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Abstract. The atom-bond sum-connectivity (ABS) index is a recently introduced variant of three earlier

much-studied graph-based molecular descriptors: Randi¢, atom-bond connectivity, and sum-connectivity

indices. The general atom-bond sum-connectivity index is defined as ABS,(G) = ¥.,ex(q) (d’;:f’jijz )a, where

a is a real number. In this paper, we present some upper and lower bounds on the general atom-bond
sum-connectivity index in terms of graph parameters and other graph indices.

1. Introduction

Let G = (V,E) be a simple connected graph with vertex set V = {vy,1y,...,7,} and edge set E(G). Let
deg(v) =dy,and A =dy 2 dp, > --- > d, > 0, be the degree sequence of G. A vertex v is called isolated if
d, = 0. We refer the readers to consult books [5, 6] for graph-theoretical notation and terminology which is
used without being defined.

A number, representing a molecular structure in graph-theoretical terms via the molecular graph, is
called a topological index. In other words, a topological index is a function that associates each molecular
graph with a real value. Topological indices are mainly used to unveil and model the dependence of physic-
ochemical properties on the molecular structure since many of them correlate well with some molecular
properties.

The studies on degree-based graph invariants started in the early 1970s, when Gutman and Trinajsti¢
introduced the first and second Zagreb indices in [9]. These invariants are entirely dependent on the vertex
degree as follows.

Mi(G) = ) (@ +dy)

uveE(G)

and

MaG) = ) (o).

uveE(G)
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The Randi¢ index of a graph G is defined in [14] as

R(G) = Z dld.

uveE(G)

So far, many modifications of the Randi¢ index have been proposed. Here, we mention two topological
indices which have been introduced by taking into consideration the definition of the Randi¢ index, namely
the “sum-connectivity (x) index” [16] and the “atom-bond connectivity (ABC) index” [7]. These indices
have the following definitions for a graph G:

0= ¥, =

uveE(G)
and
d,+d, -2
ABC(G) = Z \ /T‘
uveE(G) ure

By utilizing the definitions of the ABC and x indices, a novel topological index the atom-bond sum-
connectivity (ABS) index has recently been proposed in [2]. For a graph G, this index is defined as

d,+d,—2
ABS(G) = Z «/ﬁ-

uveE(G)
Another remarkable topological descriptor is the harmonic index, defined in [8] as

2
H(G) = i
uveE(G) ¥ v

The general Platt index [1] and the general sum-connectivity index [17] for the graph G are defined by

PL(G) = ) (dy+dy—2)

uveE(G)

and

K@= Y, @+d)

uveE(G)

Similarly, the general atom-bond sum-connectivity (ABS,) is defined in [3] as

ABS4(G) = Z (M) ]

uveE(G) du +do

In paper [17] the authors have obtained some basic properties for the general sum-connectivity index,
while in [2] graphs having extreme values of the ABS index among (molecular) trees and general graphs
with a fixed order have been characterized. Alraqad et al. [4] characterized the graphs having the maximal
ABS, value for a = } among trees with a fixed order and/or the number of pendent vertices. Recently, in
[12], the minimum ABS; index of trees with a given number of pendent vertices has been presented. In this

2
paper, we obtain new inequalities for ABS,,.



A. Jahanbani, I. RedZepovi¢ / Filomat 37:30 (2023), 10161-10169 10163

2. Auxiliary results
In this section, we recall some known results that will be used in the sequel.

Lemma 2.1. [13] For two positive real number sequences x1, ..., Xn—1 and y1, ..., Yyn—1 and o € R—(=1,0), we have

-1 a+1
”1x+1 Z1x1)

i=1 yfa ; (Zln=_1 yl)

1)

When -1 < a < 0 the opposite inequality in (1) holds. Equality holds if and only ifa =1, a = 0, or =+ xl = yz =...=

Xn-1

Yn-1"

We will use the following particular case of Jensen’s inequality.

Lemma 2.2. If f is a convex function in an interval [ and ay,ay, ..., a, € I, then

f(al +{Il2+"'+llm)
m

1
< —(f@a) + -+ + f(am).
m
The following result appears in [15].
Theorem 2.3. If @ > 1is an integer and 0 < xq,xy,...,x <k —1, then

(k-1 “Zk"x _[Z i] .

i=1 i=1

In [11], the following lemma is proved.
Lemma24. Let0<a<x<Aand0<b<y, <Bforl<i<n,then

Bl A2 Blg)

i=1

3. Main results

In this section, we obtain several new bounds for the general atom-bond sum-connectivity index and
characterize graphs for which these bounds are best possible.

