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Two algorithms for solving generalized coupled Sylvester tensor
equations

Tao Li**, Chi-Hua Feng?, Xin-Fang Zhang®
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Haikou 570228, P. R. China

Abstract. In this paper, we consider the generalized coupled Sylvester tensor equations by the tensor forms
of the biconjugate A-orthogonal residual and the conjugate A-orthogonal residual squared algorithms. With
the absence of round-off errors, we show that our methods converge to the exact solution group within
finite steps when they are consistent. Finally, we provide some numerical examples to demonstrate the
effectiveness of the proposed methods, including when testing the algorithms by color image restoration
problems and randomly generated data.

1. Introduction

Throughout this paper, we denote the tensors as Euler script letters, e.g., X. An order n dimension
Iy X I X --- X I, tensor X = (jy;,-4,) is a multidimensional array consisting of 11, - - - I, entries with 1 < i; <
I;,1 < j < n. A mode-1 fiber of X = (x;,.4,) is defined by fixing every index except for iy (iy = 1,---,Iy),
denoted by x.;,..;,. We denote the matrices as capital letters, e.g., A. Let Ri*2XXIs and RE*E be the sets of
all tensors and matrices over the real number field R, respectively. The transpose of a matrix A € R/ ig
denoted by AT € R>*'. A tensor X = (x;,..;,) is called the zero tensor if x;,.;,, = 0, denoted by O. The
k-mode product of X € Ri¥2XXli with a matrix A € R/¥k [1, 2], denoted by X X A, is a tensor of size
L X X Lkg X ] X Liyq X - -+ X I, with its entries given by

Ii
(X Xk Ay ooy x i xorxin, = Z Xivigoig@jies ] = 1,20+, ]

=1
Given two tensors X, Y € Ri*2¢*li their inner product is defined as

L b I,

X, Y) = Z Z e Z Xiigewiy Yirigriy

=1 =1  iy=1
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So the Frobenius norm over R*2XIn js naturally defined as

L I
Xl = V(XX = JZZ Z,m .

1i=1 i,=

If two tensors X and Y yield to (X, V) = 0, then they are said to be orthogonal. Let X € R liXPxlx-xl
Y e R XliaxQ@xlxxli and M € R*F. Then

(Xxe M, Y)Y =(X, Y x MT).
Let X € Rix<bxxh pfy My € RV, M, € RP*) and M; € R (k # 1). Then

X X My X Ma = X X (MaMy),
XXkMk XlMl = XX[M[ XkMk.
For more details about the properties of tensors, see [3-8].

In this paper, we are interested in solving the following generalized coupled Sylvester tensor equations
(GCSTEs)

X1 X1 A+ Xo X App 4+ -+ + X1 X1 A=y + X X A1y = By,

X X1 Aot + X3 Xp Ay + -+ + Xy Xyo1 Agu—1y + X1 X Ay = By,
1)

Xn X1 Anl + Xl X2 AnZ +eet Xn—Z Xn-1 An(n—l) + Xn—l Xn Ann = Bn/

where A;j € R, B; € R are given, and tensors X; € R"2**Ir gre required to be determined,
i,j=1,---,n. Wheni=1and X; = X; =--- = X, = X, Egs.(1) reduce to the Sylvester tensor equation
(STE)

XX1A1+XX2A2+"'+XXnAn=B. (2)

It was not merely applied to system and control theory [9-13], but also extensively penetrated the heat
transfer [14], partial differential equation [15], finite difference [16], finite element [17]. One application of
STE is to solve the convection-diffusion equation [18, 20]

—vAu+c'Vu = f in T =[0,1]",

3
u=0 on JI. ©)
From the finite difference method, Eq.(3) is discreted as Eq.(2) with parameters
2 -1 3 5 1
-1 2 -1 1 3 -5
(% Ci .
A= ﬁ + 4_h . 1 ’ 4)
-1 2 - 1 3 -5
2 _1 mxm 1 3 mxm

where h = ﬁ is the mesh size, i = 1,--- ,n. Indeed, the GCSTEs, as an extension of STE, are quite general
and have many important potential applications. However, there is little literature on studying the iterative
solution of GCSTEs. It motivates us to establish efficient algorithms for solving the original tensor equations.

