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Abstract. In this paper we develop the concept of dependence between filtrations given in [11], named
causal predictability, which is based on the Granger’s definition of causality. Then, we provide some new
properties of this concept and prove a result that consider equivalence to uniqueness of the given concept.
Also, a few examples that illustrate applications of the given concept are given with the main focus on
stochastic differential equations (SDE) and financial mathematics.

The study of Granger’s causality has been defined in the context of time series. Since continuous time
models become more and more frequent in econometric practice, epidemiology, climatology, demographic,
etc, we develop a concept connected to the continuous time processes.

At the same time, the modern finance theory extensively uses diffusion processes.

1. Introduction

From the seminal work of Granger [7], the theory of causality has widely developed and established
itself as a fervent research area, with growing applications in the most various areas of sciences, espe-
cially in finance, econometric practice, biostatistics, optimal transport plans, neuroscience, epidemiology,
demographic, etc. We consider different concepts of causality between stochastic processes and between
filtrations and then relate the given concepts of causality to the to the weak solutions of SDE and financial
mathematics.

The aim of the present article is to establish the result of Theorem 3.4 as the fundamental result of causal
predictability which gives property of equivalence to uniqueness.

The paper is organized as follows. After Introduction, in Section 2, we provide some of the known
results that we need later. Especially, we present the causality concept introduced by [15] and give some
basic properties of this concept.

In Section 3 we state and prove our main results. In this part we develop the concept of dependence
named causal predictability between filtrations which is based on the Granger’s definition of causality and
the causality concept given by Mykland [15]. More precisely, we give some equivalent definitions of causal
predictability from [11] and some new characteristics of the given concept. Then, we prove a result about
equivalence to uniqueness of given concept.
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Section 4 contains applications of causal predictability in continuous time to the weak uniqueness of
weak solutions of SDE and financial mathematics. Finally, we mention a few ideas for some future work.

2. Preliminary notations and definitions

Suppose that (Ω,A,F,P) is a filtered probability space, where (Ω,A,P) is a probability space and
F = {Ft, t ∈ T} is a ”framework” filtration, that is, Ft is the set of all events in the model up to and including
time t, a subfiltration of A. Total information F∞ carried by F is defined as F∞ =

∨
t∈T
Ft. We suppose that

the filtration F satisfies usual conditions (i.e. it is right continuous and complete, see [3]). The time index
set T is equal to R+, unless specified otherwise. Analogous notation will be used for filtrations H = {Ht},
G = {Gt} and J = {Jt}.

The concept of conditional independence is widely used in probability theory and statistics. The basic
properties of this concept are given in [1], [5] and [6].

In this paper, we consider different concepts of causality involving conditional independence.

Definition 2.1. ( see [15], [20]) Let F = {Ft}, G = {Gt} and H = {Ht} be filtrations on the same probability
space. It is said that G is a cause of H within F relative to P (and written as H |< G; F;P) if H ⊆ F, G ⊆ F and
ifH∞ is conditionally independent of Ft given Gt for each t, i.e.

H∞ ⊥ Ft | Gt, (1)

that is
(∀A ∈ H∞) P(A|Ft) = P(A|Gt).

If there is no doubt about P, we omit ”relative to P”.

It is easy to see that (1) may be formulated as

(∀u ∈ T), (∀t ∈ T) Hu ⊥ Ft | Gt.

Intuitively, (1) means that, for arbitrary t, information about H∞ provided by Ft is not ”bigger” than
that provided by Gt.

If G and F are such that G |< G; F, we shall say that G is its own cause within F. It should be mentioned
that the notion of subordination (as introduced by [17]) is equivalent to the notion of being one’s own cause,
as defined here.

If G and F are such that G |< G; G
∨

F (where G
∨

F is a family determined by (G
∨
F )t = Gt

∨
Ft), we

shall say that F does not cause G. It is clear that the interpretation of Granger’s causality is now that F does
not cause G if G |< G; G

∨
F (see [15]).

It should be mentioned that Definition 2.1 of causality is equivalent to the definition of strong global
noncausality, given by [4].

A family of σ-algebras induced by a stochastic process X = {Xt, t ∈ T} is given by FX = {F X
t , t ∈ T}, where

F
X

t = σ{Xu,u ∈ T,u ≤ t},

being the smallest σ-algebra with respect to which the random variables Xu,u ≤ t are measurable.
The process X = {Xt} is adapted to F = {Ft} or F-adapted if F X

t ⊆ Ft for each t .
The notation (Xt,Ft) means that proces X = {Xt} is F-adapted.
Definition 2.1 can be applied to stochastic processes. It will be said that stochastic processes are in a

certain relationship if and only if the corresponding induced filtrations are in that relationship.
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3. Equivalence to uniqueness for causal predictability

In this section, we consider some properties of causal predictability relation for filtration given in [11]
and prove the equivalence to uniqueness for this relation. Finally, we give the alternative definition of
causal predictability given in Definition 3.1.

