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Abstract. We will study the notion of right distributive ringoids over a field which are neither rings,
semi-rings, semi-hyperrings nor near-rings. Matrices over ringoids are defined, and new concepts such as
top-row-determinate and down-row-determinate related to 2 × 2 matrices over a ringoid are introduced.
Moreover, we investigate the notions of the (strongly, (very-) weak) orthogonality of vectors over a ringoid.
Beside, we discuss the notion of incident vectors and define the concept of α−K-sphere on a ringoid, where
K is a field and investigate some of their properties. Finally, we show that in a commutative ringoid all of
the vectors are strongly orthogonal.

1. Introduction

The theory of groupoids [1, 2] has been introduced by some researchers. The notion of a linear groupoid
was applied to the study of Fibonacci sequences in groupoids [3]. Kim et al. [5] introduced the notion
of generalized commutative law in algebras, and showed that every pre-commutative BCK-algebra is
bounded. In the study of pre-commutativity in groupoids, they proved that if a linear groupoid is left-
(right-) pre-commutative, then it is abelian. Hwang et al. [4] discussed some implicativities for groupoids
and BCK-algebras. They characterized linear groupoids for implicative groupoids.

Neggers et al. [8] introduced the notion of a ringoid as a generalization of a ring, semi-ring, near-ring,
and discussed several properties of d-algebra ringoids, left zero ringoids, (r, s)-ringoids, and left distributive
ringoids. Also, they investigated geometric interpretations of the parallelism of vectors in several ringoids.

The notion of a ring is a generalization of a ring of integers, i.e., (Z, +, 0 ) is an abelian group and
(Z, · ) is a semigroup, and left- and right-distributive laws. If we consider the multiplication of integers, it
can be represented by the addition of integers. Moreover, the distributive laws are not necessary in some
cases. If we define a binary operation “∗” on Z by x ∗ y := x · (x − y), then we obtain 5 ∗ 3 = 5 · (5 − 3) =
(5 − 3) + (5 − 3) + (5 − 3) + (5 − 3) + (5 − 3) = 10. In this calculation we can find that (Z, +, 0 ) is an abelian
group and (Z, ∗ ) is a groupoid. From this observation, we may construct a notion of a ringoid which can
be another generalization of a ring, near-ring, pseudo-ring, semihyperring, etc..
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In this paper, we discuss right distributive ringoids in linear groupoids, and introduce the notion of
∇-product which is similar to the cross product, and investigate several properties in ringoids. By using
the notion of a top-row determinant we discuss some properties of matrices over ringoids. Moreover,
we discuss the notions of the (strongly, (very-) weak) orthogonality and discuss the notion of incident
vectors and define the concept of α − K-sphere on a ringoid, where K is a field. Finally, we show that in a
commutative ringoid all of the vectors are strongly orthogonal.

2. Preliminaries

A groupoid (X, ∗ ), i.e., X is a nonempty set and “∗” is a binary operation on X, is said to be a right zero
(resp., left zero) semigroup if x ∗ y = y (resp., x ∗ y = x), for any x, y ∈ X.
Let R be the set of all real numbers. We define a binary operation “∗” on R by

x ∗ y := A + Bx + Cy, (1)

for all x, y ∈ R, where A,B,C ∈ R. We call such a groupoid (R, ∗ ) a linear groupoid [4, 5] over real numbers.

Definition 2.1. ([8]) An algebra (X, ∗, +, 0 ) of type (2, 2, 0) is said to be a ringoid ([8]) if it satisfies the
following conditions:

(I) (X, +, 0 ) is an abelian group,
(II) (X, ∗ ) is a groupoid.

Example 2.2. ([8]) Let (R, +, ·, 0, 1 ) be the field of real numbers. Define a binary operation “∗” on R by x ∗ y :=
x · (x− y), for all x, y ∈ R. Then (R, ∗, +, 0 ) is a ringoid, but it is neither a ring nor a recognized type of generalization
of a ring such as semi-ring, near-ring, etc..

Definition 2.3. ([8]) (a) A ringoid (X, ∗, +, 0) is said to be

• left distributive if x ∗ (y + z) = (x ∗ y) + (x ∗ z),

• right distributive if (x + y) ∗ z = (x ∗ z) + (y ∗ z),

for all x, y, z ∈ X.
(b) A ringoid (X, ∗, +, 0 ) is said to be a distributive ringoid if it is both left distributive and right distributive.
(c) A ringoid (X, ∗, +, 0 ) is said to be a left (resp., right) zero ringoid if (X, ∗ ) is a left (resp., right) zero
semigroup.

Given a ringoid (X, ∗, +, 0 ), we consider the Cartesian product Xn consisting of vectors
→

x= (x1, · · · , xn).
For any

→

x= (x1, · · · , xn) and
→

y= (y1, · · · , yn) ∈ Xn,
→

x=
→

y if and only if xi = yi, for all i ∈ {1, · · · ,n}, and we
have a natural vector addition:

→

x ⊕
→

y= (x1 + y1, · · · , xn + yn) (2)

which produces an abelian group (Xn, ⊕,
→

0 ) where
→

0= (0, · · · , 0), the additive identity of Xn, and a natural
induced product:

→

x ⊗
→

y= (x1 ∗ y1, · · · , xn ∗ yn). (3)

We see that (Xn, ⊗, ⊕,
→

0 ) is again a ringoid. Define a natural scaler product over a ringoid as follows:
→

x ⋆
→

y= x1 ∗ y1 + · · · + xn ∗ yn (4)

and a natural projection:

π(
→

x ) := x1 + · · · + xn, (5)

for all
→

x ,
→

y∈ Xn (see, [8]).
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Proposition 2.4. ([8]) (i) If (X, ∗ ) is a left zero semigroup, then (Xn, ⊗ ) is a left zero semigroup.

(ii) If (X, ∗, +, 0 ) is a left zero ringoid, then (Xn, ⊗, ⊕,
→

0 ) is a left zero ringoid.