First, we present a relationship between the general atom-bond sum-connectivity index, the general
sum-connectivity index, and the general Platt index of graphs.

Theorem 3.1. Let G be a graph with t isolated edges and 0 < a < 1.
1-a
ABS(G) < Plo(G) (1= (G) - t)
The equality in this bound is attained for the union of any regular or biregular graph and t isolated edges; if G is the

union of a connected graph and t isolated edges, then the equality in this bound is attained if and only if G is the union
of any regular or bireqular connected graph and t isolated edges.
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Proof. Since ABS,(P;) = 0 and x.(P,) = 2¢, it suffices to prove the theorem for the case t = 0, i.e.,, when G is
a graph without isolated edges. Hence, A > 2.
Holder’s inequality gives:

(du +d, - 2)“

ABS,(G) = Z -

uveE(G)

a 1 \1-a
1 1 T-a
< (A +dy — 2)%)F (_a) ]
[W’;(‘G) J [quZE(‘G) (du + do)

a 1-a
=| Y duvdo-2| | ) @utdy)T
uveE(G) uveE(G)

= PL(@)x = (0™,

This implies the result stated in the theorem.
If G is a regular or biregular graph with m edges, then:

1—a_ (A+6—2)a

1-a _ _ a e
Plo(G)x = (G)'™* = (A + 6 — 2)m)* ((A + )P m) (A +0)°

m = ABS4(G).

Assume that G is connected and that the equality in the first inequality is attained. [J

The following results provide inequalities relating to the general atom-bond sum-connectivity index
and the general sum-connectivity index.

Theorem 3.2. If G is a graph with m edges and t isolated edges and o € R, then:
ABS(G) < (m—t=1)* (x-a(G) = 1), if a >0,
ABS4(G) = (m—1)" x-a(G), if a <0 and t = 0.

The equality in the first bound is attained if and only if G is the union of a star graph and t isolated edges. The equality
in the second bound is attained if and only if G is a star graph.

Proof. Since ABS,(P;) = 0 and x.(P7) = 2%, it suffices to prove the theorem for the case t = 0, i.e., when G is
a graph without isolated edges. Hence, A > 2.
In any graph, the inequality d,, + d, < m + 1 holds for every uv € E(G). If a > 0, then:

d,+d, -2\
dy+d,

1
dy+dy

(du +d,-2

dy+dy, —2)* <(m-1)",

d, +d,

The last inequality leads to the desired bound.

If & < 0, then we obtain the converse inequality.

If G is a star graph, then d,, + d, = m + 1 for every uv € E(G), and the equality is attained for every a.

If equality is attained in some inequality, the previous argument gives that d, + d, = m + 1 for every
uv € E(G). In particular, G is a connected graph. If m = 2, then {d,,, d,} = {1, 2} for every uv € E(G), and so,
G = P3 = S3. Assume now m > 3. Assume that {d,,d,} # {1, m} for some uv € E(G). Since d,, +d, = m+1, we
have 2 <d,,d, < m -1, and so, there exist two different vertices x, y € V(G)/{u, v} with ux, vy € E(G). Since
vy is not incident on u# and x, we have d, + d, < m + 1, a contradiction. Hence, {d,,d,} = {1, m} for every
uv € E(G), and so, G is a star graph. [

) < (m=1)" x-a(G).
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In the next result, we give a relation between the general atom-bond sum-connectivity index, the general
sum-connectivity index, and the harmonic index of a graph.

Theorem 3.3. Let G be a simple connected graph with n vertices and m edges. Then, for any o > 2,

1 a=-2 1 a=-2
(m + 4x_(G) — 2H(G)) (1 - 5) < ABS,(G) < (m + 4x»(G) — 2H(G)) (1 - Z) .

Ifa>1, then

(m — H(G)) (1 - %)LH < ABS.(G) < (m — H(G)) (1 - %)M .

Ifa >0, then

a

m(l - %)a < ABS.(G) < m(l - %) .

Equalities in the above inequalities are attained, respectively, for « =2,a =1,a = 0, or if G is regular.
When o <2,a < 1and a <0, respectively, the opposite inequalities are valid.

