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Abstract. The atom-bond sum-connectivity (ABS) index is a recently introduced variant of three earlier
much-studied graph-based molecular descriptors: Randić, atom-bond connectivity, and sum-connectivity
indices. The general atom-bond sum-connectivity index is defined as ABSα(G) =

∑
uv∈E(G)

(
du+dv−2

du+dv

)α
, where

α is a real number. In this paper, we present some upper and lower bounds on the general atom-bond
sum-connectivity index in terms of graph parameters and other graph indices.

1. Introduction

Let G = (V,E) be a simple connected graph with vertex set V = {v1, v2, . . . , vn} and edge set E(G). Let
deg(v) = dv and ∆ = d1 ≥ d2 ≥ · · · ≥ dn > 0, be the degree sequence of G. A vertex v is called isolated if
dv = 0.We refer the readers to consult books [5, 6] for graph-theoretical notation and terminology which is
used without being defined.

A number, representing a molecular structure in graph-theoretical terms via the molecular graph, is
called a topological index. In other words, a topological index is a function that associates each molecular
graph with a real value. Topological indices are mainly used to unveil and model the dependence of physic-
ochemical properties on the molecular structure since many of them correlate well with some molecular
properties.

The studies on degree-based graph invariants started in the early 1970s, when Gutman and Trinajstić
introduced the first and second Zagreb indices in [9]. These invariants are entirely dependent on the vertex
degree as follows.

M1(G) =
∑

uv∈E(G)

(du + dv)

and
M2(G) =

∑
uv∈E(G)

(dudv) .
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The Randić index of a graph G is defined in [14] as

R(G) =
∑

uv∈E(G)

1
√

dudv
.

So far, many modifications of the Randić index have been proposed. Here, we mention two topological
indices which have been introduced by taking into consideration the definition of the Randić index, namely
the “sum-connectivity (χ) index” [16] and the “atom-bond connectivity (ABC) index” [7]. These indices
have the following definitions for a graph G:

χ(G) =
∑

uv∈E(G)

1
√

du + dv

and

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

By utilizing the definitions of the ABC and χ indices, a novel topological index the atom-bond sum-
connectivity (ABS) index has recently been proposed in [2]. For a graph G, this index is defined as

ABS(G) =
∑

uv∈E(G)

√
du + dv − 2

du + dv
.

Another remarkable topological descriptor is the harmonic index, defined in [8] as

H(G) =
∑

uv∈E(G)

2
du + dv

.

The general Platt index [1] and the general sum-connectivity index [17] for the graph G are defined by

Plα(G) =
∑

uv∈E(G)

(du + dv − 2)α

and

χα(G) =
∑

uv∈E(G)

(du + dv)α.

Similarly, the general atom-bond sum-connectivity (ABSα) is defined in [3] as

ABSα(G) =
∑

uv∈E(G)

(
du + dv − 2

du + dv

)α
.

In paper [17] the authors have obtained some basic properties for the general sum-connectivity index,
while in [2] graphs having extreme values of the ABS 1

2
index among (molecular) trees and general graphs

with a fixed order have been characterized. Alraqad et al. [4] characterized the graphs having the maximal
ABSα value for α = 1

2 among trees with a fixed order and/or the number of pendent vertices. Recently, in
[12], the minimum ABS 1

2
index of trees with a given number of pendent vertices has been presented. In this

paper, we obtain new inequalities for ABSα.
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2. Auxiliary results

In this section, we recall some known results that will be used in the sequel.

Lemma 2.1. [13] For two positive real number sequences x1, . . . , xn−1 and y1, . . . , yn−1 and α ∈ R− (−1, 0), we have

n−1∑
i=1

xα+1
i

yαi
≥

(∑n−1
i=1 xi

)α+1(∑n−1
i=1 yi

)α . (1)

When −1 ≤ α ≤ 0 the opposite inequality in (1) holds. Equality holds if and only if α = 1, α = 0, or x1
y1
= x2

y2
= · · · =

xn−1
yn−1
.

We will use the following particular case of Jensen’s inequality.

Lemma 2.2. If f is a convex function in an interval I and a1, a2, . . . , am ∈ I, then

f
(a1 + a2 + · · · + am

m

)
≤

1
m

(
f (a1) + · · · + f (am)

)
.