Let (X, ∗, +, 0 ) be a ringoid. Given x⃗, y⃗ ∈ Xn, Neggers et al. [8] defined two functions as follows:

S(
→

x ,
→

y) = (
→

x ⊗
→

y) ⋆ (
→

y ⊗
→

x ) + (
→

y ⊗
→

x ) ⋆ (
→

x ⊗
→

y)

and
T(
→

x ,
→

y) = (
→

x ⊗
→

x ) ⋆ (
→

y ⊗
→

y) + (
→

y ⊗
→

y) ⋆ (
→

x ⊗
→

x ).

They discussed the notion of a parallel, and their applications to several ringoids.

3. Right distributive ringoids in linear groupoids

In this section, we discuss right distributive ringoids related to linear groupoids over a field K, , and
show that it is not a ring. We assume that (K, ·, +, 0, 1 ) is a field, and α, β, γ ∈ K. Consider (1) on K and
define binary operation “⊕” on K by

x ⊕ y := α + βx + γy, (6)

for all x, y ∈ K.

Lemma 3.1. Let (K, ∗, ⊕ ) be an algebra defined by the operations ∗ and ⊕. If it satisfies the right distributive law
and β + γ , 1, then x ∗ y = α(1−B)

1−(β+γ) + Bx, for all x, y ∈ K.

Proof. Given x, y, z ∈ K, we have

(x ⊕ y) ∗ z = (α + βx + γy) ∗ z (7)
= A + B(α + βx + γy) + Cz
= A + Bα + Bβx + Bγy + Cz.

On the other hand,

(x ∗ z) ⊕ (y ∗ z) = α + β(x ∗ z) + γ(y ∗ z) (8)
= α + β(A + Bx + Cz) + γ(A + By + Cz)
= α + A(β + γ) + Bβx + Bγy + (Cβ + Cγ)z.

Since the right distributive law holds, by (7) and (8), we obtain

A + Bα + Bβx + Bγy + Cz = α + A(β + γ) + Bβx + Bγy + (Cβ + Cγ)z.

It follows that A + Bα = α + A(β + γ) and C = Cβ + Cγ. Thus we obtain A(1 − (β + γ)) = α(1 − B) and
C(1 − (β + γ)) = 0. Since β + γ , 1, we obtain C = 0 and A = α(1−B)

1−(β+γ) . Hence

x ∗ y =
α(1 − B)

1 − (β + γ)
+ Bx. (9)

Theorem 3.2. Let (K, ∗, ⊕, ξ ) be a right distributive ringoid. If β + γ , 1, then β = γ = 1, ξ = −α and

x ∗ y = α(B − 1) + Bx, (10)

for all x, y ∈ K.
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Proof. If β + γ , 1, then we have x ∗ y = α(1−B)
1−(β+γ) + Bx and x ⊕ y = α + βx + γy, for all x, y ∈ K by Lemma 3.1.

Assume that (K, ⊕, ξ ) is an abelian group with zero element ξ. Then x ⊕ ξ = ξ ⊕ x = x, for all x ∈ K. It
follows that

α + βx + γξ = α + βξ + γx = x, (11)

which shows that βx + γξ = βξ + γx, and so β(x − ξ) = γ(x − ξ). Therefore (β − γ)(x − ξ) = 0, for all x ∈ K,
and so β = γ. By (11), we get (x − α)(1 − β) = 0, for all x ∈ K. Hence we obtain β = 1. Since α + β(x + ξ) = x,
for all x ∈ K, if we take x := −ξ, then α + β(−ξ + ξ) = −ξ, which shows that ξ = −α. By Lemma 3.1, we have
x ∗ y = α(1−B)

1−(β+γ) + Bx = α(B − 1) + Bx and x ⊕ y = α + x + y, for all x, y ∈ K.

Example 3.3. Let (R, +, ·, 0, 1 ) be the field of real numbers. If we take α := 1,B := 3 in (10), then x ∗ y = 2 + 3x
and x ⊕ y = 1 + x + y, for all x, y ∈ R. It follows that (x ⊕ y) ∗ z = 5 + 3(x + y) = (x ∗ z) ⊕ (y ∗ z), for all x, y, z ∈ K.
Hence (R, ∗, ⊕, −1 ) is a right distributive ringoid, but not a left distributive ringoid, since x ∗ (y ⊕ z) = 2 + 3x ,
5 + 6x = x ∗ y ⊕ x ∗ z.

Remark 3.4. The right distributive ringoid (K, ∗, ⊕, −α ) described in Theorem 3.2 need not be a ring in general. It
is enough to show that (K, ∗ ) is not a semigroup. Given x, y, z ∈ K, we have x ∗ (y ∗ z) = (1− B)ξ+ Bx. On the other
hand,

(x ∗ y) ∗ z = (1 − B)ξ + B(x ∗ y) = (1 − B)ξ + B((1 − B)ξ + Bx) = (1 + B)(1 − B)ξ + B2x.

If we assume that (K, ∗) is a semigroup, then

(1 − B)ξ + Bx = (1 + B)(1 − B)ξ + B2x.

It follows that B(B − 1)(x − ξ) = 0 for all x ∈ K. Since K is a field, we have either B = 0 or B = 1. If B = 0, then
x ∗ y = −α = ξ, for all x, y ∈ K, a trivial semigroup. If B = 1, then x ∗ y = x, for all x, y ∈ K, a left zero semigroup.
This shows that if we take B ∈ K so that B(B − 1) , 0, then (K, ∗ ) can not be a non-trivial semigroup.

We constructed an example of a right distributive ringoid which is neither a left distributive ringoid nor
a ring.

In Lemma 3.1 and Theorem 3.2, we have discussed the case of β + γ , 1. From now on, we discuss the
case of β + γ = 1.

Theorem 3.5. Let (K, ∗, ⊕ ) be an algebra. If β + γ = 1, then there is no right distributive ringoid over K.

Proof. Assume that there is a right distributive ringoid (K, ∗, ⊕, ξ ) over a field K satisfying (1) and (6) with
β + γ = 1. Since x ∗ (y ∗ z) = (x ∗ y) ∗ z, for all x, y, z ∈ K, by (7) and (8), we obtain

A + Bα + Bβx + Bγy + Cz = α + A(β + γ) + Bβx + Bγy + C(β + γ)z.

