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Abstract. The current article is used to investigate the Hyers-Ulam stability (HUS) of Hadamard stochastic
fractional differential equations (HSFDE) by using a version of some fixed point theorem (FPT), a technical
lemma and some classical stochastic calculus tools. To show the interest of our results, we present two
examples. In this manner, we generalize some recent interesting results.

1. Introduction

The Hadamard fractional derivatives (HFD) explored by J. Hadamard in 1892 (see [15]). The kernel
of the integrand in the definition of fractional Hadamard derivative includes a logarithmic function with
arbitrary exponent unlike the Riemann-Liouville fractional derivatives.

The field of fractional Hadamard differential equations has attracted much attention by many scientists.
Numerous varieties of fractional Hadamard differential equations have been the subject of thorough study
in the literature (see [1, 2, 6, 7, 9, 10, 12, 16–18, 20–22, 24]), including stability theory and associated issues.

Stochastic fractional differential equations (SFDE) are a powerful tool used to model complex real-world
phenomena. For recent results on the SFDE, we refer the reader to some works (see [5, 11, 13, 14, 19, 25]).
The stability analysis (SA) is a qualitative theory of differential equations. Then, the stability analysis
has received necessary attention in various research domains due to their applications. In particular,
existence and uniqueness results of solutions of SFDE have obtained a great perusal (see [2, 11]). Many
mathematicians have studied the HUS and its varied applications in various deterministic and SFDE. For
more details on this axis, see [3, 4, 13, 14, 19, 23].

In the literature, there is a few work on the HUS of HSFDE. In [8], the authors have investigated the
HUS of Caputo-HSFDE using the fixed point theorem. In this sense, our paper extend the work in [8] on
the case of HFD. The main advantages of our papers are as follows:
(i) investigate the HUS of HSFDE using the FPT.
(ii) generalize the work in [8].

The form of the paper are as follows: Section 2 is devoted to the basic notations and notions of HFD.
In section 3, we show the HUS of HFSDE. In Section 4, we give two theoretical examples to illustrate our
results. Section 5 is used to conclude our work.
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2. Basic notations

We consider a closed bounded interval Ia = [1, a], a > 1. Let {Ω,F ,Fa,P}, where Fa = {Fκ}κ∈Ia , be a
complete probability space and W(κ) is a standard Brownian motion.

For each κ ∈ Ia, we denote by Xκ = L2(Ω,Fκ,P) the family of all Fκ-measurable and mean square
integrable functions υ = (υ1, · · · , υd)T : Ω→ Rd endowed with the following norm:

∥υ∥ms =

√√√ d∑
l=1

E
(
|υl|

2
)
=

√
E ∥υ∥2.

Definition 2.1. [17] For some function α, the Hadamard fractional integral of order ι is given by

Iια(κ) =
1
Γ(ι)

∫ κ

1

(
ln
κ

ν

)ι−1 α(ν)
ν

dν, ι > 0.

Definition 2.2. [17] The HFD with order ι ∈ (0, 1) for a function α : [1,∞)→ R is given by

HDι1α(κ) =
1

Γ(1 − ι)

(
κ

d
dκ

) ∫ κ

1

(
ln
κ

ν

)−ι α(ν)
ν

dν.

Consider the HSFDE:

HDι1ϱ(κ) = ζ1
(
κ, ϱ(κ)

)
+ ζ2

(
κ, ϱ(κ)

) dW(κ)
dκ

, (1)

where the initial condition is I1−ιϱ(1) = ϕ, for ϕ ∈ Rd and some measurable functions ζ1, ζ2 defined by

ζ1, ζ2 : Ia ×R
d
−→ Rd.

Let us introduce the following assumptions that will be very useful later:

H1: There existsK > 0:

∥ζ1(κ, r1) − ζ1(κ, r2)∥ + ∥ζ2(κ, r1) − ζ2(κ, r2)∥ ≤ K ∥r1 − r2∥ ,

for all (κ, r1, r2) ∈ Ia ×Rd
×Rd.

