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Abstract. In the present paper we introduce a new concept of measuring, called the measure of non-almost
weak noncompactness. We use this measure to characterize the almost weakly compact operators and to
investigate the generalized Schechter essential spectrum of the sum of two bounded linear operators.

1. Introduction

For X and Y be two Banach spaces, we denote L(X,Y) the set of all bounded linear operators acting
from X into Y. The set of all compact linear operators from X into Y is designed byK (X,Y). For T ∈ L(X,Y),
we use denote by N(T) and R(T) respectively the kernel and the range of T. The dual (resp., the bidual) is
denoted by X∗ (resp., X∗∗), T∗ is the conjugate of an operator T and T∗∗ is the second conjugate. A bounded
operator T is said to be weakly compact, if T(M) is relatively weakly compact in Y for every bounded subset
M of X. The family of weakly compact operators from X into Y is denoted byW(X,Y). If X = Y, this family
of operators, denoted byW(X) :=W(X,X), is a closed two-sided ideal of L(X) containing the closed ideal
of compact operators (see [9]). Further, an operator T is said to be Tauberian whenever T∗∗ preserves the
naturel embedding of X into its double dual i.e x ∈ X∗, T∗∗x ∈ Y implies X ∈ X. It is immediate that if T is a
Tauberian operator and T∗∗x = 0, x ∈ X∗∗, then x ∈ X. Which implies thatN(T ) is reflexive. In particular, if
R(T) is closed, then T is Tauberian if and only ifN(T) is reflexive. Also, T is co-Tauberian if its conjugate T∗

is Tauberian. The classes of Tauberian and co-Tauberian operators from X into Y are respectively denoted
byT (X,Y) andT d(X,Y). We say that X has the property (H1) (resp., (H2)) if every reflexive subspace admits
a closed complementary subspace (resp., if every closed subspace with reflexive quotient space admits a
closed complementary subspace). We say that X has the property (H), if it satisfies both properties (H1) and
(H2). For example, the Lp(0, 1) spaces for 1 < p < ∞ have the property (H1) (see [16]).

In 1953, Atkinson [3] studied the operators which are invertible modulo compact operators on Banach
spaces. He proved that an operator T ∈ L(X,Y) is invertible modulo compact operators if and only if T is
a Fredholm operator. Recall that a bounded operator T is called Fredholm if its kernelN(T) and co-kernel
X/R(T) are finite-dimensional subspaces. In 1976, K. W. Yang [18] extend some results of [3] to operators
invertible modulo weakly compact operators. His aim was to introduce and study the generalized Fredholm
theory as an extension of the notion of Fredholm operators in which the reflexive spaces play the role of
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finite-dimensional spaces. The sets of upper and lower generalized semi-Fredholm operators from X into
Y, respectively, are defined as:

Φ1+(X,Y) := {T ∈ L(X,Y) such thatN(T) is reflexive and R(T) is closed in Y},

Φ1−(X,Y) := {T ∈ L(X,Y) such that Y/R(T) is reflexive and R(T) is closed in Y}.

We denote by Φ1(X,Y) := Φ1+(X,Y) ∩ Φ1−(X,Y) the set of generalized Fredholm operators in L(X,Y) and
by Φ1±(X,Y) := Φ1+(X,Y) ∪ Φ1−(X,Y) the set of generalized semi-Fredholm operators. Furthermore, in
[18] Yang proved that the set of generalized Fredholm operators is also an intersection of the co-Tauberian
operators with closed range and Tauberian operators. If X = Y, the setsL(X,Y),K (X,Y),Φ1(X,X),Φ1+(X,Y),
Φ1−(X,Y) and Φ1±(X,Y) are replaced by L(X), K (X), Φ1(X), Φ1+(X), Φ1−(X) and Φ1±(X), respectively. Now,
for S ∈ L(X,Y), S , 0, a complex number λ is in Φ1+,S(T), Φ1−,S(T), Φ1±,S(T) or Φ1,S(T), if λS − T is in
Φ1+(X,Y),Φ1−(X,Y),Φ1±(X,Y) orΦ1(X,Y), respectively. If S = I, then the setsΦ1+,S(T),Φ1−,S(T),Φ1±,S(T) and
Φ1,S(T) are simply denoted by Φ1+(T), Φ1−(T), Φ1±(T) and Φ1(T), respectively. Recently, Azzouz et al. [5, 6]
obtained some perturbation results for these classes under the conditions (H1) and (H2) and introduced the
generalized essential spectrum of a bounded linear operator. In particular, for S ∈ L(X) the generalized
Wolf essential spectrum and the generalized Gustafson essential spectrum of T ∈ L(X) are respectively
defined as follow