The following result appears in [15].

Theorem 2.3. If α ≥ 1 is an integer and 0 ≤ x1, x2, . . . , xk ≤ k − 1, then

(k − 1)1−α
k∑

i=1

xαi ≤

 k∑
i=1

x
1
α

i


α

.

In [11], the following lemma is proved.

Lemma 2.4. Let 0 < a ≤ xi ≤ A and 0 < b ≤ yi ≤ B for 1 ≤ i ≤ n, then n∑
i=1

x2
i


1
2
 n∑

i=1

y2
i


1
2

≤
1
2


√

AB
ab
+

√
ab
AB


 n∑

i=1

xiyi

 . (2)

3. Main results

In this section, we obtain several new bounds for the general atom-bond sum-connectivity index and
characterize graphs for which these bounds are best possible.

First, we present a relationship between the general atom-bond sum-connectivity index, the general
sum-connectivity index, and the general Platt index of graphs.

Theorem 3.1. Let G be a graph with t isolated edges and 0 < α < 1.

ABSα(G) ≤ Plα(G)
(
χ −α

1−α
(G) − t

)1−α
.

The equality in this bound is attained for the union of any regular or biregular graph and t isolated edges; if G is the
union of a connected graph and t isolated edges, then the equality in this bound is attained if and only if G is the union
of any regular or biregular connected graph and t isolated edges.
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Proof. Since ABSα(P2) = 0 and χα(P2) = 2α, it suffices to prove the theorem for the case t = 0, i.e., when G is
a graph without isolated edges. Hence, ∆ ≥ 2.
Hölder’s inequality gives:

ABSα(G) =
∑

uv∈E(G)

(
du + dv − 2

du + dv

)α

≤

 ∑
uv∈E(G)

(
(du + dv − 2)α

) 1
α


α  ∑

uv∈E(G)

(
1

(du + dv)α

) 1
1−α


1−α

=

 ∑
uv∈E(G)

du + dv − 2


α  ∑

uv∈E(G)

(du + dv)
−α
1−α


1−α

= Plα(G)χ −α
1−α

(G)1−α.

This implies the result stated in the theorem.
If G is a regular or biregular graph with m edges, then:

Plα(G)χ −α
1−α

(G)1−α = ((∆ + δ − 2)m)α
(
(∆ + δ)

−α
1−αm

)1−α
=

(∆ + δ − 2)α

(∆ + δ)α
m = ABSα(G).

Assume that G is connected and that the equality in the first inequality is attained.

The following results provide inequalities relating to the general atom-bond sum-connectivity index
and the general sum-connectivity index.

Theorem 3.2. If G is a graph with m edges and t isolated edges and α ∈ R, then:

ABSα(G) ≤ (m − t − 1)α (χ−α(G) − t) , if α > 0,
ABSα(G) ≥ (m − 1)α χ−α(G), if α < 0 and t = 0.

The equality in the first bound is attained if and only if G is the union of a star graph and t isolated edges. The equality
in the second bound is attained if and only if G is a star graph.

Proof. Since ABSα(P2) = 0 and χα(P2) = 2α, it suffices to prove the theorem for the case t = 0, i.e., when G is
a graph without isolated edges. Hence, ∆ ≥ 2.
In any graph, the inequality du + dv ≤ m + 1 holds for every uv ∈ E(G). If α > 0, then:(

du+dv−2
du+dv

)α(
1

du+dv

)α = (du + dv − 2)α ≤ (m − 1)α ,

(
du + dv − 2

du + dv

)α
≤ (m − 1)α χ−α(G).

The last inequality leads to the desired bound.
If α < 0, then we obtain the converse inequality.
If G is a star graph, then du + dv = m + 1 for every uv ∈ E(G), and the equality is attained for every α.
If equality is attained in some inequality, the previous argument gives that du + dv = m + 1 for every

uv ∈ E(G). In particular, G is a connected graph. If m = 2, then {du, dv} = {1, 2} for every uv ∈ E(G), and so,
G = P3 = S3. Assume now m ≥ 3. Assume that {du, dv} , {1,m} for some uv ∈ E(G). Since du + dv = m+ 1, we
have 2 ≤ du, dv ≤ m − 1, and so, there exist two different vertices x, y ∈ V(G)/{u, v} with ux, vy ∈ E(G). Since
vy is not incident on u and x, we have du + dx < m + 1, a contradiction. Hence, {du, dv} = {1,m} for every
uv ∈ E(G), and so, G is a star graph.
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In the next result, we give a relation between the general atom-bond sum-connectivity index, the general
sum-connectivity index, and the harmonic index of a graph.