It follows that α(B− 1) = 0. Assume that α = 0. Since β+ γ = 1, we have x⊕ y = βx+ γy = βx+ (1− β)y. We
claim that (K, ⊕, ξ ) is not an abelian group. Assume that (K, ⊕, ξ ) is an abelian group. Then x ⊕ ξ = x, for
all x ∈ K. It follows that x = x ⊕ ξ = βx + (1 − β)ξ, and hence (1 − β)(x − ξ) = 0, for all x ∈ K. It leads to that
β = 1, and hence x ⊕ y = 1x + (1 − 1)y = x, for all x, y ∈ K. This shows that (K, ⊕ ) is a left zero semigroup,
but not a group, which is a contradiction.

If we assume B = 1, then x⊕ y = α+ βx+ (1− β)y, and x ∗ y = A+ x+Cy, for all x, y, z ∈ K. We claim that
(K, ⊕, ξ ) can not be an abelian group. Assume that (K, ⊕, ξ ) is an abelian group. Then x ⊕ ξ = ξ ⊕ x = x,
for all x ∈ K. It follows that

α + βx + (1 − β)ξ = α + βξ + (1 − β)x = x, (12)

for all x ∈ K. Hence we have (2β − 1)(x − ξ) = 0, for all x ∈ K, which shows that β = 1
2 . If we take β := 1

2 in
(12), then

α +
1
2

x +
1
2
ξ = x, (13)
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for all x ∈ K. If we take x := ξ in (13), then α + ξ = ξ, and hence α = 0. Thus x ⊕ y = 1
2 (x + y), for all x, y ∈ K.

It follows that x = x ⊕ ξ = 1
2 (x + ξ), for all x ∈ K. Hence 2x = x + ξ, for all x ∈ K, i.e., x = ξ, for all x ∈ K. This

shows that |K| = 1, which is a contradiction.

4. Matrices over a ringoid

In this section, we discuss new notions as top-row-determinant (resp., down-row-determinant) of a
matrix A (briefly, TRD(A) (resp., DRD(A))) over a ringoid.

Given ringoid (X, ∗, ⊕, 0, ),
→

x= (x1, · · · , xn) ∈ Xn and a ∈ X, we define an operation “⊙” by a ⊙
→

x=
(a ∗ x1, · · · , a ∗ xn) and

→

x ⊙ a = (x1 ∗ a, · · · , xn ∗ a).

Example 4.1. Consider the ringoid (R, ∗, +, 0 ) as in Example 2.2. Given
→

x= (3,−1, 6) ∈ R3 and 5 ∈ R, we have
5 ⊙

→

x= (5 ∗3, 5 ∗ (−1), 5 ∗6) = (5 · (5−3), 5 · (5− (−1)), 5 · (5−6)) = (10, 30,−5) and
→

x ⊙ 5 = (3 ∗5, (−1) ∗5, 6 ∗5) =
(3 · (3 − 5), (−1) · (−1 − 5), 6 · (6 − 5)) = (−6, 6, 6). It follows that 5 ⊙

→

x ,
→

x ⊙ 5.

Example 4.2. (a) Let (Q, +, ·, 0, 1 ) be the field of rational numbers. Define two binary operations “∗” and “⊕” on
Q by x ∗ y = − 5

2 − y and x ⊕ y = 5 + 2x + 3y, for all x, y ∈ Q. Then (Q, ∗, ⊕, −5 ) is a left distributive ringoid (see,
[8]).

(b) Let (R, +, ·, 0, 1 ) be the field of real numbers. Define two binary operations “∗” and “⊕” on R by x ∗ y = y
and x ⊕ y = 3 + x + y, for all x, y ∈ R. Then (R, ∗, ⊕, −3 ) is a right distributive ringoid, since (R, ∗ ) is a right zero
semigroup, we get (R, ∗, ⊕, −3 ) is a right zero ringoid.

Proposition 4.3. Let (X, ∗, +, 0 ) be a right (resp., left) zero ringoid and a ∈ X. Then a ⊙
→

x =
→

x and
→

x ⊙ a =
→

a
(resp.,

→

x ⊙ a =
→

x and a ⊙
→

x =
→

a ), for all
→

x∈ Xn.

Proof. Assume that (X, ∗ ) is a right zero semigroup. If
→

x∈ Xn and a ∈ X, then a⊙
→

x= a ⊙ (x1, · · · , xn) =
(a ∗ x1, · · · , a ∗ xn) = (x1, · · · , xn) =

→

x and
→

x ⊙ a = (x1, · · · , xn) ⊙ a = (x1 ∗a, · · · , xn ∗a) = (a, · · · , a) =
→

a . Similarly,
if (X, ∗ ) is a left zero semigroup, we obtain

→

x ⊙ a =
→

x and a ⊙
→

x =
→

a .

Proposition 4.4. Let (X, ∗, +, 0 ) be a left (resp., right) distributive ringoid. If a ∈ X and
→

x and
→

y in Xn, then

(i) a ⊙ (
→

x ⊕
→

y) = (a ⊙
→

x ) ⊕ (a ⊙
→

y) (resp., (
→

x ⊕
→

y) ⊙ a = (
→

x ⊙ a) ⊕ (
→

y ⊙ a)),

(ii)
→

x ⊙ (a + b) = (
→

x ⊙ a) ⊕ (
→

x ⊙ b) (resp., (a + b) ⊙
→

x= (a ⊙
→

x ) ⊕ (b ⊙
→

x )),

(iii) (a ⊙
→

x ) ⋆ (a ⊙
→

y) = a ∗ (
→

x ⋆
→

y) (resp., (
→

x ⊙ a) ⋆ (
→

y ⊙ a) = (
→

x ⋆
→

y) ∗ a),

(iv) if π is natural projection and
→

x∈ kerπ, then π(a ⊙
→

x ) = a ∗ π(
→

x ) = a ∗ 0
(resp., π(

→

x ⊙ a) = π(
→

x ) ∗ a = 0 ∗ a).

