangent space has the following form:

H =
3∑

i=1

piẋi
− F ,

and it results

H = p1u1 + p2u2 + p3u2x1
− α1(u1)2

− α2(u2)2,

where p1, p2, p3 represent the momentum variables on the cotangent space. The condition ∂H∂u = 0 yields the
following equations

∂H
∂u1 = 0⇒ p1 − 2α1u1 = 0⇒ u1 =

p1

2α1
,

∂H
∂u2 = 0⇒ p2 + p3x1

− 2α2u2 = 0⇒ u2 =
p2+p3x1

2α2
.

In what follows, we introduce the expressions of u1, u2 into the Hamiltonian function and by direct
calculation we obtain

H =
(p1)2

4α1
+

(p2 + p3x1)2

4α2
.
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Using the equations (1) we obtain
ẋ1 = ∂H∂p1

=
p1

2α1
,

ẋ2 = ∂H∂p2
=

p2+p3x1

2α2
,

ẋ3 = ∂H∂p3
=

(p2+p3x1)x1

2α2
,

ṗ1 = −
∂H
∂x1 = −

(p2+p3x1)p3

2α2
,

ṗ2 = −
∂H
∂x2 = 0⇒ p2 = a = const.

ṗ3 = −
∂H
∂x3 = 0⇒ p3 = b = const.

Also, we get

ẍ1 =
ṗ1

2α1
= −

(p2 + p3x1)p3

4α1α2
,

which leads to a nonhomogeneus second order differential equation

ẍ1 = −
b2

4α1α2
x1
−

ab
4α1α2

. (20)

Considering the homogeneous second order differential equation

ẍ1 = −
b2

4α1α2
x1,

with characteristic equation

λ2 +
b2

4α1α2
= 0,

with the complex solutions λ1,2 = ±
bi

2
√
α1α2
= 0, it results the general solution of the homogeneous equation

x1(t) = a1 cos
bt

2
√
α1α2

+ c sin
bt

2
√
α1α2

+ d.

Replace into the equation (20) and after some direct computation, it results

−
b2d

4α1α2
=

ab
4α1α2

,

and d = −a/b,which yields

x1(t) = a1 cos
bt

2
√
α1α2

+ c sin
bt

2
√
α1α2

−
a
b
.

Using the initial condition x1(0) = 0, we get a1 = a/b and

x1(t) = −
a
b

(
1 − cos

bt
2
√
α1α2

)
+ c sin

bt
2
√
α1α2

. (21)

Next, from the differential equation

ẋ2(t) =
a

2α2
+

b
2α2

x1(t),
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it results

ẋ2(t) =
a

2α2
cos

bt
2
√
α1α2

+
bc

2α2
sin

bt
2
√
α1α2

,

which leads to

x2(t) =
a
√
α1

b
√
α2

sin
bt

2
√
α1α2

−
c
√
α1
√
α2

cos
bt

2
√
α1α2

+ d1.

Using the initial condition x2(0) = 0, we get d1 =
c
√
α1
√
α2

and

x2(t) =
c
√
α1
√
α2

(
1 − cos

bt
2
√
α1α2

)
+

a
√
α1

b
√
α2

sin
bt

2
√
α1α2

. (22)

Finally, using the equation

ẋ3 =
a

2α2
x1 +

b
2α2

(
x1

)2
,

we obtain

ẋ3(t) =
a2

2α2b
cos2 bt

2
√
α1α2

+
bc2

2α2
sin2 bt

2
√
α1α2

+
ac

2α2
sin

bt
√
α1α2

−
a2

2α2b
cos

bt
2
√
α1α2

−
ac

2α2
sin

bt
2
√
α1α2

,

which, together with initial condition x3(0) = 0, lead to

x3(t) =
a2 + b2c2

4bα2
t +

a2
− b2c2

4b2

√
α1
√
α2

sin
bt
√
α1α2

−
ac
2b

√
α1
√
α2

(
1 + cos

bt
√
α1α2

)
(23)

−
a2

b2

√
α1
√
α2

sin
bt

2
√
α1α2

+
ac
b

√
α1
√
α2

cos
bt

2
√
α1α2

.

We denote φ = bt
2
√
α1α2

and from the final conditions xi(T) = si, i = 1, 3 it result the following nonlinear
system

c sinφ − a
b
(
1 − cosφ

)
= s1

c
√
α1
√
α2

(
1 − cosφ

)
+

a
√
α1

b
√
α2

sinφ = s2

a2+b2c2

4bα2
T + a2

−b2c2

4b2

√
α1
√
α2

sin 2φ − ac
2b

√
α1
√
α2

(
1 + cos 2φ

)
−

a2

b2

√
α1
√
α2

sinφ + ac
b

√
α1
√
α2

cosφ = s3

If we multiply the first equation by
√
α1
√
α2

sinφ and the second equation by (1 − cosφ), then we add them
and it results

c =
s1

2
ct1
φ

2
+

s2

2

√
α1
√
α2
. (24)