σSe4,1(T) :=
{
λ ∈ C such that (λS − T) < Φ1(X)

}
:= C\Φ1,S(T),

σSe1,1(T) :=
{
λ ∈ C such that (λS − T) < Φ1+(X)

}
:= C\Φ1+,S(T).

Note that if S = I, the two previous generalized essential spectrum of T will be respectively replaced by
σe4,1(T) and σe1,1(T).

Several authors [11, 15, 17] have considered different concepts of measuring associated with bounded
linear operators in order to obtain characterizations and perturbation results of various classes of operators
of Fredholm theory. For example, M. Schechter in [17] introduced the measure of non-strict singularity of a
bounded linear operator which has been applied to characterize the strictly singular operators and to solve
such problem concerning the perturbation theory of Fredholm operators. Recall that a strictly singular
operator, as defined by T. Kato in [14] is a bounded linear operator T between two Banach spaces X and
Y such that the restriction of T to any infinite-dimensional closed subspace of X is not an isomorphism.
In 1968, Herman [13] has investigated a class of operators, called almost weakly compact operators, as
a bounded linear operator T between two Banach spaces X and Y such that the restriction of T to any
non-reflexive closed subspace of X is not an isomorphism. This concept can be seen as a generalization of
the concept of strictly singular operators. In general, theses classes are distinct (see Example 3 in [13]). But
the question whether the sum of two almost weakly compact operators is almost weakly compact is still
open. Therefore, one goal of this paper is to characterize the almost weakly compact operators by defining
the so-called measure of non-almost of weak noncompactness. We use the subadditivity property of this
measure to prove that the almost weakly compact operators form a closed subspace of the space of bounded
linear operators acting on Banach spaces. Moreover, we show that an almost weakly compact perturbation
of a generalized Fredholm operator remains generalized Fredholm and has the same generalized index. We
will also discuss the generalized Schechter essential spectrum of two bounded linear operators by means
measure of non-almost weak noncompactness.

Now, let us outline the content of this paper. In Section 2, we recall some definitions and results
needed in the sequel of the paper. In Section 3, we introduce and study a new measure for bounded linear
operators acting on Banach spaces using the De Blasi measure of weak noncompactness. Based on this
new investigation, we establish a characterization of almost weakly compact operators. In Section 4, we
investigate the generalized Schechter essential spectrum of the sum of two bounded operators involving
the measure of non-almost weak noncompactness and the concept of left and right weak-Fredholm inverse.
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2. Preliminary results

For X a Banach space, letMX denote the family of all nonempty bounded subsets of X andMw
X the subset

ofMw
X consisting of all relatively weakly compact sets. The following definition will play an important role

in our considerations.

Definition 2.1. The weak measure of noncompactness of a bounded subspace D is defined as

ω(D) = inf{r > 0 : there exists N ∈ Mw
X such that D ⊂ N + rBX},

where BX denotes the closed unit ball of X.

This measure was first introduced by De Blasi (see [8]) and has been applied to obtain fixed point theorems.
Moreover, it is well known that if X is reflexive, then ω(D) = 0, for all D ∈ MX.
Let T ∈ L(X) be a bounded linear operator. T is called a weak k-set contraction (k ≥ 0) if

ω(T(D)) ≤ kω(D), for all D ∈ MX.