Various effective algorithms for solving the STE have been developed in the last decade. From the
hierarchical identification principle, Chen and Lv [18] proposed a gradient-based iterative method and its
modification version for solving the third-order Sylvester tensor equation when it has a unique solution.
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They also [19] developed a generalized minimum residual method and its preconditioned version in their
tensor forms for solving Eq.(2). After that, from the Arnoldi process, Ali Beik et al. [20] introduced the
conjugate gradient and nested conjugate gradient methods to search for a solution of Eq.(2), respectively. A
new method [21] based on the global Bidiag 1 process was also proposed for obtaining its solutions of Eq.(2).
Huang and Li [22] derived some Krylov subspace methods, including the conjugate residual, generalized
conjugate residual, biconjugate gradient, conjugate gradient squared, and biconjugate gradient stabilized
methods in their tensor forms for solving a tensor equation. In [23], Najafi-Kalyani et al. formulated
some effective methods for solving the tensor equation (2), which are based on the tensor form of the
global Hessenberg process. According to the CP decomposition, Bentbib et al. [24] proposed the block and
global Arnoldi-based methods for solving the tensor equation (2) efficiently, which are promising methods.
Heyouni et al. [25] established a new iterative method in its tensor form for solving Eq.(2). Besides,
Wang and He [26-34] studied the solvability of a series of Sylvester quaternion tensor equations, and also
presented their general solution expressions. To the best of our knowledge, only Lv and Ma [35] presented
a modified conjugate gradient (MCG) method for investigating the iterative solutions of GCSTEs. So we
in this paper intend to develop a biconjugate A-orthogonal residual method in its tensor form for solving
the GCSTEs (1). With the absence of round-off errors, we prove that the method mentioned converges to
the solutions for any initial value at most finite iteration steps. A transpose-free variant of the proposed
method is also established to improve its performance further.

The organization of this paper is as follows. In Section 2, we propose the biconjugate A-orthogonal
residual method based on the tensor format (BiCOR_BTF) for solving the generalized coupled Sylvester
tensor equations, the convergence of which is also established under certain assumptions. Moreover, we
develop the tensor form of the conjugate A-orthogonal residual squared method, which converges much
faster than BiCOR_BTF. We provide some numerical examples to show the efficiency of our methods
compared with MCG in Section 3. Numerical results of the proposed methods applied to some color image
restoration problems are also recorded in this section. Finally, we give a brief conclusion in Section 4.

2. Two iterative algorithms for solving GCSTEs (1)

This section proposes the tensor forms of the biconjugate A-orthogonal residual method and its
transpose-free variant for solving the GCSTEs (1). As stated in [35], by the properties of k-mode prod-
uct and Kronecker product [1, 4, 36], the GCSTEs (1) can be rewritten equivalently as the following linear
system

Ax =D, )
where
r Iln®...®IIZ®A11 II,1®...®A12®111 A1n®11n—1®...®111
A2n®ll”’1®"’®1h II,1®...®112®A21 [1,1®A2(n_1)®...®111
A= . . . . ,
| I"®-- - ®Ap®I' "® - @Az .. he.---®IP®A,
I vec(Xy) vec(By)
vec(X>) vec(B,)
X = . 7 b = . 7
| vec(X) vec(B,)

and the operator vec(-) represents a vectorized tensor by stacking its mode-1 fiber to form a vector.

We call that the tensor equations (1) are consistent if and only if Eq.(5) is consistent. It is well known that
there are many effective Krylov subspace methods for solving Eq.(5). As shown in [37-39], the biconjugate
A-orthogonal residual (BiCOR) and the conjugate A-orthogonal residual squared (CORS) algorithms for
solving a linear system outperform some Krylov subspace methods. So we here utilize the BiCOR and CORS
algorithms, based on the biconjugate A-orthonormalization procedure, to solve Eq.(5) instead of Eqs.(1).
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The procedure is built upon the two-sided Lanczos method and can be regarded as a Petrov-Galerkin
projection technique between the dual Krylov subspaces K;,(A; v1) and ATK,,(AT; w1) with v1 and @, being
two column vectors of appropriate dimensions. Nevertheless, the computational work and memory space
required to implement the two algorithms are costly with the dimension increases. As a result, we intend to
propose the tensor forms of the BiCOR and CORS algorithms for solving Eqs.(1). Unless otherwise stated,
we always assume that the tensor equations (1) are consistent. Moreover, we give a useful lemma that plays
a key role in the proposed algorithms.