Given a ringoid (X, ∗, +, 0 ), we consider a 2 × 2 matrix A =
[

x
y

z
t

]
, where x, y, z, t, a ∈ X. The top-row-

determinant (denoted by TRD(A)) of A is defined by

TRD(A) := x ∗ t − z ∗ y, (14)

and we define a down-row-determinant (denoted by DRD(A)) by

DRD(A) := y ∗ z − t ∗ x. (15)

The set of all 2×2 matrices on ringoid (X, ∗, +, 0 ) is denoted by M2×2(X). We see that (Mat2×2(X), +M,
[

0
0

0
0

]
)

is an abelian group, where +M is the ordinary sum of 2 × 2 matrices. Notice that, if either A =
[

x
x

x
x

]
or

A =
[

x
y

x
y

]
, then TRD(A) = DRD(A) = 0.
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Example 4.5. Consider the ringoid (R, ∗, +, 0 ) as in Example 2.2. If A =
[

2
5
−4
6

]
, then TRD(A) = 2 ∗ 6− (−4) ∗ 5 =

−44 and DRD(A) = 5 ∗ (−4) − 6 ∗ 2 = 22.

A ringoid (X, ∗, +, 0 ) is said to be a commutative ringoid, if (X, ∗ ) is a commutative groupoid, i.e.,
x ∗ y = y ∗ x, for all x, y ∈ X.

Example 4.6. (a) Let (R, +, ·, 0, 1 ) be the field of real numbers. Define a binary operation “∗” on R by x ∗ y = xy
and x ⊕ y = x + y, for all x, y ∈ R. Then (R, ∗, ⊕, 0 ) is a commutative ringoid.

(b) Consider the ringoid (R, ∗, +, 0 ) as in Example 2.2. It is not commutative, since

2 ∗ 3 = 2 · (2 − 3) = −2 , 3 = 3 · (3 − 2) = 3 ∗ 2.

Proposition 4.7. Let (X, ∗, +, 0 ) be a commutative ringoid (X, ∗, +, 0 ). Then TRD(A) = −DRD(A).

We extend the definition of ⊙ to the set M2×2(X) of all 2 × 2 matrices as follows:

a ⊙ A =
[

a ∗ x
a ∗ y

a ∗ z
a ∗ t

]
and A ⊙ a =

[
x ∗ a
y ∗ a

z ∗ a
t ∗ a

]
. (16)

Proposition 4.8. Let (X, ∗, +, 0 ) be a left (resp., right) distributive ringoid, and let a ∈ X and A ∈ M2×2(X). Then
TRD(a ⊙ A) = a ∗ TRD(A) (resp., TRD(A ⊙ a) = TRD(A) ∗ a).

Proof. Assume that (X, ∗, +, 0 ) is a left distributive ringoid, a ∈ X and A ∈M2×2(X). Then

TRD(a ⊙ A) = (a ∗ x) ∗ (a ∗ t) − (a ∗ z)(a ∗ y)
= a ∗ (x ∗ t) − a ∗ (z ∗ y)
= a ∗ (x ∗ t − z ∗ y)
= a ∗ TRD(A).

Similarly, if (X, ∗, +, 0 ) is a right distributive ringoid, then TRD(A ⊙ a) = TRD(A) ∗ a.

Proposition 4.9. Let (X, ∗, +, 0 ) be a right (resp., left) zero ringoid, A ∈M2×2(X) and a ∈ X. Then

(i) a ⊙ A = A and A ⊙ a =
[

a
a

a
a

]
(resp., A ⊙ a = A and a ⊙ A =

[
a
a

a
a

]
),

(ii) TRD(a ⊙ A) = TRD(A) and TRD(A ⊙ a) = 0 (resp., TRD(A ⊙ a) = TRD(A) and TRD(a ⊙ A) = 0).

Proof. (i) Given a ∈ X and A =
[

x
y

z
t

]
, where x, y, z, t ∈ X, since (X, ∗) is a right zero semigroup, i.e., x ∗ y = y,

for any x, y ∈ X, we obtain

a ⊙ A = a ⊙
[

x
y

z
t

]
=

[
a ∗ x
a ∗ y

a ∗ z
a ∗ t

]
=

[
x
y

z
t

]
= A

and

A ⊙ a =
[

x
y

z
t

]
⊙ a =

[
x ∗ a
y ∗ a

z ∗ a
t ∗ a

]
=

[a
a

a
a

]
.

Similarly, if (X, ∗) is a left zero semigroup, we prove that A ⊙ a = A and a ⊙ A =
[

a
a

a
a

]
. (ii) Using (i), the

proof is obvious.

Example 4.10. Let (Q, +, ·, 0, 1 ) be the field of rational numbers. Define two binary operations “∗” and “⊕” on Q
by x ∗ y = x and x ⊕ y = x · y (resp., x ⊕ y = x + y), for all x, y ∈ Q. Then (Q, ∗, ⊕, 1 ) (resp., (Q, ∗, ⊕, 0 )) is a left
zero ringoid.
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Given a matrix A =
[

a
c

b
d

]
∈Mat2×2(X), we define a matrix AS :=

[
a
c

b
d

]S
=

[
c
a

d
b

]
. It follows that

TRD(AS) = TRD(
[

a
c

b
d

]S

) = TRD(
[

c
a

d
b

]
) = c ∗ b − d ∗ a = DRD(A). (17)

Notice that (AS)S = A. Generally speaking, for any n ∈N, we define the following:

[
xl

yl

xk

yk

]Sn

:=


[

xl
yl

xk
yk

]
if n is even,

[
yl
xl

yk
xk

]
if n is odd.

(18)

Example 4.11. In Example 4.5, TRD(AS) = 5 ∗ (−4) − 6 ∗ 2 = 5 · (5 − (−4)) − 6 · (6 − 2) = 21.

We introduce a new notion, ∇-product, defined on Xn, which is similar to the cross product on R3 as
follows: Given

→

x ,
→

y∈ Xn, (n ≥ 3), we define a ∇-product
→

x ∇
→

y , i.e.,

→

x ∇
→

y = (x1, · · · , xn)∇(y1, · · · , yn) =
→

z = (z1, · · · , zn), (19)

where

zi = (−1)i

∑l<k,
l,k,i

(−1)l+k TRD
[

xl

yl

xk

yk

]Si−1
 . (20)

For example, if n = 3, then

z1 = (−1)1
(
(−1)2+3TRD

[
x2

y2

x3

y3

])
= x2 ∗ y3 − x3 ∗ y2,

z2 = (−1)2

(−1)1+3TRD
[

x1

y1

x3

y3

]S = y1 ∗ x3 − y3 ∗ x1,

z3 = (−1)3

(−1)1+2TRD
[

x1

y1

x2

y2

]S2 = x1 ∗ y2 − x2 ∗ y1.