The quantity
ω(T) = inf {k ≥ 0 such that T is weak k-set contraction}

is called the De Blasi measure of weak non compactness of T.
In the next proposition, we recall some properties of ω(·).

Proposition 2.2. [8] Let X be a Banach space, T and S ∈ L(X) and let D ∈ MX. Then, we have the following
properties:
(i) ω(T) = 0 if and only if T is weakly compact.
(ii) ω(T(D)) ≤ ω(T)ω(D).
(iii) ω(TS) ≤ ω(T)ω(S).
(iv) ω(T + S) ≤ ω(T) + ω(S).
(v) ω(λT) = |λ|ω(T), for λ ∈ C.

Let X be a non-reflexive Banach space and T ∈ L(X). The De Blasi measure of weak noncompactness of T
can be equivalently defined as follows

α(T) := sup
{ω(T(D))
ω(D)

such that D ∈ MX and ω(D) > 0
}
.

We define the following non-negative quantity as (see [5])

β(T) := inf
{ω(T(D))
ω(D)

such that D ∈ MX and ω(D) > 0
}
.

The quantity β(T) can be equivalently defined as follows

β(T) := sup
{
k ≥ 0 such that ω(T(D)) ≥ kω(D) for any D ∈ MX

}
.

The following proposition gives some fundamental properties of α, β already given in [5].

Proposition 2.3. Let X be a Banach space. Let T, S ∈ L(X) and λ ∈ C, then the following properties hold:

(i) α(λT) = |λ|α(T) and β(λT) = |λ|β(T).
(ii) |α(T) − α(S)| ≤ α(T + S) ≤ α(T) + α(S).
(iii) β(T) − α(S) ≤ β(T + S) ≤ β(T) + α(S).
(iv) α(TS) ≤ α(T)α(S) and β(TS) ≥ β(T)β(S).
(v) α(T) = 0 if and only if T is weakly compact.
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Remark 2.4. For T,S ∈ L(X), we have ω(TS) ≥ β(TS) ≥ ω(T)β(S).

Next, we recall the following definition.

Definition 2.5. Let X and Y be two Banach spaces.
(i) An operator T ∈ L(X,Y) is said to have a left weak-Fredholm inverse if there exists Tw

l ∈ L(Y,X) such
that IX − Tw

l T ∈ W(X) . The operator Tw
l is called left weak-Fredholm inverse of T.

(ii) An operator T ∈ L(X,Y) is said to have a right weak-Fredholm inverse if there exists Tw
r ∈ L(Y,X) such

that IY − TTw
r ∈ W(Y). The operator Tw

r is called right weak-Fredholm inverse of T.
(iii) An operator T ∈ L(X,Y) is said to have a weak-Fredholm inverse if there exists a map which is both a
left and right weak-Fredholm inverse of T.

Now, let us recall a characterization of a generalized Fredholm operator.

Theorem 2.6. [18] Let X and Y be two Banach spaces satisfying the properties (H1) and (H2) respectively,
and let T ∈ L(X,Y). Then the following assertions are equivalent:
(i) T is a generalized Fredholm operator .
(ii) T has a weak-Fredholm inverse, and R(T) is closed in Y.

Remark 2.7. Note that in [5], the authors proved that if T has a weak-Fredholm inverse, then T is generalized
Fredholm, where X is a non-reflexive Banach space having the property (H1). However, we will show that
the result holds true without this conditions on the space X. Indeed, let X be a Banach space and T ∈ L(X).
Suppose that T has a weak-Fredholm inverse, then there exists T0 ∈ L(X) such that T0T = I + W1 and
TT0 = I +W2, where W1 and W2 are weakly compact. For a bounded subset D of X, we have

ω(D) = ω((I +W1)(D))
= ω(T0T(D))
≤ ∥T0∥ω(T(D).