H2: On the interval Ia, the functions ζ1(·, 0), ζ2(·, 0) satisfy:∫ a

1
∥ζ1(l, 0)∥2 dl < ∞, ∥ζ2(·, 0)∥∞ = ess sup

l∈Ia

∥ζ2(l, 0)∥ < ∞.

Theorem 2.3. [10] Given (C, ϑ) as a complete metric space and a contraction Q : C → C (with s ∈ [0, 1)). Assume
that 1 ∈ T , ϑ(1,Q(1)) ≤ σ and σ > 0. So, there is a unique ξ ∈ T satisfies Q(ξ) = ξ. Moreover, we have the
following identity:

ϑ(1, ξ) ≤
σ

1 − s
.

3. Stability results

Let H2(Ia) be the family of all the processes ω which are Fa-adapted and measurable satisfying
sup
ℓ∈Ia

∥∥∥(lnℓ)1−ιω(ℓ)
∥∥∥

ms < ∞. Let ∥·∥H2 be the norm onH2(Ia) given by:

∥ω∥H2 = sup
ℓ∈Ia

∥∥∥(lnℓ)1−ιω(ℓ)
∥∥∥

ms .
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Consequently, (H2(Ia), ∥·∥H2 ) is a Banach space. For ϕ ∈ X1, consider Rϕ : H2(Ia) → H2(Ia) the operator
defined as follows:

Rϕy(κ) = (lnκ)ι−1 ϕ

Γ(ι)
+

1
Γ(ι)

∫ κ

1

(
ln
κ

ϑ

)ι−1 ζ1(ϑ, y(ϑ))
ϑ

dϑ (2)

+
1
Γ(ι)

∫ κ

1

(
ln
κ

ϑ

)ι−1 ζ2(ϑ, y(ϑ))
ϑ

dW(ϑ), ∀y ∈H2(Ia).

Lemma 3.1. The operator Rϕ is well defined for all ϕ ∈ X1.

Proof. Let y ∈H2(Ia). Using (2), we can derive that:

∥∥∥(lnκ)1−ι
Rϕy(κ)

∥∥∥2

ms ≤ 3

∥∥∥ϕ∥∥∥2

ms

Γ(ι)2 +
3
Γ(ι)2E

∥∥∥∥∥∥
∫ κ

1
(lnκ)1−ι

(
ln
κ

δ

)ι−1 ζ1(δ, y(δ))
δ

dδ

∥∥∥∥∥∥2
+

3
Γ(ι)2E

∥∥∥∥∥∥
∫ κ

1
(lnκ)1−ι

(
ln
κ

δ

)ι−1 ζ2(δ, y(δ))
δ

dW(δ)

∥∥∥∥∥∥2 . (3)

Now, applying the Cauchy-Schwarz inequality and Fubini’s theorem we get:

E

∥∥∥∥∥∥
∫ κ

1
(lnκ)1−ι (lnϑ)1−ι (lnϑ)ι−1

(
ln
κ

ϑ

)ι−1 ζ1(ϑ, y(ϑ))
ϑ

dϑ

∥∥∥∥∥∥2 (4)

≤


∫ κ

1
(lnκ)2−2ι (lnϑ)2ι−2

(
lnκϑ

)2ι−2

ϑ
dϑ

E
(∫ κ

1

∥∥∥(lnϑ)1−ι ζ1(ϑ, y(ϑ))
∥∥∥2

dϑ
)
.

Let us denote by T1(κ) the first term of the second member of the inequality (4):

T1(κ) =


∫ κ

1
(lnκ)2−2ι (lnϑ)2ι−2

(
lnκϑ

)2ι−2

ϑ
dϑ

 .
Thanks to the change of variable u = (lnϑ)

(lnκ) , for κ > 1, we get:

T1(κ) = (lnκ)2ι−1
(∫ 1

0
u2ι−2(1 − u)2ι−2du

)
≤ (lna)2ι−1 B(2ι − 1, 2ι − 1), (5)

where B(·, ·) is the beta function. Now using hypothesisH1, for the second term of the second member of
the inequality (4), we have:∥∥∥(lnl)1−ι ζ1(l, y(l))

∥∥∥2
≤ 2K2

∥∥∥(lnl)1−ι y(l)
∥∥∥2
+ 2 (lnl)2−2ι

∥ζ1(l, 0)∥2 .