It follows that

(x1, x2, x3)∇ (y1, y2, y3) = (x2 ∗ y3 − x3 ∗ y2, y1 ∗ x3 − y3 ∗ x1, x1 ∗ y2 − x2 ∗ y1).

We may define another product, called a “×-product”, on a ringoid (X, ∗, +, 0 ) as follows:

(x1, x2, x3) × (y1, y2, y3) := (TRD
∣∣∣∣∣x2 x3
y2 y3

∣∣∣∣∣ , −TRD
∣∣∣∣∣x1 x3
y1 y3

∣∣∣∣∣ , TRD
∣∣∣∣∣x1 x2
y1 y2

∣∣∣∣∣ )

= (x2 ∗ y3 − x3 ∗ y2, x3 ∗ y1 − x1 ∗ y3, x1 ∗ y2 − x2 ∗ y1).

Proposition 4.12. Let (X, ∗, +, 0 ) be a ringoid. Then (Xn,∇,⊕,
→

0) is a ringoid.

Proposition 4.13. Let (X, ∗, +, 0 ) be a commutative ringoid. Then

(i)
→

x ∇
→

y = −(
→

y ∇
→

x ), for all
→

x ,
→

y∈ Xn and n ≥ 3,

(ii)
→

x ∇
→

x=
→

0 , for all
→

x∈ Xn and n ≥ 3,
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(ii)
→

x ∇
→

y =
→

x ×
→

y, for all
→

x ,
→

y∈ X3.

Corollary 4.14. If (X, ∗, +, 0 ) is a commutative ringoid, then (Xn, ∇, ⊕,
→

0 ) is not a commutative ringoid.

The following example shows that the commutative law, in Proposition 4.13 is necessary, and so we do not
remove it.

Example 4.15. Consider the ringoid (R, ∗, +, 0 ) in Example 4.6. Given
→

x= (−1, 2, 4) and
→

y= (7, 1, 3) in R3, we
obtain z1 = 2 ∗ 3 − 4 ∗ 1 = −22, z2 = 7 ∗ 4 − 3 ∗ (−1) = 9 and z3 = (−1) ∗ 1 − 2 ∗ 7 = 12. It follows that
(−1, 2, 4)∇ (7, 1, 3) = (−22, 9, 12) and (7, 1, 3)∇ (−1, 2, 4) = (−6, 16, 33), but (−1, 2, 4) × (7, 1, 3) = (−22, 31, 12).

Further, we see that (−1, 2, 4)∇(−1, 2, 4) = (−12,−15,−3) ,
→

0 .

We discuss the∇-product on X4, where (X, ∗, +, 0 ) is a ringoid. Let
→

x := (x1, x2, x3, x4),
→

y := (y1, y2, y3, y4) ∈ X4.
Let

→

z :=
→

x ∇
→

y . Then

z1 = (−1)i

∑l<k,
l,k,i

(−1)l+k TRD
[

xl

yl

xk

yk

]Si−1


= −(−1)2+3 TRD
[

x2

y2

x3

y3

]
− (−1)2+4 TRD

[
x2

y2

x4

y4

]
− (−1)3+4 TRD

[
x3

y3

x4

y4

]
= TRD

[
x2

y2

x3

y3

]
− TRD

[
x2

y2

x4

y4

]
+ TRD

[
x3

y3

x4

y4

]
= (x2 ∗ y3 − x3 ∗ y2) − (x2 ∗ y4 − x4 ∗ y2) + (x3 ∗ y4 − x4 ∗ y3).

Similarly, we obtain z2 = (y1 ∗ x3 − y3 ∗ x1) − (y1 ∗ x4 − y4 ∗ x1) − (y3 + x4 − y4 ∗ x3), z3 = x1 ∗ y2 − x2 ∗ y1 + x1 ∗

y4 − x4 ∗ y1 − x2 ∗ y4 + x4 ∗ y2 and z4 = −y1 ∗ x2 + y2 ∗ x1 + y1 ∗ x3 − y3 ∗ x1 − y2 ∗ x3 + y3 ∗ x2.

Theorem 4.16. Let (X, ∗, +, 0 ) be a left (resp., right) distributive ringoid and let a ∈ X. If
→

x and
→

y in Xn (n ≥ 3),
then (a ⊙

→

x )∇ (a ⊙
→

y) = a ⊙ (
→

x ∇
→

y) (resp., (
→

x ⊙ a)∇ (
→

y ⊙ a) = (
→

x ∇
→

y) ⊙ a).

Proof. Assume that (X, ∗, +, 0 ) is a left distributive ringoid and a ∈ X. Given
→

x ,
→

y∈ Xn, we let
→

z :=
→

x ∇
→

y ,
i.e.,

→

x ∇
→

y = (x1, · · · , xn)∇(y1, · · · , yn) =
→

z= (z1, · · · , zn).

It follows that a ⊙ (
→

x ∇
→

y) = a ⊙
→

z = (a ∗ z1, · · · , a ∗ zn), where

zi = (−1)i

∑l<k,
l,k,i

(−1)l+kTRD
[

xl

yl

xk

yk

]Si−1
 (21)

and
(a ⊙

→

x )∇ (a ⊙
→

y) = (a ∗ x1, · · · , a ∗ xn)∇(a ∗ yn, · · · , a ∗ yn) =
→

w= (w1, · · · ,wn),

where

wi = (−1)i

 ∑
l<k, l,k,i

(−1)l+kTRD
[

a ∗ xl

a ∗ yl

a ∗ xk

a ∗ yk

]Si−1 , (22)

for any i ∈ {1, · · · ,n}. Using Proposition 4.8 and the left distributivity law, we obtain
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wi = (−1)i

∑l<k,
l,k,i

(−1)l+kTRD
[

a ∗ xl

a ∗ yl

a ∗ xk

a ∗ yk

]Si−1


= (−1)i

∑l<k,
l,k,i

(−1)l+kTRD (a ⊙
[

xl

yl

xk

yk

]Si−1

)


= (−1)i

∑l<k,
l,k,i

(−1)l+ka ∗ (TRD
[

xl

yl

xk

yk

]Si−1

)


= a ∗

[
(−1)i

(∑
l<k,
l,k,i

(−1)l+k(TRD
[

xl

yl

xk

yk

]Si−1

)
]

= a ∗ zi.