Lemma 2.1. If £;(X1,---,X,) and Zi(yh o, Y)(i=1,2,--- ,n) are linear operators on RI*2"*li then

<~y1/‘£1(X1/X2/' o /Xn)> + <y2/£2(X1/X2/' ot /XVI)> +e+ <~ynr£n(X1/X2/' ot /XVI)>

— — — (6)
= <X1/Ll(~y1/y2/“' /«yn» + <X2/£2(y1/«y2/'“ /yn» + + <Xn/-£n(~ylr~y2/"' /yn)>/
where
Li( Xy, -, X)) =XK1 X1 A + Xo X0 Ap + -+ + Xy Xy A1,
Lr( X, -, X)) = Xo X1 Apt + X3 Xp Ay -+ + Xy Xy Aoy,
7)
Ln(Xll‘ t /Xn) = Xn X1 Anl ""Xl X2 AnZ +oe +/Ynfl Xn Ann
and
LY, M) =Y Al + Yoy AL + -+ Y, %0 AT,
LY, Y =Y X2 Al + Yo x1 AL -+ Y, x5 AL,
(8)

Lo, V) = Y15, AL+ Yo X1 AN+ oo+ Y AT
Proof. For Eq.(6), it follows that

(Y1, X1 X1 Apn + Xa Xo Apg + -+ + Xy Xy A1) + (Y2, Xo X1 Agt + X3 X0 Agp -+ + Xy Xy Agy)

oo (S, X Xa A+ Xi X0 Ap + -+ + Xt Xy An)

= [(Y1 %1 A}, X1) + (M1 %0 AL, Xo) + -+ + (Y1 X A, Xid)] + (Yo X1 AL, Xo) + (Yo X0 AL, X3)
o (Yo X AL, XD+ [ xa AL Xy + (Y X0 AL, Xy + -+ 4 (W X AL, X))

= (X1, Y11 AL + Yo x, AL+ + Y o ALY +(Xo, Y1 %0 AL + Yo xq AL+ Y, x5 AL

+ (X, Y X1 AL + Y5 Xp Ag(n_l) +o+ Y X, Aﬂ)

= (X1, LiY, Yo, Yy + (Ko, Loy, Yo, W)+ oo+ Koy Lu Y1, Yoo, W),
0
Next, we develop the BICOR method in its tensor form for studying the GCSTEs (1) as follows.
Algorithm 2.1. Tensor form of BiCOR method for solving GCSTEs (1).

1. Input initial guesses X?, B; € R A;; € R, k = 0, and set € > 0.
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2. Calculate
R(l) =Bl _-El(X(l)/“' /Xg)r P(l) :R(l)/
Rg Z-BZ_LZ(XO/"' /XE)/ pg :Rg/

Rg = Bn - LW(X?/ : /X(r)l)/ P?] = R?,/

R = L1(R, -, RY), P = RO,
R = LH(R, -, RY), P =R,
ﬁg :-LW(RO/"' rﬂg) ﬁg =ﬁ2,

and

po = (RY, LR, -+, RO + (R, Lo(RC, -+, RY) + -+ + (R, L,(RY, -, R,
00 = (Li(PS, PO, LiPL, -, PO+ (Lo, PO, La(PL, -, P))
o4 (L P, PR, La(P, PO,
M = IRKL+ IR + - + IREI
3. Fork=1,2,--- until gz < e do:

X1 =X+ Py,
X5 = X5 + P,

X = XK Pk,

Rllﬁ-l — R’li _ ak‘£1(7)§’. . ,7)];)’ §11<+1 = ﬁllf - akZ:l(%]{/' o /Pﬁ)’
RED = R = Lo@Pho P, R =R - Lo, P,

Rﬁ+1 = Rﬁ - ak‘ﬁn(?kr Tt ,Pﬁ), ﬁfﬁl = ﬁl;z - Oékzn(ﬁllc, te ,%’:l),
Ll(RIfH, s ,RIIZ_H) = R]{_H X1 A1 + R];—l XpApp + -+ + Rﬁ-ﬂ Xy A1n,
LR, R = REF Xy Agy + REF X Agy -+ + REFL X,y Ay,

k+1 k+1 k+1 k+1 k+1
Ln(R1+ AR ar+ ) :Rn+ X1 At +R1+ X2 An2+“'+Rnt1 Xn Aun,

P = (R, LiRET, - RED) + (R, La(R, - R 4o+ (R, Lu(RE™, -+ RE)),

4. Calculate i = £ ;:1,

k+1 k+1 k DOk+1 _ pk+1 Dk
P =R+ B Pli =R +BP,

k+1 k+1 k s o o
P =R g, | P = R4 B,

k+1 k+1 - - =
P =R BPL, (P = R4 g P,
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k1 = (LI(PEL, o PE), Ly (PR, PR 1 (Lp(PIH - PR, L@, Pl
+ .0+ <Zn(?)ll<+1’ e ’51;1-'—1)/ Ln(P]I+1’ . ,Plr{l+1)>.