Proof. Note that

2 2
ABS G)= Y (1— _y ) — 1 + 4y () - 2H(G).
wveE(G) wirv

Since

’ o ) a-2 2 2
ABS,(G) = Z (1_du+dv) - Z (1_du+dv) (1_du+dv)'

uveE(G) uveE(G)
For a > 2 holds

1 a=2 1 a=2
(m + 4y _(G) — 2H(G)) (1 - 5) < ABS,(G) < (m + 4x»(G) - 2H(G)) (1 - Z)

By a similar procedure, the remaining inequalities can be proved. O

In the next theorem, we determine an upper bound on the general atom-bond sum-connectivity index
or a tree in terms of a graph order.

Theorem 3.4. Let G be a tree with n > 3 vertices. If a > 0, then:
2 o
ABS.(G) < (1 — 1)(1 - E) )

with equality if and only if G = S,,.
If @ < 0, then the above inequalities on ABS,(G) is reversed.

Proof. Here, we only prove the case @ > 0. Let uv be any edge of G. Obviously, 4, + d, < n. Thus:
2)\* 2)\*
485G < Y (1-2) =-1(1-2)
uveE(G)

with equality if and only if d, + d, = n for every edge uv of G if and only if G is a complete bipartite graph
thatis a tree,i.e., G = §,,.
0

Now, we present a connection between the ABS,, and M;(G).
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Theorem 3.5. For any connected graph G of order n > 3 and for any real @ € R — (-1, 0), we have
(My(G) — 2m)*"!

(2A -2) (M (G)™

If =1 < a < 0, the opposite inequality is valid. Equality holds if and only if either « = 0, a = =1, or G is a regular
graph.

Proof. 1f we take x; = d,, +d, — 2,y; = d,, + d,, where summation goes over all adjacent vertices # and v of G,
i.e., over all edges, the inequality (1) for a € R — (=1, 0) becomes

ABS,(G) > 3)

a+1
d, +d, -2
a+1 [ Z‘ ( )]
(dy +dy —2)"" _ \uecE©)

(4)

y Gt o)™ .
o Y i+ dy)
uveE(G)
Since, for any graph, we have 6 < d, < A, therefore,
; - 2 a ; Y, — 2 a+1
ory Y, Grdod g drdoa o
uveE(G) (dy +do) uveE(G) (dy + do)
Note that
Y (@u+dy—2) = My(G) - 2m. ©)
uveE(G)

Combining (5) and (6) with (4) leads to the desired inequality. Likewise, when —1 < a < 0 the opposite
inequality in (3) holds. O

The next theorem reveals a connection between the general atom-bond sum-connectivity index and
harmonic index.

Theorem 3.6. For any connected graph G of order n > 2 and for any real @ € R — (-1, 0), we have

(2m - H(G))""!

ABSa+1 (G) 2 me

(7)

If =1 < & < 0, the opposite inequality is valid. Equality holds if and only if either o« = 0, « = =1, or G is a regular
graph.

Proof. For x; = d"‘;i’j;z, yi = 1, where summation goes over all adjacent vertices u and v of G, i.e., over all
u v

edges, the inequality (1) for & € R — (-1, 0) becomes

a+1
d,+d,—2
a+1 [ Z ( d,+d )]
du + dz, — 2) S uveE(G) u v

( d, +d, me ®)
uveE(G)
Note that
dy+dy =2\ 2 _
uveE(G) uveE(G)

Combining inequality (8) with (9) leads to the desired inequality. Likewise, when -1 < @ < 0 the
opposite inequality in (7) holds. O
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In the next theorem, we determine an upper bound and a lower bound on the general atom-bond
sum-connectivity index of a graph in terms of ABS1(G) and ABS,(G).

Theorem 3.7. Let G be a connected graph of order n. Then

(ABS1(G))*™*
(ABSy(G)'™*
(ABSy(G))*™*
(ABSy(G)'™*

ABS,(G) > ifa<0,0<a<l,

ABS4(G) <

fa>21<a<2.

Proof. Let x1,x3,...,x; be positive real numbers and let s be a real number with s # 0,1, % Ifs<Qors>1,
it is clear that 2= > 0. By Holder’s inequality, we have

i %> —7 (10)

- a . . . .
For x,, = (W) and s = 1, where summation goes over all adjacent vertices of G, i.e., over all edges,

the inequality (10) becomes
2-a
[ y (du +dv—2)]
du + dv _ 2)0( . MUEE(G) du + dv

d+d, ) = 1
[ Z (du +d, — 2)2]
d, +d,
uveE(G)
25—

foralla <Oor0<a<1l Ifl<a<2ora>2theni <s<lorO<s<3i Letp=2landg=211If
1 <s<1thenp>0;g<0andif 0 <s < 3, then p < 0;9 > 0. Therefore, in each of these cases Holder’s

inequality gets reversed and so the result follows. [

uveE(G) (

In the next result, we give a relation between the general atom-bond sum-connectivity index, the general
sum-connectivity index, and the general Platt index of graphs.