Therefore, we can deduce that:

E

(∫ κ

1

∥∥∥(lnl)1−ι ζ1(l, y(l))
∥∥∥2

dl
)
≤ 2K2 (a − 1)

∥∥∥y
∥∥∥
H2 + 2 (lna)2−2ι

∫ a

1
∥ζ1(l, 0)∥2 dl. (6)

Thus, using (4), (5) and (6), we have:

E

∥∥∥∥∥∥
∫ κ

1
(lnκ)1−ι (lnϑ)1−ι (lnϑ)ι−1

(
ln
κ

ϑ

)ι−1 ζ1(ϑ, y(ϑ))
ϑ

dϑ

∥∥∥∥∥∥2 (7)

≤ 2 (lna)2ι−1 B(2ι − 1, 2ι − 1)
(
K

2 (a − 1)
∥∥∥y

∥∥∥
H2 + (lna)2−2ι

∫ a

1
∥ζ1(l, 0)∥2 dl

)
.
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Applying the Itô’s isometry formula for the third term of the second member of inequality (3), we obtain:

E

∥∥∥∥∥∥
∫ κ

1
(lnκ)1−ι (lnϑ)1−ι (lnϑ)ι−1

(
ln
κ

ϑ

)ι−1 ζ2(ϑ, y(ϑ))
ϑ

dW(ϑ)

∥∥∥∥∥∥2
= E


∫ κ

1
(lnκ)2−2ι (lnϑ)2ι−2

(
ln
κ

ϑ

)2ι−2
∥∥∥(lnϑ)1−ι ζ2(ϑ, y(ϑ))

∥∥∥2

ϑ2 dϑ

 . (8)

Moreover, applying hypothesisH1 for inequality (8), we obtain:∥∥∥(lnϑ)1−ι ζ2(ϑ, y(ϑ))
∥∥∥2
≤ 2K2

∥∥∥(lnϑ)1−ι y(ϑ)
∥∥∥2
+ 2 (lnϑ)2−2ι

∥ζ2(·, 0)∥2∞ . (9)

Therefore, plugging (9) into (8), it yields that:

E

∥∥∥∥∥∥
∫ κ

1
(lnκ)1−ι (lnϑ)1−ι (lnϑ)ι−1

(
ln
κ

ϑ

)ι−1 ζ2(ϑ, y(ϑ))
ϑ

dW(ϑ)

∥∥∥∥∥∥2
≤ 2K2

∥∥∥y
∥∥∥
H2

(∫ κ

1
(lnκ)2−2ι (lnϑ)2ι−2

(
ln
κ

ϑ

)2ι−2 dϑ
ϑ2

)
+2 ∥ζ2(·, 0)∥2∞

(∫ κ

1
(lnκ)2−2ι

(
ln
κ

ϑ

)2ι−2 dϑ
ϑ2

)
.

It is not hard to see that: (∫ κ

1
(lnκ)2−2ι (lnϑ)2ι−2

(
ln
κ

ϑ

)2ι−2 dϑ
ϑ2

)
≤ T1(κ).

Moreover, we have:∫ κ

1
(lnκ)2−2ι

(
ln
κ

ϑ

)2ι−2 1
ϑ2 dϑ ≤ (lna)2−2ι

∫ κ

1

(
ln
κ

ϑ

)2ι−2 1
ϑ

dϑ,

≤
(lna)
2ι − 1

.

Hence, we can easily deduce that:

E

∥∥∥∥∥∥
∫ κ

1
(lnκ)1−ι (lnδ)1−ι (lnδ)ι−1

(
ln
κ

δ

)ι−1 ζ2(δ, y(δ))
δ

dW(δ)

∥∥∥∥∥∥2
≤ 2K2 (lna)2ι−1 B (2ι − 1, 2ι − 1)

∥∥∥y
∥∥∥
H2 + 2

(lna)
2ι − 1

∥ζ2(·, 0)∥2∞ . (10)

Therefore, by (3), (7) and (10), we can prove that the operator Rϕ is well defined.