Theorem 2.1. If the tensor sequences {R}, { L, (RE, -+, RE)), {Zm(a{, coo PO and (Ln(PF, -+, PR (m =
1,2,---,n, k=0,1,---) are generated by Algorithm 2.1, then

(R, LR, R + -+ (R, LR, -, RL))

A R vt 9)
= <R{r‘£1(R11/ e IR;’[)> +oeet <R£1r‘£n(R11/ e /an)> = Or
(LiP,- P, L@l P+ -+ (LuP, -, P, LuPL, - P =0 (10)
hold fori # j,i,j =0,1,---. Moreover, for i > j, it follows that
(R, LyPL, - P+ + (R, L(PL,--- P =0 (11)

Proof. From Lemma 2.1, we can see that the first half part of Eq.(9) is straightforward. For the rest assertions,
we first prove that Eqgs.(9), (10) and (11) hold for 0 < j < i < k by induction. If k = 1, it follows that

<§1,£1(7q0,... SR 4+ <§}l,£n(730,... ,RO))
=R — g L1 (P, -, P, LIRY, -+ R + -+ + (R = ag La(PY, -+, PR), La(R, -, R)
=(R), LR, -+, RY) + -+ + (R, L,(RY, -, RO))
— ag[(Ly(PY, -+, P, LIRS, RO + - 4 Ly (P, P, Lu(R, -+, RO
=R}, LR, -+, RO + -+ + (R, L,(RY, -+, RO))
(RO, Li(R), -\ RY) + -+ (R, L (R, -+, RY))
LB P, L PO et (LB P, Ly, P)

[<Zl(¢(1)/ e /52)1'51(?)(1)/ e 1P2)> +--t <Zn(501 e ,732)/—£n(POr e 1P2)>]
=0.

Since P = R?, by Lemma 2.1, it follows that
(R, LyPY, - PO+ + (R, Lu(PS, -+, Y =(RE, LR, -+, R + -+ (RL, Lu(RY, -, RO))
=0,
and
L@ P LaPY o PO+ LaPL o P, La P, PY)
(TR, R+ BoLa P P, (R = RO) -4 (LR R+ o LB, ), — (R~ R
0 0

=- alo[@l(@,--- SR, RY 4 4+ (Ly(RL, -+ R, RY) = B (L (PY, -, PO, R + - 4 (Lu(P, -, P2), RO

- ai[v?i,l:l(ﬂi,~-- SR 4o+ (R LR R
0
(R, L1(RL, - R + -+ (RL, Ly(RL, -+, RLY)

TR o ROYRNY 4o 4 (L (RO ... ROY RO
R L1RS RN+t R, LR, Ry TR (G0 R R

— IR iRl RO) o+ (R LR, R)
0
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(R, LR, RY)) + -+ (RL, Ly(RL, -, RL))
(RO, L1(RY, -+, RO + -+ (RY, Lu(RY, -+, R)))
=0.

(R, Li(R0, - , RO + -+ (R, L(RD, -, RN

Assume that the assertions hold for k = m, then for k = m + 1, it follows that

(RIFL, LR, RI) 4 o+ (R, L (R, )
=R — ay Ly(PY, - P, Ly(RE, - R + oo+ (R — g La(PL, -, P, La(RE, -+, RI))
=(RY, Ly(RY, - RI) + -+ (R, L (R, RI))

— @ [(Ly(PY, - P, LIRY, o R o+ (Ly(P, - P, La(RE, -+, RN
=R, LyRY, -+, RI) 4 (R, LR, R = a[( L (P, P, Li(PY, -, P

— Bua L@ P b (L (P P, Lu( P, P = Bua L@ P
=(RY, LIRY, - R + -+ (R, Ly(RY, - R

— [ LaPT, - P, LI P -+ ( Ly P, P, Lo P
:0,

and

(LyPIL, o PN, Ly(PY - P o+ (Ly(PI, o P, L (P, PT)
~ = ~ ~ = P |
:<£1(R;n+1/ e /‘Rz*—l) + ﬁm-[:l(Pm/ e /P:rln)/ _(R;ﬂ - R;n+1)>

A

bt (TR R 4 B La(P, - P, (R~ R
1 —_~ o~ —_~ —_~ o~ p
= E[(Ll(le-Fl/ e /an+1)/ RT+1> +0+ <-£71(R;"+1/ o ,RZHl)’ an+1>

— Bul (LA (P, PRy + A (La(P -, P, R
KLy (R, - RIFD), RIHTY e (L, (R, - R, R

__ 1
QU
= BulP1, Li(RY, - R + - + (P, La(RY, -+ R
1 —_— ~
== a—[<73§"”,£1(73§"”,'~ SR -+ (R, Ly(RYH -+ RI)

m

<ﬁT+1’£1(R;ﬂ+ll . IRZL+1)> 4o (ﬁTH,Ln(RTﬂl . ,R:’"H))
(R, LR, -+ RN + -+ (R, Ly(RY, - R

(R, L3R, ;RN + -+« + (RY, Ly(RY, -, RN
=0.