Hence, β(T) ≥ 1
∥T0∥
> 0. It follows from Lemma 3.4 and Theorem 3.5 in [5] that T ∈ Φ1+(X). On the other

hand, we have T∗0T∗ = I +W∗

2 and W∗

2 ∈ W(X) (see [9]). Arguing as before we infer that T∗ ∈ Φ1+(X∗).
According to Remark 3.7 in [5] we conclude that T ∈ Φ1−(X) and therefore T is generalized Fredholm.

From the above remark, the following properties proved in [5] remain valid without assuming that X, Y
and Z are non-reflexive spaces.

Theorem 2.8. [5] Let X, Y and Z be three Banach spaces and let T ∈ L(X,Y) and S ∈ L(Y,Z). Then the
following statements hold:
(i) Suppose that X, Y and Z satisfy the properties (H1), (H) and (H2) respectively. If T ∈ Φ1(X,Y) and
S ∈ Φ1(Y,Z), then ST ∈ Φ1(X,Z).
(ii) Suppose that X and Y satisfy the properties (H1) and (H2) respectively. If T ∈ Φ1(X,Y) and W ∈ W(X,Y),
then T +W ∈ Φ1(X,Y).

3. Measure of non-almost weak noncompactness of a bounded linear operator

Let us start by defining the measure of non-almost weak noncompactness.

Definition 3.1. Let X and Y be two Banach spaces. For T ∈ L(X,Y), we make the following definitions

1M(T) = inf
N⊂M

ω(T|N) and 1(T) = sup
M⊂ X

1M(T),

where M and N are two closed non-reflexive subspace of X and T|N denotes the restriction of T to the
subspace N.
The quantity 1 is called measure of non-almost weak noncompactness.
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Theorem 3.2. Let X and Y be two Banach spaces. For T,S ∈ L(X,Y) we have

1(T + S) ≤ 1(T) + 1(S). (1)

Proof. We first prove that
1M(T + S) ≤ 1(T) + 1X(S).

To see this let ε > 0 be given and M be a non-reflexive closed subspace of X. Then there exists a non-reflexive
subspace N of M such that

ω(T|N) ≤ 1M(T) + ε.

Thus

ω((T + S)|N) ≤ ω(T|N) + ω(S|N)
≤ 1M(T) + ε + ω(S|M).

This implies
1M(T + S) ≤ 1M(T) + ε + ω(S|M).

Since this is true for every ε > 0, we obtain

1M(T + S) ≤ 1M(T) + ω(S|M)
≤ 1(T) + ω(S|M).

Hence
inf

M⊂ X
1M(T + S) ≤ 1(T) + inf

M⊂ X
ω(S|M),

and therefore
1M(T + S) ≤ 1(T) + 1X(S).

So, for any closed non-reflexive subspace M ⊂ X we get

1M(T + S) ≤ 1(T) + 1(S).

Consequently Equation (1) holds.

Proposition 3.3. Let X be a Banach space and let T ∈ L(X). Then

β(T) ≤ 1(T).

Proof. Let ε > 0 be given. Then for every closed non-reflexive subspace M ⊂ X, we have

1M(T) ≤ 1(T),

and there exists a closed non-reflexive subspace N of M such that

ω(T|N) ≤ 1M(T) + ε.

Which implies that

inf
D∈MN
ω(D)>0

ω(T|N(D))
ω(D)

≤ ω(T|N) ≤ 1(T) + ε,

and it follows that
inf

D∈MX
ω(D)>0

ω(T(D))
ω(D)

≤ 1(T) + ε.

Thus
β(T) ≤ 1(T) + ε.

Since εwas arbitrary, we obtain β(T) ≤ 1(T).
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Now, let us recall the following definition.

Definition 3.4. [13] Let X and Y be two Banach spaces and A ∈ L(X,Y). A is said almost weakly compact
if the restriction of A to any non-reflexive closed subspace of X is not an isomorphism.

LetAWC(X,Y) denote the set of almost weakly compact operators from X into Y. If X = Y, thenAWC(X,Y)
will simply be denoted byAWC(X). It should be noted that the almost weakly compact operators from X
into X form a closed subset of L(X) containing strictlyW(X).