Theorem 3.3. Let G be a simple connected graph with n vertices and m edges. Then, for any α ≥ 2,

(m + 4χ−2(G) − 2H(G))
(
1 −

1
δ

)α−2

≤ ABSα(G) ≤ (m + 4χ−2(G) − 2H(G))
(
1 −

1
∆

)α−2

.

If α ≥ 1, then

(m −H(G))
(
1 −

1
δ

)α−1

≤ ABSα(G) ≤ (m −H(G))
(
1 −

1
∆

)α−1

.

If α ≥ 0, then

m
(
1 −

1
δ

)α
≤ ABSα(G) ≤ m

(
1 −

1
∆

)α
.

Equalities in the above inequalities are attained, respectively, for α = 2, α = 1, α = 0, or if G is regular.
When α ≤ 2, α ≤ 1 and α ≤ 0, respectively, the opposite inequalities are valid.

Proof. Note that

ABS2(G) =
∑

uv∈E(G)

(
1 −

2
du + dv

)2

= m + 4χ−2(G) − 2H(G).

Since

ABSα(G) =
∑

uv∈E(G)

(
1 −

2
du + dv

)α
=

∑
uv∈E(G)

(
1 −

2
du + dv

)α−2 (
1 −

2
du + dv

)2

.

For α ≥ 2 holds

(m + 4χ−2(G) − 2H(G))
(
1 −

1
δ

)α−2

≤ ABSα(G) ≤ (m + 4χ−2(G) − 2H(G))
(
1 −

1
∆

)α−2

.

By a similar procedure, the remaining inequalities can be proved.

In the next theorem, we determine an upper bound on the general atom-bond sum-connectivity index
or a tree in terms of a graph order.

Theorem 3.4. Let G be a tree with n ≥ 3 vertices. If α > 0, then:

ABSα(G) ≤ (n − 1)
(
1 −

2
n

)α
,

with equality if and only if G � Sn.
If α < 0 , then the above inequalities on ABSα(G) is reversed.

Proof. Here, we only prove the case α > 0. Let uv be any edge of G. Obviously, du + dv ≤ n. Thus:

ABSα(G) ≤
∑

uv∈E(G)

(
1 −

2
n

)α
= (n − 1)

(
1 −

2
n

)α
with equality if and only if du + dv = n for every edge uv of G if and only if G is a complete bipartite graph
that is a tree, i.e., G = Sn.

Now, we present a connection between the ABSα and M1(G).
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Theorem 3.5. For any connected graph G of order n ≥ 3 and for any real α ∈ R − (−1, 0), we have

ABSα(G) ≥
(M1(G) − 2m)α+1

(2∆ − 2) (M1(G))α
. (3)

If −1 ≤ α ≤ 0, the opposite inequality is valid. Equality holds if and only if either α = 0, α = −1, or G is a regular
graph.

Proof. If we take xi = du + dv − 2, yi = du + dv, where summation goes over all adjacent vertices u and v of G,
i.e., over all edges, the inequality (1) for α ∈ R − (−1, 0) becomes

∑
uv∈E(G)

(du + dv − 2)α+1

(du + dv)α
≥

 ∑
uv∈E(G)

(du + dv − 2)


α+1

 ∑
uv∈E(G)

(du + dv)


α . (4)

Since, for any graph, we have δ ≤ dv ≤ ∆, therefore,

(2∆ − 2)
∑

uv∈E(G)

(du + dv − 2)α

(du + dv)α
≥

∑
uv∈E(G)

(du + dv − 2)α+1

(du + dv)α
. (5)

Note that∑
uv∈E(G)

(du + dv − 2) =M1(G) − 2m. (6)

Combining (5) and (6) with (4) leads to the desired inequality. Likewise, when −1 ≤ α ≤ 0 the opposite
inequality in (3) holds.