Moreover, it follows that

(R LyPY, o PR+ (R Lu(PY - P)
=R = @y Ly (P P, LA, P 4+ (R =y Ly(PT - P, La(PT, -, PT))
=R, LIPL, -, P+ + (R, Ly(PL,--, PI)

— @ul( LI (P, P, LIPL, - P 4o+ (La(P P, La(P, -, PN
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=(RY, LIRY, - REY) -+ (R, L (R, -, RI)
+ Bt (R, Ly (P P e (R, L,(PE, P
— (LA P P, LAPY - PN 4o+ (LuPL -, P, La(P, - P
=0.
For 0 < j < m, we have
R LIR], - R+ + (R, LR, RL))
=R~ Ly(PY, - P, LAR], - R)) + o+ (R = @ Ly(PT, - P, Lu(R],-++ , R))
=(RI, LR, R+ + (R, Ly(R], -, R))
—aul( L@, P, LAR, - R+ A (LaPY - P, LR, R
=~ aul( L Py, P, LiPL, P+ 4 LaPL - P, La(P, -, PL))
Bl Li@L, - P, LiP PN e L P P, L P P
=0-0
=0,

and o _ . . o _ ‘ ,
<‘£1(¢)rln+l’ e rpzﬁl)/ Ll(P]ll e ’Pf’l)> +-oet <£”(PT+1, e ,P;’er), LH(P]/ e /P£)>

=(Li(R, - R 4 B La(PT, - P, Ly, PL))
bt (LRI R 4 By L (PT, -, P, L, PL))

(LRI, RO, Ly(P, - P+ (La( R R, Ly, PL))
+ Bul( Ly, P, LyP, PR + e+ L P P, La(PL, o PIN]

(TR, R, SR = R o (TR R, (R~ RET)
] ]

:%[<§T+1/£1(R{+1/“' ’Rz:rl)> P <§Zz+1l£n(7€{+1,___ ’szl))]
=0.
Moreover, it follows that
(R, LyPL, -, P+ (R, Ly(Ph, P
=R = an LiP, - P, LiPL o P+ R = a0 L (P P, Ly, PL)
=R, Ly(P,- P+ R, Lu(PL, -, PL)
— [ Li(PY, - P, LAP, o P+ La P P, LaPl, o PO
=0-0
=0.

According to the above discussion, one can see that Egs.(9),(10) and (11) hold for 0 < j < i < k. On the other
hand, for the case 0 < i < j < k, we can similarly prove them and consequently complete the proof. [

Based on the above observations, we present the following theorem to show that Algorithm 2.1 converges
to the solutions at most finite steps for any initial values without round-off errors.

Theorem 2.2. Let {Xf}(l = 1,---,n) be the iterative sequences generated by Algorithm 2.1. If Algorithm
2.1 does not break down by zero division, then (Xk,X’E,--- ,Xﬁ) converges to an exact solution group
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(X’i, X;, -, X}) within at most nl1I - - - I, + 1 iteration steps for any initial values in the absence round-off
errors.

Proof. Setm =nlil,---I,, if R;‘ =0,(l=1,---,n;k <m), then (X’I,X’;, - ,X’;) is a solution group of Egs.(1).
If R;‘ #0(=1,---,m;k=1,---,m), by Algorithm 2.1 does not break down, then we can compute ‘Rl’””. Let

[ vec(R!)
vec(R))

| vec(R)
[ veoLiR, - RY)
vec( LR, -+, R))

Vec(zn(ﬁg, e, @,))

where vec(R)), vec(Lo(Ri - -- ,@1)) € RibliG = 1,-.- ,m;l = 1,--- ,n) denote the vectors consisting
of themselves mode-1 fiber. Suppose that S!,S?,---,S™ are linearly dependent. There exist scalars
A, Az, -+, Aun 1, not all zero, such that

MS + 2,82+ -+ 4,8 =0,

where O represents an m-by-m identity matrix. Taking the inner product with W; on both sides, by Theorem
2.1, it follows that ‘ ‘
0=(W,0) = (W, AiS" + 1287 +--- + A,S™)

= /\i<Wi/Si>/ i= 1/ ,m.
Since R;”“ can be computed, one can see that (Wi, 8 # 0 resulting in A; = 0, which contradicts to the

assumption. Therefore, we can obtain that S §2 ... S™is abasis of the subspace of

G1
G
H=!G|G= . ,where G, e Ribln 1=1,2,... n.\.