Example 3.5. For 1 < p < ∞, let Jp be the James spaces which are defined as follows:

Jp = {x ∈ C0 such that ∥x∥Jp < ∞},

where

∥x∥pJp
= sup

s
sup

j1<···< jn

s∑
i=1

|x ji − x ji−1 |.

Now, let us consider the natural inclusion i from the James space J2 into the James space J3. It is proved in [2]
that it is strictly singular operator and therefore it defines an almost weakly compact operators. However,
it is not weakly compact. Indeed, we denote by (en)n∈N the canonical basis. The sequence xm =

∑m
j=1 e j is

bounded in J2 but admits no weakly convergent subsequence in J3.

Remark 3.6. (i) If X is a reflexive space, then

AWC(X) =W(X) = L(X).

(ii) On the space l1, the classes of almost weakly compact and strictly singular operators coincide from the
fact that every infinite-dimensional subspace of l1 is non-reflexive.

Lemma 3.7. If X is a non-reflexive Banach space having the property (H1) and T ∈ L(X), then the following
implication holds:

T ∈ Φ1+(X) =⇒ T < AWC(X)

Proof. Assume that T ∈ Φ1+(X). Since X satisfies the property (H1), for some closed subspace M of X we
have X = N(T) ⊕M. The restriction T|M : M −→ R(T) is an isomorphism between non-reflexive closed
subspaces. Therefore T < AWC(X).

Now, we present the following useful lemma.

Lemma 3.8. [13] If T is almost weakly compact, then for all M an infinite-dimensional closed subspace of
X there exists a closed infinite-dimensional subspace N ⊂M such that T|N is a weakly compact operator.

The next theorem shows that the almost weakly compact operators can be characterize by the measure of
non-almost weak noncompactness.

Theorem 3.9. Let X and Y be two Banach spaces and let A ∈ L(X,Y). Then the following assertions are
equivalent:
(i) A is almost weakly compact.
(ii) 1M(A) = 0 for all closed subspace M ⊂ X.
(iii) 1(A) = 0.

Proof. (i)⇒ (ii) Let A be an almost weakly compact operator and M be an infinite-dimensional subspace of
X. According to Lemma 3.8, there exists a closed infinite-dimensional subspace N of M such that A|N is a
weakly compact and therefore ω(A|N) = 0. Which implies that

1M(A) = 0 for each closed subspace M ⊂ X.
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(ii) ⇒ (i) Assume that A is not almost weakly compact. Then there exists a non-reflexive subspace N of X
such that A|N has a bounded inverse S. By hypothesis, we have 1N(A) = 0. Hence, for all ε > 0 there exists a
non-reflexive subspace Nε of N such that

ω(A|Nε ) ≤ ε.

On the other hand, we have

ω(I|N) = ω(SA|Nε )
≤ ω(S)ω(A|Nε )
≤ ω(S)ε.

Letting ε→ 0, we get ω(I|N) = 0, which is a contradiction.
(ii)⇔ (iii) Follows from the definition.

An immediate consequence of above theorem.

Corollary 3.10. Let T,S ∈ L(X,Y) be two almost weakly compact operators. Then T + S is almost weakly
compact.

Proof. Since T and S are both almost weakly compact, by Theorem 3.9, we infer that 1(T) = 1(S) = 0. It
follows from Equation (1) that 1(T+S) = 0 and therefore we can deduce by Theorem 3.9 that T+S is almost
weakly compact.

For almost weakly compact operators the analogue of Theorem 3.3 in [17] is as follows.

Theorem 3.11. Let A ∈ L(X,Y). Then A is almost weakly compact if and only if

1(T + A) = 1(T) for all T ∈ L(X,Y). (2)

Proof. Suppose that A is almost weakly compact, then from Equation (1) and Theorem 3.9 we have

1(T + A) ≤ 1(T) + 1(A) = 1(T),

for every T ∈ L(X,Y). For the same reasons we prove that

1(T) ≤ 1(T + A) + 1(A) = 1(T + A).