Also, from the first equation we obtain

a = b

( s1

2
ct1
φ

2
+

s2

2

√
α1
√
α2

)
ct1
φ

2
−

s1

2 sin2 φ
2

 . (25)
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We replace the values of c and a from (24) and (25) in the last equation of the system and we get

s3 =
b

4α2


( s1

2
ct1
φ

2
+

s2

2

√
α1
√
α2

)
ct1
φ

2
−

s1

2 sin2 φ
2

2

+

(
s1

2
ct1
φ

2
+

s2

2

√
α1
√
α2

)2
 T

+

√
α1

4
√
α2

sin 2φ


( s1

2
ct1
φ

2
+

s2

2

√
α1
√
α2

)
ct1
φ

2
−

s1

2 sin2 φ
2

2

−

(
s1

2
ct1
φ

2
+

s2

2

√
α1
√
α2

)2


−

√
α1
√
α2

cos2 φ

2

(
s1

2
ct1
φ

2
+

s2

2

√
α1
√
α2

) ( s1

2
ct1
φ

2
+

s2

2

√
α1
√
α2

)
ct1
φ

2
−

s1

2 sin2 φ
2

 (26)

−

√
α1
√
α2

sinφ

( s1

2
ct1
φ

2
+

s2

2

√
α1
√
α2

)
ct1
φ

2
−

s1

2 sin2 φ
2

2

+

√
α1
√
α2

cosφ
(

s1

2
ct1
φ

2
+

s2

2

√
α1
√
α2

) ( s1

2
ct1
φ

2
+

s2

2

√
α1
√
α2

)
ct1
φ

2
−

s1

2 sin2 φ
2

 .

For given s1, s2, s3, T, α1, α2 we can find c from eq. (24) and b from the last trigonometric equation (26)
(numerical solution). After that we can find a from (25) and x1(t), x2(t), x3(t) with graphic representation
for 0 ≤ t ≤ T. The solution is optimal because the Hamilton function is convex. To this end, we create a
computer numerical solution framework and try several different states of the parameters. An important
condition that must be met operationally is the non-negativity of xi(t)s for every i = 1, 2, 3 and so, despite
being mathematically meaningful, it is practically meaningless. In fact, this does not necessarily happen for
all parameters and we also show an example of the choice of parameters for which some amounts of xi(t)s
are negative and therefore considered as unacceptable answers. This shows that the choice of parameters is
not arbitrary and therefore, the problem space is a search space so we have to be careful about the meaning
of the answers. By fixing the list of parameters (s1, s2, s3, α1, α2,T), the Newton method can be used and
so b can be obtained as the real root of the equation (26). Therefore, a can be obtained from the equation
(25). Also c is obtained directly from the equation (24). Now by applying the tripet (a, b, c) in xi(t)s, we can
plot the values of spatial curve (x1(t), x2(t), x3(t)) in the range 0 ≤ t ≤ T. The following is a summary of this
process.

Algorithm 2 Calculate spatial curve (x1(t), x2(t), x3(t)) in the interval [0,T] in the case of non storage cost
Require: (s1, s2, s3, α1, α2,T)

Compute c via equation (24)
Use Newton method and compute b as the root of equation (26)
Use b and equation (25) and find a
Apply (a, b, c) into xi(t)s in the interval [0,T]
if xi(t)s have no negative value in the interval [0,T] then

Plot the spatial curve (x1(t), x2(t), x3(t)) in the interval [0,T]
else

print The parameters list (s1, s2, s3, α1, α2,T) does not lead to a practical answer.
end if
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(a) (1, 1, 2, 0.5, 0.5, 1) (b) (1, 2, 5, 0.1, 0.9, 2) (c) (5, 2, 1, 0.01, 0.3, 1) (d) (1, 2, 4, 0.2, 0.9, 2)

(e) (1, 6, 3, 0.9, 0.1, 1) (f) (1, 1, 10, 0.2, 0.9, 10)

Figure 2: Some sample outputs for the spatial curve (x1(t), x2(t), x3(t)) in the interval [0,T] from the list of parameters (s1, s2, s3, α1, α2,T).
Figures a, b, c, d, and e are acceptable practical answers. But, the output f meets the space in some negative coordinates and so is not
acceptable.

4. Conclusions

In this work, we solved two problems of optimizing production and storage costs, using the framework
of optimal control. The controllability problems were studied using the Frobenius theorem for the first
case of the integrable distribution and the Chow-Rashevski theorem for the second non-integrable case,
but strong bracket generating distribution. In the first case, it was found that the economic system is not
controllable, in the sense that we can only reach certain final stock quantities. In the second case, the system
is controllable from a mathematical point of view, but in both cases the economic condition of positivity of
the solutions must also be taken into account. The optimal solutions were found using Pontryagin’s Maxim
Principle. In the end, several scenarios were studied, considering different values of the parameters in the
respective systems, considering those with positive solutions as acceptable.
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