Let us introduce the following notation:

U(ζ,κ, δ, z(δ)) =
1
Γ(ι)

(
ln
κ

δ

)ι−1 ζ(δ, z(δ))
δ

, ∀δ ∈ [1,κ].

Definition 3.2. Equation (1) is Hyers-Ulam Stable with respect to ϵ (HUSwrϵ), if there is a number M > 0
satisfying: for each solution z ∈H2(Ia) of the system (11), for each ϵ > 0 and for all κ ∈ Ia, we have

E
∥∥∥∥(lnκ)1−ι

(
z (κ) − (lnκ)ι−1 ϕ

Γ(ι) −
(∫ κ

1 U(ζ1,κ, ϑ, z(ϑ))dϑ +
∫ κ

1 U(ζ2,κ, ϑ, z(ϑ))dW(ϑ)
))∥∥∥∥2
≤ ϵ,

I1−ιz(1) = ϕ, (initial condition),

(11)

there exists a solution ϱ ∈H2(Ia) of (1), with initial condition I1−ιϱ(1) = ϕ, such that:

E
∥∥∥(lnκ)1−ι (z(κ) − ϱ(κ)

)∥∥∥2
≤ Mϵ, ∀κ ∈ Ia.
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We now state the following Lemma which plays crucial role in this paper.

Lemma 3.3. For β ∈ (0, 1), there existsMβ > 0 such that, for all µ > 0,

t1−βe−µt
∫ t

0
(t − s)β−1sβ−1eµsds ≤

1
µβ

(
Mβ +

Γ(β)
2β−1

)
, ∀t ≥ 0.

Proof. We start by the following decomposition:

J(t) = t1−βe−µt
∫ t

0
(t − s)β−1sβ−1eµsds = J1(t) +J2(t),

where J1 and J2 are defined by:

J1(t) = t1−βe−µt
∫ t/2

0
(t − s)β−1sβ−1eµsds,

J2(t) = t1−βe−µt
∫ t

t/2
(t − s)β−1sβ−1eµsds.

1. Estimation of J1(t): For 0 ≤ s ≤ t/2, we have (t − s)β−1
≤ (t/2)β−1. Then,

J1(t) ≤
e−µt

2β−1

∫ t/2

0
sβ−1eµsds ≤

e−µt

2β−1

∫ t

0
sβ−1eµsds.

So, we can establish that: for all t > 0∫ t

0
sβ−1eµsds =

∑
τ≥0

µτ

τ!

∫ t

0
sτ+β−1ds =

∑
τ≥0

µτ

τ!
tτ+β

τ + β
,

=
tβ−1

µ

∑
τ≥0

µτ+1tτ+1

τ!(τ + β)
=

tβ−1

µ

∑
τ≥0

(µt)τ+1

(τ + 1)!
(
τ + 1
τ + β

),

≤
1
β

tβ−1

µ

∑
τ≥0

(µt)τ+1

(τ + 1)!
.

It’s easy to show that:

1
β

tβ−1

µ

∑
τ≥0

(µt)τ+1

(τ + 1)!
=

1
β

tβ−1

µ

(
eµt
− 1

)
=

1
β

tβ
(

eµt
− 1
µt

)
,

=
1
βµβ

(
µt

)β ( eµt
− 1
µt

)
.

Hence, we obtain:

J1(t) ≤
1

µββ2β−1

(
(µt)β

1 − e−µt

µt

)
≤

1
µββ2β−1 H

(
µt

)
,

where the positive function H is defined by:

H(l) = lβ
1 − e−l

l
.