Hence Equation (2) holds.
Conversely, if 1(T + A) = 1(T) for every T ∈ L(X,Y), then we get 1(A) = 1(0 + A) = 1(0) = 0. By applying
Theorem 3.9, we deduce that A is almost weakly compact.

Definition 3.12. Let X and Y be two Banach spaces and let A ∈ L(X,Y). We say that A is bounded below if
∥x∥ ≤ c∥Ax∥ for all x ∈ X, for some c > 0.

The following proposition characterizes the almost weakly compact operators.

Proposition 3.13. Let X and Y be two Banach spaces. A bounded operator A : X → Y between Banach
spaces is almost weakly compact if and only if A is not bounded below on any non-reflexive closed subspace.

Proof. Suppose that there is a closed non-reflexive subspace N ⊂ X such that A|N is bounded below. Then,
there exists c > 0 such that ∥x∥ ≤ c∥A|N(x)∥ for all x ∈ N. Let xn ∈ N, with A|N(xn) → y ∈ Y. Hence
∥xn − xm∥ ≤ c∥A|N(xn) − A|N(xm)∥ → 0 as n,m → ∞, the sequence (xn)n∈N∗ is cauchy. So, by completeness of
N, xn → x ∈ N and hence A|N(xn)→ A|N(x). Which implies that y = A|N(x). Therefore R(A|N) is closed. Since
N(A|N) = {0}, A|N : N→ R(A|N) is an homomorphism and consequently A is not almost weakly compact.
Conversely, if A is not almost weakly compact, then there exists a non-reflexive subspace N of X such that
A|N has a bounded inverse, which means that it is bounded below.
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Theorem 3.14. Let X and Y be two Banach spaces. Then the class of almost weakly compact operators
taking X into X forms a closed left ideal in L(X).

Proof. By using Theorem 9 in [13] and Corollary 3.10 we infer thatAWC(X) is a closed subgroup of L(X).
Now let A ∈ AWC(X), we have to show that TA is inAWC(X) for all T ∈ L(X). To see this, suppose that
TA is not almost weakly compact, then there exists a closed non-reflexive subspace N such that (TA)|N has
a bounded inverse B. Hence for all y = TA(x), where x ∈ N, there exists c > 0 such that

∥B(y)∥ ≤ c∥y∥.

This implies

∥x∥ ≤ c∥TA(x)∥
≤ c∥T∥∥A(x)∥.

Therefore

∥A(x)∥ ≥
1

c∥T∥
∥x∥.

Hence A is bounded below on N. This means from Proposition 3.13 that A cannot almost weakly compact
and A : N → A(N) is an isomorphism, which is a contradiction. Thus TA is almost weakly compact for all
T ∈ L(X) and consequentlyAWC(X) is a closed left ideal of L(X).

4. Generalized Schechter essential spectrum of the sum of two bounded operators

We begin this section by the following definition.

Definition 4.1. [4] Let X be a Banach space satisfying the property (H). We define the generalized Fredholm
index on the semigroup Φ1(X) by the semigroup homomorphism i1 : Φ1(X) → Z such that the following
conditions hold:
(i) i1(T) = 0 for all invertible elements T in L(X), and
(ii) i1(I +W) = 0 for all W inW(X).

The set of generalized Fredholm operators defines the corresponding generalized Schechter essential spec-
trum:

σe5,1(T) := C\
{
λ ∈ Φ1(T) such that i1(λ − T) = 0

}
.

For the next we need the following lemmas.

Lemma 4.2. [10] Let X and Y be two Banach spaces and Z ⊂ X. For an operator T ∈ L(X,Y), the following
statements are equivalent:
(i) T is co-Tauberian.
(ii) Every operator S ∈ L(Y,Z) is weakly compact whenever ST is weakly compact.

Lemma 4.3. Let X be a Banach space having the property (H1) and let T ∈ L(X). If T ∈ Φ1+(X), then T|M,
the restriction of T to any closed subspace M of X is generalized upper semi-Fredholm on M.