Hence we prove that (a ⊙
→

x )∇ (a ⊙
→

y) = a ⊙ (
→

x ∇
→

y). Similarly, if (X, ∗, +, 0 ) is a right distributive
ringoid, then (

→

x ⊙ a)∇ (
→

y ⊙ a) = (
→

x ∇
→

y) ⊙ a.

Proposition 4.17. Let (X, ∗, +, 0 ) be a right (resp., left) zero ringoid and a ∈ X. Then (a⊙
→

x )∇ (a⊙
→

y) =
→

x ∇
→

y
and (

→

x ⊙ a)∇ (
→

y ⊙ a) =
→

a ∇
→

a (resp., (
→

x ⊙ a)∇ (
→

y ⊙ a) =
→

x ∇
→

y and (a⊙
→

x )∇ (a⊙
→

y) =
→

a ∇
→

a ), for all
→

x ,
→

y∈ Xn (n ≥ 3).

Proof. It follows from Proposition 4.3.

Theorem 4.18. Let (X, ∗, +, 0 ) be a ringoid. Assume (xl, yl) ⋆ (yk, xk) = (yk, xk) ⋆ (xl, yl), for all l < k. If
→

x ,
→

y∈ Xn (n ≥ 3), then

→

x ∇
→

y ⊕
→

y ∇
→

x =
→

0 .

Proof. Given
→

x ,
→

y∈ Xn, if we let
→

z :=
→

x ∇
→

y and
→

w :=
→

y ∇
→

x , then

zi = (−1)i

∑l<k,
l,k,i

(−1)l+kTRD
[

xl

yl

xk

yk

]Si−1
 and wi = (−1)i

∑l<k,
l,k,i

(−1)l+kTRD
[

xk

yk

xl

yl

]Si−1
 . (23)

If we define
→

v :=
→

z ⊕
→

w, then

vi = zi + wi = (−1)i

∑l<k,
l,k,i

(−1)l+k
{TRD

[
xl

yl

xk

yk

]Si−1

+ TRD
[ yl

xl

yk

xk

]Si−1

}

 .
Since (xl, yl) ⋆ (yk, xk) = (yk, xk) ⋆ (xl, yl), for all l < k, we have xl ∗ yk + yl ∗ xk = yk ∗ xl + xk ∗ yl, and hence

xl ∗ yk − yk ∗ xl = −(yl ∗ xk − xk ∗ yl). (24)

It follows that

TRD
[

xl

yl

xk

yk

]
+ TRD

[ yl

xl

yk

xk

]
= xl ∗ yk − yk ∗ xl + yl ∗ xk − xk ∗ yl = 0.

Similarly, we obtain TRD
[

xl
yl

xk
yk

]
+ TRD

[
yl
xl

yk
xk

]
= 0, proving the theorem.
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Corollary 4.19. Let (X, ∗, +, 0 ) be a left zero ringoid. Assume xl + yl = xk + yk, for all l < k. If
→

x ,
→

y∈ Xn (n ≥ 3),
then

→

x ∇
→

y ⊕
→

y ∇
→

x =
→

0 .

Proof. Since (X, ∗ ) is a left zero semigroup and xl + yl = xk + yk holds, for all l < k, the condition (25) also
holds.

5. (Strongly (very-)weak) orthogonality of vectors over a ringoid

Let (X, ∗, +, 0 ) be a ringoid. Two vectors
→

x and
→

y are said to be orthogonal if

→

x ⋆
→

y +
→

y ⋆
→

x= 0. (25)

Example 5.1. (a) Consider ringoid (R, ∗, +, 0 ) in Example 2.2. Given x⃗, y⃗ ∈ Rn, two vectors
→

x and
→

y are orthogonal
if and only if

→

x =
→

y, since

0 =
→

x ⋆
→

y +
→

y ⋆
→

x=
n∑

i=1

x2
i −

n∑
i=1

(xi · yi) +
n∑

i=1

y2
i −

n∑
i=1

(yi · xi) =
n∑

i=1

(xi − yi)2.

Thus xi − yi = 0, and so xi = yi, for all i ∈ {1, · · · ,n}, i.e.,
→

x =
→

y.
(b) Consider right zero ringoid (R, ∗, ⊕, 0 ) in Example 4.2(b). Then x and −x, for all x ∈ R, are orthogonal, since

x ∗ (−x) + (−x) ∗ x = −x + x = 0 (Notice that, if n = 1, then ⋆ := ∗).
Also, in Example 4.2(a), x and −5 − x are orthogonal, for all x ∈ Q.
(c) Consider commutative ringoid (R, ∗, ⊕, 0 ) in Example 4.6. Then x and 0 are orthogonal, for all x ∈ R, since

x ∗ 0+ 0 ∗ x = 0+ 0 = 0. Further, we can see that if x , 0 and y , 0 are not orthogonal, since x ∗ y+ y ∗ x = xy+ yx =
2xy , 0.

(d) ([8]) Consider the interval [0, 1] of real numbers. Define binary operations “+” and “∗” on it as follows: for
all x, y ∈ [0, 1],

x + y =
{

x + y if x + y < 1,
x + y − 1 if x + y ≥ 1, and x ∗ y =

{
1 if x = y = 0,
yx otherwise.

Then ([0, 1], ∗, +, 0 ) is a ringoid. Then there are not any orthogonal elements in [0, 1].

Proposition 5.2. Let (X, ∗, +, 0 ) be a left (resp., right) zero distributive ringoid and a ∈ X and let (X, ∗ ) be a right
(resp., left) zero semigroup. If

→

x and
→

y are orthogonal, then
→

x ⊙ a and
→

y ⊙ a (resp., a ⊙
→

x and a ⊙
→

y) are also
orthogonal.