Consequently, we can conclude that:

J1(t) ≤
Mβ

µβ
, (12)

where the constantMβ is given by:

Mβ =
1
β2β−1 sup

x>0
(H(x)) . (13)



A. Ben Makhlouf et al. / Filomat 37:30 (2023), 10219–10228 10224

2. Estimation of J2(t):

J2(t) = t1−βe−µt
∫ t

t
2

(t − s)β−1 sβ−1eµsds,

≤

( t
2

)β−1
t1−βe−µt

∫ t

t
2

(t − s)β−1eµsds.

According to the change of variable l = t − s, we get:

J2(t) ≤
1

2β−1

∫ t
2

0
lβ−1e−µldl ≤

Γ(β)
2β−1µβ

. (14)

Therefore, by (12) and (14), we obtain:

J(t) ≤
1
µβ

(
Mβ +

Γ(β)
2β−1

)
.

Let a > 1 and µ > 0 such that:

cµ =
2aK2

µ2ι−1Γ(ι)2

(
M2ι−1 +

Γ(2ι − 1)
22ι−2

)
< 1,

where the constantM2ι−1 is given as in (13). Then, we define a norm ∥·∥µ on the spaceH2(Ia) by:

∥∥∥ϱ∥∥∥
µ
=

√√√√√
sup
κ∈Ia

E
(∥∥∥(lnκ)1−ι ϱ(κ)

∥∥∥2
)

κµ
, ∀ϱ ∈H2(Ia). (15)

It is not hard to show that ∥·∥H2 and ∥·∥µ are equivalent. Hence, (H2(Ia), ∥·∥µ) is a Banach space.

Proposition 3.4. The operator Rϕ :H2(Ia)→H2(Ia) defined in (2) is contractive. Moreover, we have∥∥∥Rϕu − Rϕv
∥∥∥
µ
≤
√

cµ ∥u − v∥µ , ∀u, v ∈H2(Ia).

Proof. Let u, v ∈H2(Ia), by (2), we have ∀κ ∈ Ia,

E
(∥∥∥(lnκ)1−ι

Rϕu(κ) − (lnκ)1−ι
Rϕv(κ)

∥∥∥2
)

≤
2
Γ(ι)2E

∥∥∥∥∥∥
∫ κ

1
(lnκ)1−ι

(
ln
κ

ϑ

)ι−1 (ζ1(ϑ,u(ϑ)) − ζ1(ϑ, v(ϑ)))
ϑ

dϑ

∥∥∥∥∥∥2 ,
+

2
Γ(ι)2E

∥∥∥∥∥∥
∫ κ

1
(lnκ)1−ι

(
ln
κ

ϑ

)ι−1 (ζ2(ϑ,u(ϑ)) − ζ2(ϑ, v(ϑ)))
ϑ

dW(ϑ)

∥∥∥∥∥∥2 .
Using Cauchy-Schwarz inequality and Fubini’s Theorem, we have:

E


∥∥∥∥∥∥
∫ κ

1
(lnκ)1−ι (lnω)ι−1

(
ln
κ

ω

)ι−1 (lnω)1−ι (ζ1(ω,u(ω)) − ζ1(ω, v(ω)))
ω

dω

∥∥∥∥∥∥
2

≤ K
2(κ − 1)

∫ κ

1
(lnκ)2−2ι (lnϑ)2ι−2

(
ln
κ

ϑ

)2ι−2 E
(∥∥∥(lnϑ)1−ι (u(ϑ) − v(ϑ))

∥∥∥2
)

ϑ2 dϑ.
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Moreover, by Itô isometry formula and Fubini’s Theorem, we get:

E


∥∥∥∥∥∥
∫ κ

1
(lnκ)1−ι (lnδ)ι−1

(
ln
κ

δ

)ι−1 (lnδ)1−ι (ζ2(δ,u(δ)) − ζ2(δ, v(δ)))
δ

dW(δ)

∥∥∥∥∥∥
2

= E


∫ κ

1
(lnκ)2−2ι (lnδ)2ι−2

(
ln
κ

δ

)2ι−2
∥∥∥(lnδ)1−ι (ζ2(δ,u(δ)) − ζ2(δ, v(δ)))

∥∥∥2

δ2 dδ

 ,
≤ K

2
∫ κ

1
(lnκ)2−2ι (lnϑ)2ι−2

(
ln
κ

ϑ

)2ι−2 E
(∥∥∥(lnϑ)1−ι (u(ϑ) − v(ϑ))

∥∥∥2
)

ϑ2 dϑ.