Proof. Suppose that T ∈ Φ1+(X). We observe that N(T|M) = N(T) ∩ M. Since N(T) is reflexive and M
is a closed subspace, the intersection N(T) ∩M is also a reflexive subspace. Now, from the fact that X
satisfies the property (H1), there exists a closed subspace M1 of X such that X = N(T) ⊕ M1. Clearly,
the restriction T|M1 is injective and has closed range since R(T) = T(M1). On the other hand, we have
M = N(T)∩M⊕M1 ∩M. Hence T(M) = T(M1 ∩M). Since T|M1 is bounded below, then T(M1 ∩M) is closed.
Consequently T|M1 ∈ Φ1+(M).
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Theorem 4.4. Let X be a non-reflexive Banach space having the property (H) and let T,A ∈ L(X). If T is
generalized Fredholm, A is almost weakly compact and R(T + A) is closed, then

T + A ∈ Φ1(X) and i1(T + A) = i1(T).

Proof. First, suppose that T+A < Φ1+(X), thenN(T+A) is not reflexive sinceR(T+A) is closed. Hence T+A
is not Tauberian. By using Remark 4.6, there exists a non-reflexive subspace M ⊂ X such that (T + A)|M,
the restriction of T + A to M is compact and hence it is almost weakly compact. Thus, by Theorem 3.9 we
obtain 1((T + A)|M) = 0. By Theorem 3.11 we have

1(T|M) = 1((T + A)|M − A|M)
≤ 1((T + A)|M) + 1(A|M).

It follows that 1(T|M) = 0 and hence T|M is an almost weakly compact operator. According to Lemma 3.7,
we get T|M < Φ1+(X). But this impossible since T ∈ Φ1+(X), see Lemma 4.3. Next, using Theorem 6.7 in [18],
it remains to prove that T + A is co-Tauberian. So let B ∈ L(X) such that B(T + A) is weakly compact. By
using Remark 2.4 we have

ω(B(T + A)) ≥ ω(B)β(T + A).

Since β(T +A) > 0 and ω(B(T +A)) = 0, ω(B) = 0 and it follows from Lemma 4.2 that T +A is co-Tauberian.
Consequently T + A ∈ Φ1−(X) Now, since λA is an almost weakly compact operator for each scalar λ, it
follows from the last conclusion that T+λA is also generalized Fredholm for each λ ∈ R. Finally, in view of
Theorem 3.1 in [4] the mapping λ → i1(T + λA) from R to Z is continuous and hence it must be constant.
This implies that i1(T + λA) = i1(T) for each λ ∈ R. Letting λ = 1, yields that i1(T + A) = i1(T).

We now present a characterization of Tauberian operators proved in [12].

Lemma 4.5. An operator T : X → Y is Tauberian if and only if N(T + K) is reflexive for every compact
operator K : X→ Y.

Remark 4.6. From the preceding lemma we remark that if T is not Tauberian, then there exists a non-
reflexive subspace M ⊂ X such that T|M is compact.

Theorem 4.7. Let X be a Banach space satisfying the property (H) and let T ∈ L(X). If 1(T) < 1 andR(I−µT)
is a closed subspace of X for all µ ∈ [0, 1], then I − T is a generalized Fredholm operator and i1(I − T) = 0.

Proof. Suppose that I − T < Φ1+(X) and hence I − T is not Tauberian. According to Remark 4.6, there exists
a non-reflexive subspace M ⊂ X such that (I − T)|M, the restriction of I − T to M is compact and hence it is
almost weakly compact. Then 1((I − T)|M) = 0. This means from Theorem 3.11 that

1(I|M) = 1(T|M) < 1.

Which is a contradiction since M is not reflexive and hence we must have I − T ∈ Φ1+(X). So, by applying
Lemma 4.2, it is sufficient to prove that λI − T is co-Tauberian. So, let D ∈ L(X) such that D(I − T) ∈ W(X).
On the other hand we have

ω(D(I − T)) > ω(D)β(I − T).