Proof. Let (X, ∗, +, 0 ) be a left distributive ringoid and let (X, ∗ ) be a right zero semigroup. If
→

y are
orthogonal and if a ∈ X, then

→

x ⋆
→

y +
→

y ⋆
→

x= 0. Using Proposition 4.4(iii) and the left distributivity, we
obtain

(a ⊙
→

x ) ⋆ (a ⊙
→

y) + (a ⊙
→

y) ⋆ (a ⊙
→

x ) = a ∗ (
→

x ⋆
→

y) + a ∗ (
→

y ⋆
→

x )

= a ∗ (
→

x ⋆
→

y +
→

y ⋆
→

x )
= a ∗ 0
= 0.

Let (X, ∗, +, 0 ) be a right distributive ringoid and let (X, ∗ ) be a left zero semigroup. If
→

y are orthogonal
and if a ∈ X, then

→

x ⋆
→

y +
→

y ⋆
→

x= 0. Using Proposition 4.4(iii) and the right distributivity, we obtain
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(
→

x ⊙ a) ⋆ (
→

y ⊙ a) + (
→

y ⊙ a) ⋆ (
→

x ⊙ a) = (
→

x ⋆
→

y) ∗ a + (
→

y ⋆
→

x ) ∗ a

= (
→

x ⋆
→

y +
→

y ⋆
→

x ) ∗ a
= 0 ∗ a
= 0.

Proposition 5.3. Let (X, ∗, +, 0 ) be a left zero ringoid. Then two vectors
→

x and
→

y (∈ Xn) are orthogonal if and only
if S(

→

x ,
→

y) = T(
→

x ,
→

y) = 0.

Proof. (=⇒) Assume
→

x and
→

y are orthogonal. Then
→

x ⋆
→

y +
→

y ⋆
→

x= 0. Using Proposition 2.4, we obtain
→

x ⊗
→

y=
→

x . It follows that

S(
→

x ,
→

y) = (
→

x ⊗
→

y) ⋆ (
→

y ⊗
→

x ) + (
→

y ⊗
→

x ) ⋆ (
→

x ⊗
→

y) =
→

x ⋆
→

y +
→

y ⋆
→

x= 0.

Similarly, we obtain T(
→

x ,
→

y) = 0.
(⇐=) Assume S(

→

x ,
→

y) = 0, for some
→

x ,
→

y∈ Xn. Then by Proposition 2.4, we get
→

x ⊗
→

y=
→

x and
→

y ⊗
→

x=
→

y .
It follows that

0 = S(
→

x ,
→

y) = (
→

x ⊗
→

y) ⋆ (
→

y ⊗
→

x ) + (
→

y ⊗
→

x ) ⋆ (
→

x ⊗
→

y) =
→

x ⋆
→

y +
→

y ⋆
→

x .

Therefore
→

x and
→

y are orthogonal. Similarly, if T(
→

x ,
→

y) = 0, then
→

x and
→

y are orthogonal.

Two vectors
→

x and
→

y (∈ Xn) are said to be incident if

→

x ⋆
→

y =
→

y ⋆
→

x . (26)

The idea here is that in a vector-space a vector
→

x is a position vectors from (0, · · · , 0) to (x1, · · · , xn) and any
two are naturally incident on each other from the origin. In this commutative situation

→

x ⋆
→

y=
→

y ⋆
→

x as
well. Given a ringoid (K, ∗, +, 0 ) where K is a field, we define an α − K-sphere Kα as follows:

Kα := {x⃗ ∈ Kn
| x⃗ ⋆ x⃗ = α}.

Example 5.4. Let (R, ∗, +, 0 ) be the ringoid discussed in Example 2.2. Given x⃗, y⃗ ∈ Rn, we have

→

x ⋆
→

y=
n∑

i=1

x2
i −

n∑
i=1

(xi · yi) and
→

y ⋆
→

x=
n∑

i=1

y2
i −

n∑
i=1

(yi · xi),

and
→

x ⋆
→

y=
→

y ⋆
→

x precisely when
∑n

i=1 x2
i =

∑n
i=1 y2

i , i.e., when the vectors
→

x and
→

y belong to the same α−K-sphere.
This shows that two vectors

→

x and
→

y are incident if and only if
→

x and
→

y belong to the same α − R-sphere.

If take n := 2,
→

a := ( 1
2 ,

1
2 ) and

→

b := (− 1
2 ,

1
2 ), then

→

a ⋆
→

b= (
1
2
,

1
2

) ⋆ (−
1
2
,

1
2

) =
1
2
∗

1
2
+ (−

1
2

) ∗
1
2
=

1
2
· (

1
2
−

1
2

) + (−
1
2

) · (−
1
2
−

1
2

) = 0 +
1
2
=

1
2
.

→

b ⋆
→

a= (−
1
2
,

1
2

) ⋆ (
1
2
,

1
2

) = (−
1
2

) ∗
1
2
+

1
2
∗

1
2
= (−

1
2

) · (−
1
2
−

1
2

) +
1
2
· (

1
2
−

1
2

) =
1
2
+ 0 =

1
2
.

Hence
→

a and
→

b are incident, but not orthogonal, since

→

a ⋆
→

b +
→

b ⋆
→

a=
1
2
+

1
2
= 1 , 0.
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If take
→

x= (α, β), then
→

x ⋆
→

x= α ∗ α + β ∗ β = 0. Thus every element
→

x∈ R2 is orthogonal to itself (see Example

5.1(a)). Furthermore,
→

0= (0, 0) is neither orthogonal nor incident with
→

x= (x1, x2) ,
→

0 , since

→

0 ⋆
→

x= (0, 0) ⋆ (x1, x2) = 0 ∗ x1 + 0 ∗ x2 = 0 · (0 − x1) + 0 · (0 − x2) = 0 + 0 = 0.

→

x ⋆
→

0= (x1, x2) ⋆ (0, 0) = x1 ∗ 0 + x2∗ = x1 · (x1 − 0) + x2 · (x2 − 0) = x2
1 + x2

2 , 0.

Proposition 5.5. Let (X, ∗, +, 0 ) be a ringoid. The column vector
[

xl
yl

]
is incident with column vector

[
yk
xk

]
(l < k) if

and only if TRD
[

xl
yl

xk
yk

]
+ TRD

[
yl
xl

yk
xk

]
= 0.