The next theorem reveals a connection between the general atom-bond sum-connectivity index and
harmonic index.

Theorem 3.6. For any connected graph G of order n ≥ 2 and for any real α ∈ R − (−1, 0), we have

ABSα+1(G) ≥
(2m −H(G))α+1

mα
. (7)

If −1 ≤ α ≤ 0, the opposite inequality is valid. Equality holds if and only if either α = 0, α = −1, or G is a regular
graph.

Proof. For xi =
du+dv−2

du+dv
, yi = 1, where summation goes over all adjacent vertices u and v of G, i.e., over all

edges, the inequality (1) for α ∈ R − (−1, 0) becomes

∑
uv∈E(G)

(
du + dv − 2

du + dv

)α+1

≥

 ∑
uv∈E(G)

(
du + dv − 2

du + dv

)
α+1

mα
. (8)

Note that∑
uv∈E(G)

(
du + dv − 2

du + dv

)
=

∑
uv∈E(G)

(
1 −

2
du + dv

)
= 2m −H(G). (9)

Combining inequality (8) with (9) leads to the desired inequality. Likewise, when −1 ≤ α ≤ 0 the
opposite inequality in (7) holds.



A. Jahanbani, I. Redžepović / Filomat 37:30 (2023), 10161–10169 10167

In the next theorem, we determine an upper bound and a lower bound on the general atom-bond
sum-connectivity index of a graph in terms of ABS1(G) and ABS2(G).

Theorem 3.7. Let G be a connected graph of order n. Then

ABSα(G) ≥
(ABS1(G))2−α

(ABS2(G))1−α if α < 0, 0 < α < 1,

ABSα(G) ≤
(ABS1(G))2−α

(ABS2(G))1−α if α > 2, 1 < α < 2.

Proof. Let x1, x2, . . . , xt be positive real numbers and let s be a real number with s , 0, 1, 1
2 . If s < 0 or s > 1,

it is clear that 2s−1
s > 0. By Hölder’s inequality, we have

t∑
i=1

xs
i =

t∑
i=1

x
s

2s−1
i x

2s2
−2s

2s−1
i ≤

 t∑
i=1

(
x

s
2s−1
i

) 2s−1
s


s

2s−1
 t∑

i=1

(
x

2s(s−1)
2s−1

i

) 2s−1
s−1


s−1
2s−1

=

 t∑
i=1

xi


s

2s−1
 t∑

i=1

x2s
i


s−1
2s−1

that is

t∑
i=1

xi ≥

(∑t
i=1 xs

i

) 2s−1
s(∑t

i=1 x2s
i

) s−1
s

. (10)

For xuv =
(

du+dv−2
du+dv

)α
and s = 1

α , where summation goes over all adjacent vertices of G, i.e., over all edges,
the inequality (10) becomes

∑
uv∈E(G)

(
du + dv − 2

du + dv

)α
≥

 ∑
uv∈E(G)

(
du + dv − 2

du + dv

)
2−α

 ∑
uv∈E(G)

(
du + dv − 2

du + dv

)2


1−α

for all α < 0 or 0 < α < 1. If 1 < α < 2 or α > 2, then 1
2 < s < 1 or 0 < s < 1

2 . Let p = 2s−1
s and q = 2s−1

s−1 . If
1
2 < s < 1, then p > 0; q < 0 and if 0 < s < 1

2 , then p < 0; q > 0. Therefore, in each of these cases Hölder’s
inequality gets reversed and so the result follows.

In the next result, we give a relation between the general atom-bond sum-connectivity index, the general
sum-connectivity index, and the general Platt index of graphs.

Theorem 3.8. Let G be a connected graph of order n and any real number α. Then

ABSα(G) ≤
√

Pl2α(G)χ−2α(G).

Proof. For 1 ≤ i ≤ n let ai and bi be real numbers. In this proof, we use Cauchy-Schwarz inequality (see
[10]):  n∑

i=1

aibi


2

≤

 n∑
i=1

a2
i


 n∑

i=1

b2
i

 . (11)
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For ai = (du + dv − 2)α and bi =
1

(du+dv)α , where summation goes over all adjacent vertices of G, i.e. over all
edges, the inequality (11 ) becomes

 ∑
uv∈E(G)

(
du + dv − 2

du + dv

)α
2

≤

 ∑
uv∈E(G)

(du + dv − 2)2α


 ∑

uv∈E(G)

(
1

(du + dv)2α

) ,
the above inequality leads to the desired bound.