Gu

It follows that S"*! = 0, i.e., R;”“ = 0. This fact shows that (X?IZ"'I"H,XQIZ"'I"H, ‘e ,Xlnllz"'l"ﬂ) is an exact
solution group of Egs.(1), and consequently completes the proof. [

Similar to the ingenious derivation of the conjugate gradient method, we extend a transpose-free variant
of Algorithm 2.1, i.e., the conjugate A-orthogonal residual squared method based on tensor format, for
solving Egs.(1).

Algorithm 2.2. Tensor form of CORS method for solving GCSTEs (1).

1. Input initial guesses X?, Bi € Rixxh A e R, k =0, and set e > 0.
2. Calculate
R =B - Li(X0, -, X0, (& =R,

Rg = BZ - LZ(XO/' o /XS)/ 82 = Rg/

Rg = Bn - LH(XO/' o /XS)/ 82 = R?z/
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—0 = —0
R, = R(l) = LR, ,RY), P(l) = Z)g =Ry,
—0 = —0
Rz = Rg = LZ(R(l)/ e /R2)1 Pg = Dg = Rz;

ﬁgz’@:Ln(ﬂ?,...,gg) pgzz)g:ﬁg,

and
po = R R + Ro, R+ + (R R,
—0 e _0
7= <R1,£1(P(1)’ o lpg» + Ry, 'EZ(P(l)’ Tt /Pg)) +--+ (R, -£n(7)(1), e ,7)2»/
Mk = RS+ IREN + -+ - + IREI.

3. Fork=0,1,2,--- until nx < e do:

— Pk
ak_u-_k/

HE =& — P, (X = XE + a(EF + HD),
HE =8 — Pt | XET = XE + an(ES + HD),

HE =& — P, (X = XK+ (EF + HD),
F =D~ Li(Py, -, P, (R =R - a(@ + 7,
Fy = D5 —aLo(Py, o, P, | R = RE — an(Dh + F5),

Fr=Of —ap Lu(P5, -, PL),  |RET = RE — (D) + F),
Ll(RkHr e ’Rl;l+1) = Rl{” X1 Aqp + REH X App + -+ Rﬁ“ Xy A1,
LR, RET) = RE X Aoy + RET X Ay -+ + RED X, Aoy,

Ln(RkH/ e /R]y(lﬂ) = Rfyﬂ X1 Am + RI{H Xo App + -+ Rl:,ﬂ[ Xn Ann,
—0 —0 —0
Pk+1 = <7€11 Ll (7'2]{*-1/ e /Rﬁ+1)> + <R2/ £2(R]1<+1/ e /RI:[+1)> +oeeet <Rnr Ln(ﬂ]fﬂ/ e /Rﬁ+1)>-
_ Pra
4. Calculate i = o

EN =R+ pHS, (D8 = LR, RS + BT
& =R+ peHy, | D5 = LR R + B

Sk;—l : Rk+1 + Iqu_{k Dl;+1 =/ (ﬂk+1. . ﬂk+1) +ﬁk7_~k
n n ns n n\iM s s n’

P’{H — Z)’{H + ﬁk(ﬂk + [ng’{),

PIEH — DIEH + ﬁk(?dzk + [ng’E),

PR = DI 4 B(FE + P,

Orer = Ry, LIPE - P 4 (R, LoPEH o Py b (R LR L),
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Table 1: Comparison results of Example 3.1.

Algorithms MCG [35] Algorithm 2.1 Algorithm 2.2
[m,m, m, m] IT CPU RES IT CPU RES IT CPU RES

[10,10,10,10] 171  1.5633 9.9249e-08 54  0.6256 7.1313e-08 33  0.3329  2.3007e-08
[20,20,20,20] 648 139178 9.3671e-08 107 3.3791 8.4555e-08 67  1.7091  2.5300e-08
[30,30,30,30] 1434 99.2302 9.7902e-08 157 16.1341 8.5114e-08 98  7.9482  4.5514e-08
[40, 40, 40, 40] t + + 215 64.6975 7.9150e-08 131 33.2806 4.4276e-08

3. Numerical experiments

In this section, we provide some numerical experiments to illustrate the efficiency of the proposed
algorithms here. All codes were written via the tensor toolbox (version 3.2.1) in Matlab 2020b. The
numerical experiments were done with an XPS 7590 with Inter(R) Core(TM) i7-9750H @2.6 GHz and 8 GB
of RAM. To show the superiority of proposed algorithms, we evaluate and compare Algorithms 2.1 and
2.2 against MCG [35] in terms of iterations and computing time. For clarity, we denote the computing
time in seconds, the iteration steps, and the residual norm 7 in Algorithm 2.1 as “CPU", “IT", and “RES",
respectively. The stopping criteria is RES < € := 1077, or the iteration steps exceeds kyay := 3000 with Ky
being the maximum iterations. We denote “t" as the residual that does not yield to the tolerance after
reaching kyax.