A probability space (Ω̂, Â, P̂) is an extension of probabilty space (Ω,A,P) if there is a measurable
surjective function f : (Ω̂, Â) −→ (Ω,A) such that P̂ f−1 = P onA (see [8]). Both spaces must have the same
time axis T. For filtrations G = {Gt}, H = {Ht} and J = {Jt} on the same probability space (Ω,A,P), we have

Ĝt = { f−1(A) : A ∈ Gt}, Ĥt = { f−1(A) : A ∈ Ht}, Ĵt = { f−1(A) : A ∈ Jt}.

Note that there may be filtrations on the probability space (Ω̂, Â) which are not defined as an inverse image
of some filtration on the original probability space (Ω,A). Also, note that Â , f−1(A).

Let us recall the following definition from [11].

Definition 3.1. ([11]) Let G = {Gt}, H = {Ht} and J = {Jt} be filtrations on the same probability space
(Ω,A,P) with a common time axis T. It is said that J is causally predictable by H relative to G (or that H
causally predicts J relative to G) if

H ⊆ G

and
H |< G; G′; P,

where

G′ = G ∨ J (2)

and if
any extension (Ω̂, Â, P̂) of the probability space (Ω,G′∞,P) (with P̂ f−1 = P) containing filtrations

F̂, Ĝ′, Ĝ, Ĥ and Ĵ satisfying

a)

Ĝ′ ⊆ F̂; (3)

b) for every A ∈ H∞ and t ∈ T

1(A) = P(A | G′t) (P-a.s.)
1 is G′-measurable

}
⇒ 1 ◦ f (A) = P̂( f−1(A) | Ĝ′t) (P̂-a.s.); (4)

c)

Ĥ |< Ĝ; F̂; P̂; (5)

must also satisfy

Ĵ |< Ĝ′; F̂; P̂. (6)

If G = H in the above definition, we say that J is causally predictable by H.
It should be noted that causal predictability is a notion of dependence, but one which is weaker than

adaptedness with respect to a filtration.
First we give some new properties of causal predictability. Actually, we give some alternative definitions

of causal predictability.
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Lemma 3.1. (see [11]) Condition c) of the definition of causal predictability can be replaced by

c′) Ĥ |< Ĝ′ ; F̂; P̂.

Lemma 3.2. (see [12]) Conditions b) and c) of the definition of causal predictability can be replaced by the following
condition

d) for every A ∈ H∞, t ∈ T

1(A) = P(A | G′t) (P-a.s.)
1 is G′-measurable

}
⇒ 1 ◦ f (A) = P̂( f−1(A) | F̂t) (P̂-a.s.);

Proof. From Lemma 3.1 it follows that condition c) from definition of causal predictability could be replaced
by c′), which reads

P̂( f−1(A)|Ĝ′t) = P̂( f−1(A)|F̂t), for every A ∈ H∞ and t ∈ T (7)

thus b) and d) are equivalent in the presence of c′). Condition d) implies that P̂( f−1(A)|F̂t) can be chosen
Ĝ′−measurable for A ∈ H∞, which is (7).

The following result gives equivalent conditions for causal predictability between filtrations.

Proposition 3.3. [13] Let (Ω,A,F,P) be a filtered probability space and let H, J and G be filtration in A. Let
H ⊂ G, J ⊂ G and

H = {(Mt) : Mt is a G-martingale and ∃A ∈ H∞ Mt = P(A|Gt),∀t ∈ T},

J = {(Mt) : Mt is a G-martingale and ∃A ∈ H∞ Mt = P(A|Gt),∀t ∈ T}.

The following statements are equivalent:

i) J is causally predictable by H relative to G.

ii) Every extension (Ω̂, Â, P̂) of probabilty space (Ω,A,P) with filtrations F̂ and Ĝ with the same time axis as G

satisfying Ĝ ⊆ F̂ and P̂ f−1
≪ P on G∞, dP̂ f−1

dP ∈ L1(Ω,G∞,P)

and

Ĥ = {(M̂t) : M̂t(ω̂) =Mt( f (ω̂)) : (Mt) ∈ H} is collection of F̂-martingale under P̂,

must also satisfy that

Ĵ = {(M̂t) : M̂t(ω̂) =Mt( f (ω̂)) : (Mt) ∈ J} is a collection of F̂-martingale under P̂.