Thus,

E
(∥∥∥(lnκ)1−ι

Rϕu(κ) − (lnκ)1−ι
Rϕv(κ)

∥∥∥2
)

≤
2K2a
Γ(ι)2

∫ κ

1
(lnκ)2−2ι (lnϑ)2ι−2

(
lnκϑ

)2ι−2

ϑ
E

(∥∥∥(lnϑ)1−ι (u(ϑ) − v(ϑ))
∥∥∥2

)
dϑ,

≤
2K2a
Γ(ι)2 ∥u − v∥2µ

∫ κ

1
(lnκ)2−2ι (lnϑ)2ι−2

(
lnκϑ

)2ι−2

ϑ
ϑµdϑ. (16)

Now, let:

ℏ(t) =
∫ t

1
(lnt)2−2ι (lnϑ)2ι−2 (lnt − lnϑ)2ι−2 ϑµ

dϑ
ϑ
.

Thanks to the change of variable u = lnϑ, we can derive that

ℏ(t) = (lnt)2−2ι
∫ lnt

0
u2ι−2 (lnt − u)2ι−2 eµudu.

Using Lemma 3.3, we get:

ℏ(t) ≤
tµ

µ2ι−1

(
M2ι−1 +

Γ(2ι − 1)
22ι−2

)
.

Then by (16), it is easy to deduce that (after some algebraic manipulations)∥∥∥Rϕu − Rϕv
∥∥∥
µ
≤
√

cµ ∥u − v∥µ .

Then, the operator Rϕ is contractive.

Theorem 3.5. Assume thatH1-H2 hold. Then, the HSFDE (1) is HUSwrϵ on Ia.

Proof. It follows from (11) that: for all κ ∈ Ia

E
∥∥∥∥(lnκ)1−ι

(
z(κ) − Rϕz(κ)

)∥∥∥∥2

κµ
≤ ϵ.

Then, using the definition of the norm ∥·∥µ given in (15), we have:∥∥∥Rϕz − z
∥∥∥
µ
≤
√
ϵ.

By Theorem 2.3 and Proposition 3.4, there is a unique solution ϱ such that I1−ιϱ(1) = I1−ιz(1) and:∥∥∥ϱ − z
∥∥∥
µ
≤

√
ϵ

1 −
√

cµ
.
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Consequently, there exists C > 0 such that:

E
∥∥∥(lnκ)1−ι (z(κ) − ϱ(κ)

)∥∥∥2
≤ Cϵ, ∀κ ∈ Ia.

4. Illustrative examples

In this section, we illustrate two examples to prove our results.
Example 1: Let the following HSFDE, for κ ∈ [1, 5] and for each ϵ > 0, given by

HD
2
3
1 ϱ(κ) = ζ1

(
κ, ϱ(κ)

)
+ ζ2

(
κ, ϱ(κ)

) dW(κ)
dκ ,

E
∥∥∥∥ (lnκ)1−ι

(
z(κ) − (lnκ)ι−1 ϕ

Γ(ι)(∫ κ
1 U(ζ1,κ, s, z(s))ds +

∫ κ
1 U(ζ2,κ, s, z(s))dW(s)

) )∥∥∥∥2
≤ ϵ,

I1−ιz(1) = ϕ,

(17)

where

ξ(κ) ∈ H2([1, 5],R)
ζ1(κ, ξ(κ)) = (arctan(ξ(κ)) + cos(ξ(κ)))
ζ2(κ, ξ(κ)) = κ cos(ξ(κ)).