Example 3.1. Consider a 4th-order Sylvester tensor equation Eq.(2) corresponding to Eq.(3), and set its
parameters as Eq.(4) withv =3, ¢; =i(i = 1,2,3,4) and B = tenrand(m, m, m, m).

We performed the proposed algorithms and MCG for solving Eq.(2) and recorded the comparison results
in Table 1. Observe from this table that our algorithms outperform MCG both in iterations and computing
time. On the other hand, we can see that the convergence rate of Algorithm 2.2 is about twice Algorithm
2.1, and thus the algorithm is the fastest solver concerning CPU time. We depicted the convergence cures
of all algorithms for the case m = 10 in Fig.1. It shows that the number of iterations corresponding to
MCG is prohibitively more than our algorithms to achieve the required accuracy. This fact implies that our
algorithms are more competitive.

Example 3.2. Consider the system of Sylvester tensor equations

X1 X1 A+ Xo X0 Ap + X3 X3 A1z = By,
X X1 A1 + X3 Xp A + X1 X1 Axz = By, (12)
X3 X1 Azt + X1 Xp Az + Xo X3 Azz = B3,

with its parameters given by

A1 =M+2rN + eye(l1), A1x = eye(ly), A1z = eye(l3),

100
(I +1)2

100
An = eye(ly), A =M +2rN + meye(b), Aps = eye(l3),
Az = eye(ly), Az =eye(lr), A —M+2rN+ﬂe e(I3)
31 = eyell1), Az = eyellz), 133 = (13+1)2y 3),

B, = tenrand(ly,1,,13), i=1,2,3,

where
M = tridiag(-1,2,-1), N = tridiag(0.5, 0, —0.5).
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Figure 1: Convergence curves of Example 3.1 with m = 10.

Table 2: Comparison results of Example 3.2.

10260

Algorithms MCG [35] Algorithm 2.1 Algorithm 2.2

[I1, I, 13] IT CPU RES IT CPU RES IT CPU RES
[3,4,5] 37 0.3106 7.1819e-08 29 0.2265 2.4183e-09 10 0.1389 2.4964e-08
[5,7,9] 141 1.1514 8.3830e-08 71 0.7592 2.8053e-08 54 0.5073 8.6670e-08
[7,10,9] 271 2.1072 9.3842e-08 117 1.2020 6.0249e-08 85 0.8645 6.0355e-08
[10,10,10] 442 4.0603 8.8554e-08 155 1.6497  5.7904e-08 117 1.1648 9.5092e-08
[15,15,15] t t t 696 7.1946 9.6477e-08 535 5.2679 6.0540e-08

In this test, we set the initial guesses as X1 = X, = X3 = tenzeros(I;, I, I3), and r = 0.5. The obtained
numerical results were reported in Table 3 and plotted the convergence curves of all the compared algorithms
forh =7, I, = 10, I3 = 9 in Fig.2. As seen from this table, the number of iteration steps to Algorithm
2.1 does not exceed 11513 + 1 when the acquired accuracy is reached, which coincides with Theorem 2.2.
Also, we can observe that the iterations and computing time corresponding to Algorithms 2.1 and 2.2 are
commonly less than that of MCG, in which Algorithm 2.2 performs at their best. The curves in Fig.2 show
that our algorithms converge much faster than MCG.

Example 3.3. (Lv and Ma, 2020 [35].) Consider the system of Sylvester tensor equations (12) whose
parameters are defined as

A1 = —tril(rand(ly, I1), 1) + diag(1 + diag(rand(L1))), A1z = tril(rand(L, L), 1) + diag(1.5 + diag(rand(1y))),
A1z = triu(rand (I3, I3), 1) + diag(2.5 + diag(rand(l3))), An = tril(rand(ly, I1), 1) + diag(1 + diag(rand(l))),

Agy = tril(rand(ly, I), 1) — diag(2 + diag(rand(ly))), Aas = tril(rand(Is, I3), 1) + diag(3 + diag(rand(I3))),

Az = triu(rand(ly, ), 1) + diag(1 + diag(rand())), Az = triu(rand(lp, 1), 1) + diag(2 + diag(rand(Ip))),
Asz = triu(rand (I3, I3), 1) — diag(1.5 + diag(rand(l3))), B; = tenrand(l;, I, 13),i = 1,2, 3.