We now present a relation between the general atom-bond sum-connectivity index and the general Platt
index of graphs.

Theorem 3.9. Let G be a nontrivial connected graph with maximum degree ∆ and minimum degree δ, and α ∈ R.
Then

Plα
( 1

2δ

)α
≤ ABSα(G) ≤ Plα

( 1
2∆

)α
if α < 1

Plα
( 1

2∆

)α
≤ ABSα(G) ≤ Plα

( 1
2δ

)α
if α ≥ 1

and the equality holds in each inequality if and only if G is regular.

Proof. If α ≥ 1, then

ABSα(G) =
∑

uv∈E(G)

(du + dv − 2)α
( 1

du + dv

)α
≤ Plα

( 1
2δ

)α
and

ABSα(G) =
∑

uv∈E(G)

(du + dv − 2)α
( 1

du + dv

)α
≥ Plα

( 1
2∆

)α
.

If α < 1, then the same argument gives

Plα
( 1

2δ

)α
≤ ABSα(G) ≤ Plα

( 1
2∆

)α
.

If the graph is regular, then the lower and upper bounds are the same, and they are equal to ABSα(G).

Theorem 3.10. Let G be a nontrivial connected graph with m edges, α ∈ R and β > 0. Then

ABSα(G) ≥ m1+ 1
β

(
ABS−αβ(G)

) −1
β .

Proof. Since f (x) = x−β is a convex function in R+ for each β > 0, Lemma 2.2 gives m∑
uv∈E(G)

(
du+dv−2

du+dv

)α

β

≤
1
m

∑
uv∈E(G)

(
du + dv − 2

du + dv

)−αβ
m

ABSα(G)
≤

β

√
ABS−αβ(G)

m
.

This completes the proof.
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Theorem 3.11. Let G be a nontrivial connected graph with m edges and integer number α ≥ 1. Then

ABSα(G) ≤ (m − 1)α−1
(
ABS 1

α
(G)

)α
.

Proof. Since, we have du+dv−2
du+dv

= 1 − 2
du+dv

≤ 1 − 1
∆ ≤ m − 1. Hence, Theorem 2.3 gives for any uv ∈ E(G)

(m − 1)1−α
∑

uv∈E(G)

(
du + dv − 2

du + dv

)α
≤

 ∑
uv∈E(G)

(
du + dv − 2

du + dv

) 1
α


α

.

The above inequality leads to the desired bound.

In the next theorem, we determine a lower bound on the general atom-bond sum-connectivity index, the
general sum-connectivity index, and the general Platt index of graphs in terms of minimum and maximum
degree.

Theorem 3.12. Let G be a nontrivial connected graph with m edges, maximum degree ∆ and minimum degree δ,
and α ≥ 0. Then

ABSα(G) ≥
2
√

Pl2αG)χ−2α(G)(√
(2∆−2)α(2δ)−α

(2δ−2)α(2∆)−α +
√

(2δ−2)α(2∆)−α

(2∆−2)α(2δ)−α

) .
Equality holds if and only if G is a regular graph.

Proof. We have

(2δ − 2)α ≤ (du + dv − 2)α ≤ (2∆ − 2)α , (2∆)−α ≤ (du + dv)−α ≤ (2δ)−α if α ≥ 0.

For xi = (du + dv − 2)α, a = (2δ − 2)α ,A = (2∆ − 2)α yi =
1

(du+dv)α , b = 1
(2∆)α , and B = 1

(2δ)α for α ≥ 0, where
summation goes over all adjacent vertices of G, i.e., over all edges, the inequality (2) becomes ∑

uv∈E(G)

(du + dv − 2)α

(du + dv)α

 ≥
(∑

uv∈E(G) (du + dv − 2)2α
) 1

2
(∑

uv∈E(G) (du + dv)−2α
) 1

2

2
(√

(2∆−2)α(2δ)−α

(2δ−2)α(2∆)−α +
√

(2δ−2)α(2∆)−α

(2∆−2)α(2δ)−α

) .

This completes the proof.
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[9] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17

(1972), 535–538.
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