We will prove that equation (17) is HUSwrϵ.
Let (κ, ξ1, ξ2) ∈ [1, 5] ×Rp

×Rp, thus

∥ζ1(κ, ξ1) − ζ1(κ, ξ2)∥ ≤ 2 ∥ξ1 − ξ2∥ ,

and

∥ζ2(κ, ξ1) − ζ2(κ, ξ2)∥ ≤ 5 ∥ξ1 − ξ2∥ .

Hence, assumptionH1 fulfilled. Moreover,

∥ζ2(·, 0)∥∞ = ess sup
κ∈[1,5]

∥ζ2(κ, 0)∥ ≤ 5 and
∫ 5

1
∥ζ1(κ, 0)∥2 dκ ≤ 5.

Thus, AssumptionsH1-H2 fulfilled. Hence, applying Theorem 3.5, Equation (17) is HUSwrϵ on [1, 5].
Example 2:

Let the following HSFDE, for κ ∈ [1, 4] and for each ϵ > 0, given by

HD
3
4
1 ϱ(κ) = ζ1

(
κ, ϱ(κ)

)
+ ζ2

(
κ, ϱ(κ)

) dW(κ)
dκ ,

E
∥∥∥∥(lnκ)1−ι

(
z(κ) − (lnκ)ι−1 ϕ

Γ(ι)

−

(∫ κ
1 U(ζ1,κ, s, z(s))ds +

∫ κ
1 U(ζ2,κ, s, z(s))dW(s)

) )∥∥∥∥2
≤ ϵ,

I1−ιz(1) = ϕ,

(18)
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where

ξ(κ) ∈ H2([1, 4],R)

ζ1(κ, ξ(κ)) =
e−κ

1 + e−κ
(1 + cos ξ(κ))

ζ2(κ, ξ(κ)) =
1 + ξ(κ)
1 + κ2 .

We will prove that equation (18) is HUSwrϵ.
Let (κ, ξ1, ξ2) ∈ [1, 4] ×Rp

×Rp, then

∥ζ1(κ, ξ1) − ζ1(κ, ξ2)∥ ≤ ∥ξ1 − ξ2∥ and ∥ζ2(κ, ξ1) − ζ2(κ, ξ2)∥ ≤ ∥ξ1 − ξ2∥ .

Thus, AssumptionH1 hold. On the other hand,

∥ζ2(·, 0)∥∞ = ess sup
κ∈[1,4]

∥ζ2(κ, 0)∥ ≤ 1 and
∫ 4

1
∥ζ1(κ, 0)∥2dκ ≤ ln

(
1 + e−1

)
.

Then, AssumptionsH1-H2 fulfilled. Hence, applying Theorem 3.5, Equation (18) is HUSwrϵ on [1, 4].
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Figure 1: Trajectory simulation of solutions of System (17)
on the interval [1,5].
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Figure 2: Trajectory simulation of solutions of System (18)
on the interval [1,4].

Using MATLAB, we conduct a simulation based on Euler-Maruyama scheme with step size 10−8 for
both examples. Then, in Figure 1 (respectively Figure 2) we give the simulation trajectory (lnκ)1−ιϱ(κ) and
(lnκ)1−ιz(κ) of System (17) (respectively System(18)) with the same initial condition I1−ιϱ(1) = I1−ιz(1) = 0.1
(respectively I1−ιϱ(1) = I1−ιz(1) = 0.15). Consequently, we can see from Figure 1, 2 that the solution
trajectory of the inequations (11) almost coincides with that of System (17) (respectively (18)). It follows
that the distance between (lnκ)1−ιϱ(κ) and (lnκ)1−ιz(κ) is less than a constant which shows that System (17)
and (18) are HUSwrϵ according to Definition 3.2.

5. Conclusion

We managed to utilize a version of some FPT and some classical stochastic calculus tools to present
stability results for HSFDE. Moreover, we show that under some conditions, there are functions satisfying
the equation roughly (in some way) that are close (in the HUS sense) to the exact solution.
In future work, we plan to extend these findings by generalizing our results to include Hadamard fractional
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stochastic differential equations with time delay. This expansion will enhance our understanding of the
dynamics and behavior of these equations and broaden the practical applications of our research.
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