We set X = X, = X3 = tenrand(ly, I, I3) to be the initial values, and applied the proposed algorithms
and MCG to deal with Egs.(12). The obtained comparison results were reported in Table 3. We see from this
table that the performance of the proposed algorithms is still better than that of MCG in terms of iterations

and computing time.
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Figure 2: Convergence curves of Example 3.2 withI; =7,1, = 10,13 = 9.

Table 3: Comparison results of Example 3.3.

Algorithms MCG [35] Algorithm 2.1 Algorithm 2.2

[I1, I, 13] IT CPU RES IT CPU RES IT CPU RES
[5,5,5] 254 21077 9.3305e-08 178 14362  5.0525e-08 109 0.9536  3.2942e-08
[5,10,15] 491 3.7641  9.6892e-08 215 22212 8.2790e-08 148 13571  4.6815e-08
[10,10,10] 402 41542  9.0112e-08 249 2.6857  7.596%e-08 160 15032  9.3366e-08
[10,15,10] 1682 129351  9.8441e-08 622 64348  9.4728e-08 454 4.0409  8.4176e-08
[15,15,15] T t t 1745  18.8484  9.6751e-08 1171  10.1202  8.2844e-08

In the following example, we test the efficiency of Algorithms 2.1 and 2.2 applied to color image
restoration problems, and compare them numerically with MCG. Color image, denoted by X, is a tensor of
order m X n X 3, and each of its frames is a gray image consisting of m X n pixel values in the range [0, d].
The parameter d = 255 denotes the maximum possible pixel value. In this test, we generate a blurred and
noisy-free color image 8B by

XX1A1 +XX2A2=B, (13)

where X e R™"x3 represents the original image, and A;, A, are the burring matrices of appropriate
dimensions. Denote X/soreq as the restored color image. We evaluate the performance of all algorithms by
the peak signal-to-noise ratio (PSNR) in decibels (dB):

3mnd?

PSNR (X) =10 10glo(m

),

and compute the relative error:
lX = Xiestoredll

RRE (X) =
[1X1]
Example 3.4. In this example, we test the popular color image ‘Lena’ of size 256 X 256 X 3, i.e., X in Eq.(13),
and the blurring matrices A; = Ay = F® G € R%%*2% [40, 41], where F = ( fi(jl))ls,-,jglé and G = (gg))lsi,jslé are
the Toeplitz matrices of dimension 256 x 256 with their entries given by
L exp(— G- j)2 —1
aS) ={s\V2n 202 25—17 .
0, otherwise, 0, otherwise.

) li=jl<r, 49 = li-jl<s,
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Here we depict the original and the blurred and noisy-free images in Fig.3 and setr =s =3 and o = 1.

We implemented all the compared algorithms for solving Eq.(13) and displayed the restored images
after executing 20 iterations in Fig.4. From this figure, we can observe that the proposed algorithms are
able to restore the color image with higher quality than that of MCG. On the other hand, the performance
of Algorithm 2.2 is slightly better than Algorithm 2.1.

Figure 3: Left the original ‘Lena’ image. Right the blurred and noisy-free image.

Figure 4: Restored images after executing 20 iterations for all the compared algorithms. Left MCG with PSNR(X) = 32.9795
and RRE(X) = 1.8134e-02. Middle Algorithm 2.1 with PSNR(X) = 34.3291 and RRE(X) = 7.6577e—03. Right Algorithm 2.2 with
PSNR(X) = 34.9094 and RRE(X) = 2.5198¢—03.

4. Conclusion

In this paper, we focus mainly on the iterative solutions of generalized coupled Sylvester tensor equa-
tions, one of whose reduced version applies to color image restoration. We present the biconjugate A-
orthogonal residual method in its tensor form for solving the tensor equations. The theoretical analysis
illustrates that the mentioned algorithm converges to the exact solution group in the absence of round-off
errors at most finite steps. To further improve its performance, we develop a transpose-free variant of
the BiCOR_BTF, i.e., the tensor form of the CORS method to solve the tensor equations. The numerical
results, including when the proposed algorithms are tested with some randomly generated data and a color
image restoration problem, illustrating the superiority of our algorithms compared with MCG in terms of
iterations and computing time.
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