We will now prove the main result of causal predictability which gives property of equivalence to
uniqueness.

Theorem 3.4. Let G = {Gt}, H = {Ht} and J = {Jt} be filtrations on (Ω,A,P) with a common time axis T = [0, t0]
such that H ⊆ G and J ⊆ G.

The following statements are equivalent:

i) J is causally predictable by H relative to G in the sense of Definition 3.1.

ii) For any probability measure Q on G∞ satisfying

Q≪ P (on G∞) (8)

and
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for every A ∈ H∞ and t ∈ T

1 = P(A | Gt) (P-a.s.)
1 is G-measurable

}
⇒ 1 = Q(A | Gt) (Q-a.s.); (9)

the following holds

for every A ∈ J∞ and t ∈ T

1 = P(A | Gt) (P-a.s.)
1 is G-measurable

}
⇒ 1 = Q(A | Gt) (Q-a.s.). (10)

Proof. (i)⇒ (ii) This is proved as Proposition 2 in [13].
(ii) ⇒ (i) It is enough to show that statement ii) from Proposition 3.3 holds. Suppose that (Ω̂, Â, P̂)

is an extension of probability space (Ω,A,P) defined with f : (Ω̂, Â) −→ (Ω,A) which satisfies con-
ditions of ii) from Proposition 3.3. We want to show that Ĵ = {(M̂t) : M̂t(ω̂) = Mt( f (ω̂)) : (Mt) ∈
J} is a class of F̂-martingales under P̂. Suppose that elements of Ĵ are not necessarily F̂-martingales under P̂,
actually that there is (Mt) ∈ J, u ∈ T and Â ∈ F̂u, such that, if M̂t(ω̂) =Mt( f (ω̂)) it follows that∫

Â
M̂∞dP̂ ,

∫
Â

M̂udP̂. (11)

Following the proof of Theorem 3 from [13], for η ∈ L∞(Ω,G∞,P), we have that the functional

Φ(η) = Ê[IÂÊ(η ◦ f |Ĝu) + IÂC (η ◦ f )]

is well defined, it is linear and bounded. AsΦ(η) ≥ 0 for η ≥ 0 and asΦ(1) = 1,Φ is the expectation operator
of a measure Q on G∞,

∀C ∈ G∞ Q(C) = Φ(IC).

Now, we have that Q≪ ν holds and that by Riesz’ Representation Theorem dQ
dν ∈ L∞(Ω,G∞, ν) holds.

Similar techniques from the proof of Theorem 3 from [13], taking function X to be previously introduced
function f , lead to the conclusion that H is a class of G-martingales under Q and hence J is also a class of
G-martingales under Q. So, we have∫

M∞dQ =
∫

MudQ = Ê(IÂM̂u) + Ê(IÂc M̂u).

According to Proposition 15.1 in [18] we have that (Mt) is a G−martingale under P̂ f−1, so Ê(M̂∞|Ĝu) = M̂u.
Hence, ∫

M∞dQ = Ê(IÂM̂u) + Ê(IÂc M̂∞)

which would contradict (11) and prove the result.

The previous result remains valid if (8) is replaced by Q ∼ P on G∞. In this case, (9) is equivalent to

∀A ∈ H∞ ∀t ∈ T P(A|Gt) = Q(A|Gt) (P − a.s. and Q − a.s.)

and similarly (10) is equivalent to

∀A ∈ J∞ ∀t ∈ T P(A|Gt) = Q(A|Gt) (P − a.s. and Q − a.s.).

In [11] the following result is shown, from which we will obtain the equivalent definition of causal
predictability to Definition 3.1.
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Proposition 3.5. (see [11]) Let G, G̃, H, H̃, J and J̃ be filtrations in a probability space (Ω,A,P) such that

G = G̃, H = H̃, J = J̃ a.s.

and
H̃ ⊆ G̃.

If J is causally predictable by H relative to G, then J̃ is causally predictable by H̃ relative to G̃.

The invariance under stochastic equivalence from this proposition is crucially dependent on a relation
of absolute continuity. By setting A = ∅, the condition (4) from Definition 3.1 obviously implies that

P̂ f−1
≪ P on G′∞. (12)

As a consequence of (12), considering the statement
b′) for every A ∈ H∞, t ∈ T there exists 1which is G′-measurable such that

1(A) = P(A | G′t) (P-a.s.) & 1 ◦ f (A) = P̂( f−1(A) | Ĝ′t) (P̂-a.s.)

it is easy to obtain the following result.