By using Theorem 3.6 in [5], we have β(I − T) > 0, then ω(T) = 0. Hence I − T is a co-Tauberian operator
and since R(I − T) is closed, we deduce that I − T ∈ Φ1(X). Now, since R(I − µT) is closed for all µ ∈ [0, 1],
I − µT ∈ Φ1(X). Hence, by constancy of the generalized index we have

i1(I − T) = i1(I) = 0.

Consequently I − T ∈ Φ1(X) and i1(I − T) = 0.
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We now give a generalization of a result in [1] which is a characterization of the generalized Schechter
essential spectrum of the sum of two bounded operators by means of measure of non-almost weak non-
compactness.

Theorem 4.8. Let X be a Banach space satisfying the property (H) and let A and T be two operators inL(X).
Then the following assertions hold:
(i) If for each λ ∈ Φ1(A), there exists a left weak-Fredholm inverse Aw

λl of λ − A such that 1(TAw
λl) < 1 and

R(I − µTAw
λl) is a closed subspace of X for all µ ∈ [0, 1], then

σe5,1(A + T) ⊂ σe5,1(A).

(ii) If for each λ ∈ Φ1(A), there exists a right weak-Fredholm inverse Aw
λr of λ − A such that 1(Aw

λrT) < 1 and
R(I − µAw

λrT) is a closed subspace of X for all µ ∈ [0, 1], then

σe5,1(A + T) ⊂ σe5,1(A).

Proof. (i) Suppose that λ < σe5,1(A), then λ − A ∈ Φ1(X) and i1(λ − A) = 0. Since Aw
λl is a left weak-Fredholm

inverse of λ − A, then there exists W ∈ W(X) such that

Aw
λl(λ − A) = I −W on X. (3)

It follows from Equation (3) that

λ − A − T = λ − A − T(Aw
λl(λ − A) +W)

= (IX − TAw
λl)(λ − A) − TW.

Since 1(TAw
λl) < 1 and R(I − µTAw

λl) is closed for all µ ∈ [0, 1], by applying Theorem 4.7 we obtain

IX − TAw
λl ∈ Φ1(X) and i1(IX − TAw

λl) = i1(IX) = 0.

Hence, from Theorem 2.8 we have
(IX − TAw

λl)(λ − A) ∈ Φ1(X),

and

i1((IX − TAw
λl)(λ − A)) = i1(IX − TAw

λl) + i1(λ − A)
= i1(λ − A).

From the fact that TW ∈ W(X), we infer that λ − A − T ∈ Φ1(X) and i1(λ − A − T) = i1(λ − A) = 0. Thus,
λ < σe5,1(A + T).
(ii) Let λ ∈ C and Aw

λr be right weak-Fredholm inverse of λ−A. Then there exists a weakly compact operator
F ∈ W(X), such that (λ − A)Aw

λr = I − F on X. The operator λ − A − T can be written as follows:

λ − A − T = λ − A − ((λ − T)Aw
λr + F)T

= (λ − A)(IX − Aw
λrT) − FT.

Reasoning as above, we can easily obtain the rest of the proof of this assertion in the same way as (i).

Corollary 4.9. Let X be a Banach space satisfying the property (H) and let A and T be two operators in
L(X). Then the following assertions hold:
(i) If for each λ ∈ Φ1(A), there exists a left weak-Fredholm inverse Aw

λl of λ − A such that TAw
λl ∈ AWC(X),

then
σe5,1(A + T) ⊂ σe5,1(A).

(ii) If for each λ ∈ Φ1(A), there exists a right weak-Fredholm inverse Aw
λr of λ−A such that Aw

λrT ∈ AWC(X),
then

σe5,1(A + T) ⊂ σe5,1(A).
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Proof. The proof is similar to the proof of Theorem 4.8, it suffices to replace Theorem 4.7 by Theorem 4.4.
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