Proof. Assume a column vector
[

xl
yl

]
is incident with a column vector

[
yk
xk

]
(l < k). Then

(xl, yl) ⋆ (yk, xk) = (yk, xk) ⋆ (xl, yl), i.e., xl ∗ yk + yl ∗ xk = xk ∗ yl + yk ∗ xl.

It follows that

TRD
[

xl

yl

xk

yk

]
+ TRD

[ yl

xl

yk

xk

]
= xl ∗ yk − xk ∗ yl + yl ∗ xk − yk ∗ xl = 0.

The converse is trivial, and we omit it.

A ringoid (X, ∗, +, 0 ) is said to have a strong orthogonality condition if it satisfies the following:
(SOn): for all

→

x ,
→

y∈ Xn, we have

→

x ⋆ (
→

x ∇
→

y) = (
→

x ∇
→

y)⋆
→

x =
→

y ⋆ (
→

x ∇
→

y) = (
→

x ∇
→

y)⋆
→

y = 0. (27)

Proposition 5.6. If (X, ∗, +, 0 ) is a commutative ringoid, then (SO3) holds.

Proof. Assume (X, ∗, +, 0 ) is a commutative ringoid. Given
→

x ,
→

y∈ X3, we have

→

x ⋆ (
→

x ∇
→

y) = (x1, x2, x3) ⋆ (x2 ∗ y3 − x3 ∗ y2, y1 ∗ x3 − y3 ∗ x1, x1 ∗ y2 − x2 ∗ y1)
= x1 ∗ (x2 ∗ y3 − x3 ∗ y2) + x2 ∗ (y1 ∗ x3 − y3 ∗ x1) + x3 ∗ (x1 ∗ y2 − x2 ∗ y1)
= x1 ∗ x2 ∗ y3 − x1 ∗ x3 ∗ y2 + x2 ∗ y1 ∗ x3 − x2 ∗ y3 ∗ x1 + x3 ∗ x1 ∗ y2 − x3 ∗ x2 ∗ y1

= 0.

and

(
→

x ∇
→

y)⋆
→

x = (x2 ∗ y3 − x3 ∗ y2, y1 ∗ x3 − y3 ∗ x1, x1 ∗ y2 − x2 ∗ y1) ⋆ (x1, x2, x3)
= (x2 ∗ y3 − x3 ∗ y2) ∗ x1 + (y1 ∗ x3 − y3 ∗ x1) ∗ x2 + (x1 ∗ y2 − x2 ∗ y1) ∗ x3

= x2 ∗ y3 ∗ x1 − x3 ∗ y2 ∗ x1 + y1 ∗ x3 ∗ x2 − y3 ∗ x1 ∗ x2 + x1 ∗ y2 ∗ x3 − x2 ∗ y1 ∗ x3

= 0.

This shows that
→

x ⋆ (
→

x ∇
→

y) = (
→

x ∇
→

y)⋆
→

x= 0. Similarly, we obtain (
→

x ∇
→

y)⋆
→

y=
→

y ⋆ (
→

x ∇
→

y) = 0.

Corollary 5.7. Let (X, ∗, +, 0 ) be a commutative ringoid. Then
→

x ∇
→

y is orthogonal with both
→

x and
→

y.

Proof. It follows immediately from Proposition 5.6.

The following example shows that the commutative law in Proposition 5.6, is necessary.
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Example 5.8. Let (R, ∗, +, 0 ) be the non commutative ringoid discussed in Example 4.9. Then

→

x ⋆ (
→

x ∇
→

y) = (−1, 2, 4) ⋆ (−6, 16, 33)
= (−1) ∗ (−6) + 2 ∗ 16 + 4 ∗ 33
= (−1) · (−1 − (−6)) + 2 · (2 − 16) + 4 · (4 − 33)
= −5 − 28 − 116
= −149
, 0.

Similarly, we see that (
→

x ∇
→

y)⋆
→

x= 1211,
→

y ⋆ (
→

x ∇
→

y) = −23 and (
→

x ∇
→

y)⋆
→

y = 1308.

6. Future work

We suggest three definitions related to orthogonal conditions which will be future research topics in this
area.

(i) The orthogonality condition can be written:
(On):

→

x ,
→

y∈ Xn implies:

→

x ⋆(
→

x ∇
→

y) + (
→

x ∇
→

y)⋆
→

x=
→

y ⋆(
→

x ∇
→

y) + (
→

x ∇
→

y)⋆
→

y= 0. (28)

(ii) The weak orthogonality condition becomes:
(WOn):

→

x ,
→

y∈ Xn implies:

→

x ⋆(
→

x ∇
→

y) + (
→

x ∇
→

y)⋆
→

x +
→

y ⋆(
→

x ∇
→

y) + (
→

x ∇
→

y)⋆
→

y= 0. (29)

(iii) The very weak orthogonality condition becomes:
(VWOn):

→

x ,
→

y∈ Xn implies:

→

x ⋆(
→

x ∇
→

y)+
→

x ⋆(
→

y ∇
→

x ) + (
→

x ∇
→

y)⋆
→

x + (
→

y ∇
→

x )⋆
→

x +
→

y ⋆(
→

x ∇
→

y)+
→

y ⋆(
→

y ∇
→

x ) (30)

+ (
→

x ∇
→

y)⋆
→

y +(
→

y ∇
→

x )⋆
→

y
= 0.

We observe that there is a chain of implications:

(SOn) =⇒ (On) =⇒ (WOn) =⇒ (VWOn), for all n ≥ 3. (31)

Open problem. Under what condition/conditions the converse of implications in (31) are valid?

7. Conclusions

In this paper, it is shown that there are many right distributive ringoids over a field which are lin-
ear groupoids, but not rings in general. Beside, we investigated (strongly, (very-) weak) orthogonality
conditions of vectors in ringoids. Moreover, we introduced a new notion as top-row-determinate (resp.,
down-row-determinate) in a ringoid and investigated some of its properties. As a direction of research, one
could extend these results to other algebraic structures to get more results. Also, we will define among var-
ious ideals in a ringoid, and investigate the relationship between them. Another direction of research, one
could define linear-quadratic ringoids, and quadratic-quadratic ringoids. Since hyper algebraic structures
are a generalization of algebraic structures, one could define hyper ringoids, and discuss the relationship
between ordered semihyperrings (see, [6, 9, 10]).
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