Proposition 3.6. The equivalent definition of causal predictability is obtained if condition b) in Definition 3.1 is
replaced by P̂ f−1

≪ P on G′∞ and b′).

4. Some applications

In [11] we showed how the theory of causal predictability can be applied to the weak uniqueness of
weak solution of the stochastic differential equation

dXt = at(X)dt + bt(X)dWt, X0 = η, (13)

where X is a continuous d-dimensional process and W a d-dimensional Wiener process, which is well defined
when the following elements are given: the dimension d (of X and W), functionals at (d-dimensional vector)
and bt( d × d matrix) and d-dimensional distribution Fη function (see [10], [16]).

Theorem 4.1. ([11]) Assume that SDE (13) has a weak solution. If for every weak solution (Ω,A,F,P,W,X) of (13),
FX is causally predictable by FW relative to FX,W , then the solution is weakly unique.

Also, in [11] we gave another example of the application of causal predictability considering SDE

dXt = ut(X)dZt, X0 = η, (14)

where Z = {Zt, t ∈ T} is an m−dimenisonal semimartingale and coefficient ut is an (n × m)−dimensional
predictable functional (see [8] and [9] for more details). This SDE generalizes the diffusion equation (13).
We proved the following result which gives conditions for a solution of stochastic differential equation (14)
to be weakly unique in terms of causal predictability.

Theorem 4.2. ([11]) Assume that SDE (14) has a weak solution. If for every weak solution (Ω,A,F,P,Z,X) of (14),
FX,Z is causally predictable by FX relative to FX,Z, then the solution is weakly unique.

In this paper, we will discuss an application in financial mathematics. Actually, we will give an example
in the view of modeling of default risk which is well represented in the literature (see, for example,
[2]). There are two main approaches: either the default time τ is a stopping time in the asset’s filtration
(structural approach), or it is a stopping time in a larger filtration (intensity-based approach). We shall focus
our attention on the intensity-based valuation. A default occurs at a random time τ (i.e. a non-negative
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random variable). In the defaultable world, the payment of a contingent claim depends whether or not
the default has appeared before the maturity. We associate with this random time the counting process
D = {Dt} defined as Dt = I{τ<t}. The process D is an increasing process, cádlág, equal to 0 before the default
and equal to 1 after default. Essentially, the intensity of τ is defined as the nonnegative adapted process λ
such that

Mt := Dt −

∫ t∧τ

0
λudu

is a martingale.

Definition 4.1. The increasing function Γ : R+ → R+ given by the formula

Γ(t) = −ln(1 − F(t))),

where F(t) = P(τ ≤ t), is called the hazard function of τ.

Definition 4.2. A function Λ : R+ → R+ is called a martingale hazard function of a random time τ with
respect to the natural filtration FD if and only if the process Dt −Λ(t ∧ τ) is a FD-martingale.

Assume that B is a G-adapted continuous process of finite variation given by the formula

Br = e
∫ t

0 rudu,

for some G-adapted integrable process r. The process B is referred to as the savings account. Let us fix
K > 0 and set

St := BtE
(∫

]t,K]
B−1

u ZudDu + B−1
K XI{K<τ} | Ft

)
, (15)

where Z is a F-predictable process and X is a FK -measurable random variable.
Let us define the process V by setting

Vt = B̃tE
(∫ K

t
B̃−1

u Zuλudu + B̃−1
K X | Ft

)
, (16)

where B̃ is the ’savings account’ corresponding to the default-adjusted short-term rate Rt = rt + λt, that is,

B̃t = exp
(∫ t

0
(ru + λu) du

)
.

Now, we are ready to illustrate an application of the concept of causal predictability from Definition 3.1
in this case.

Example 4.1. Let F be causally predictable by G and let τ admit an absolutely continuous G-martingale
hazard function Λ. Let Z be a G-predictable process and X be a GK-measurable random variable. If Γ = Λ
it follows that St = I{τ>t}Vt for t ≤ K, where processes S and V are given by (15) and (16), respectively.

Another example of application was given in [11], where we have mentioned the strong connection
between the theory of optimal transport in continuous time and stochastic analysis.

Finally, we give some ideas for the future work.

Remark 1. It might be interesting to see how the theory of causal predictability can be applied to stochastic
filtering and control theory (see, for example, [19]).

Also, it might be interesting to deal with the case of progressive causal predictability, i.e. with the case
when {It, t ∈ τ ∩ (−∞,u)} is causally predictable by {Ht, t ∈ τ ∩ (−∞,u)} for stopping time τ and all u ∈ R.
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