Theorem 3.8. Let G be a connected graph of order n and any real number . Then

ABSa(G) < VPZZa(G)X—Za(G)~

Proof. For 1 < i < n let a; and b; be real numbers. In this proof, we use Cauchy-Schwarz inequality (see

[10]):

[iaibi]l[iag](ibg]. a
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Fora; = (d, +d, —2)% and b; = m, where summation goes over all adjacent vertices of G, i.e. over all

edges, the inequality (11 ) becomes

2
dy +dy — z)“ ” ( 1 )
It | < (d +dy —2) —|!
[uveZE(‘G)( du + dv ] [HUGZE(‘G) ] (UUGZE(G) (d“ + dv)z

the above inequality leads to the desired bound. [

We now present a relation between the general atom-bond sum-connectivity index and the general Platt
index of graphs.

Theorem 3.9. Let G be a nontrivial connected graph with maximum degree A and minimum degree 0, and a € R.
Then

o 1 o )
Pla( ) sABSa(G)sPla(ﬂ) ifa<1

~8I-

a

Pl, (—) < ABSA(G) < Pl, (%) ifa>1

N
>

and the equality holds in each inequality if and only if G is regular.
Proof. If a > 1, then
1\ 1\*
ABS,(G) = Y (dy+dy-2)" (—) <Pl, (—)

uveE(G) du +dy

and

ABS,(G)= Y (du+dv—2)“( ! )azpza(l)a.

wveE(G) du + do

If & < 1, then the same argument gives

1\ 1\
— ] < < — .
Pla (26) < ABSa(C) < Pla (ZA)
If the graph is regular, then the lower and upper bounds are the same, and they are equal to ABS,(G). O

Theorem 3.10. Let G be a nontrivial connected graph with m edges, « € R and p > 0. Then

1 =1
ABS,(G) 2 m'*7 (ABS_o4(G)) " .
Proof. Since f(x) = x# is a convex function in R, for each f > 0, Lemma 2.2 gives

B
m 1 du + dv -2 e
(du+dl,—2)aJ < E Z )( d, +dy )

d,+d, uveE(G

m___ ABS_44(G)
485.G) - N m

This completes the proof.
0

[ZuveE(G)
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Theorem 3.11. Let G be a nontrivial connected graph with m edges and integer number a > 1. Then

ABS,(G) < (m - 1)"} (ABS1(G))".

Proof. Since, we have 4%=2 — 1 _ -2 <1 1 < m — 1. Hence, Theorem 2.3 gives for any uv € E(G)

d,+d, dy+d, —
1\&
dy+dy—2\" dy +dy, —2\°
_ 1 1-a u v < u v
(m-1 ) ( do+d, | = )3 A, +d,
uveE(G) uveE(G)

The above inequality leads to the desired bound. [J

In the next theorem, we determine a lower bound on the general atom-bond sum-connectivity index, the
general sum-connectivity index, and the general Platt index of graphs in terms of minimum and maximum
degree.

Theorem 3.12. Let G be a nontrivial connected graph with m edges, maximum degree A and minimum degree O,
and a > 0. Then
2PLaG)x-2a(G
ABSQ(G) > 2a )X Za( ) )
QA2 | o2 @A)
( 26-2)7(2A) (2&2)“(2@)’“)

Equality holds if and only if G is a regular graph.
Proof. We have
(20 -2 <(d, +d, —2)" <(2A-2)", QA" <(dy+dy) ™ <(20)" ifax=0.
and B = =L for @ > 0, where

For x; = (dy +dy —2)", 0 = 26 -2)" A = QA=2)" yi = i, b = G i
summation goes over all adjacent vertices of G, i.e., over all edges, the inequality (2) becomes

Y (du+d=2)" | (Zuoeric) @ +do - Z)ZQ)% (Zuoctce) @ + d”)_za)% .

d, +d,)* |~ 5 ( (A—2)*(20)° (20-2)*(2A) )

uveE(G) (26-2)7(2A) © (2A-2)%(26)™

+

This completes the proof. [J
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