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Abstract. Inspired by recent works on [m]-complex symmetric operator, we introduce the class of [∞,C]-
symmetric operators and study various properties of this class. We study the quasi-nilpotent perturbations
of [∞,C]-symmetric operator. Also, we prove that the class of [∞,C]-symmetric operators is norm closed.
Finally, we characterize when product of [∞,C]-symmetric operators is also [∞,C]-symmetric operator.

1. Introduction

Let H be a separable complex Hilbert space and let B(H) be the C∗-algebra of all bounded linear
operators acting onH , and letN, C be the set of natural numbers and complex numbers, respectively. An
operator C onH is said to be conjugation if C is antilinear operator and satisfies C2 = I and (Cx,Cy) = (y, x)
for all x, y ∈ H .

In [11], [m]-complex symmetric operator with conjugation C is introduced as follow: if there exists some
conjugation C satisfying

m∑
i=0

(−1)m−i(m
i )CTiCTm−i = 0,

T is called an [m]-complex symmetric operator. For an operator T ∈ B(H) and a conjugation C, define wm(T)
as follows:

wm(T) =
m∑

i=0

(−1)m−i(m
i )CTiCTm−i.

It’s clear that T is [m]-complex symmetric if and only if wm(T) = 0. Moreover,

CTC.wm(T) − wm(T).T = wm+1(T)

holds. Hence every [m]-complex symmetric is [n]-complex symmetric for each n ≥ m. But the converse
isn’t true in general, see [11]. We now introduce the class of [∞,C]-symmetric operators.
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Definition 1.1. Let T ∈ B(H). If T satisfies

lim sup
m→∞

||wm(T)||
1
m = 0,

then T is said to be an [∞,C]-symmetric operator.

Let T ∈ B(H). If T is an [m]-complex symmetric operator for some m ≥ 1, then T is called a finite
[m]-complex symmetric operator with conjugation C. The class of [∞,C]-symmetric operators is larger than
finite [m]-complex symmetric operators with conjugation C.

The motivation of studying [∞,C]-symmetric operator comes from recent interests in [m]-complex
symmetric operator and m-complex symmetric operator [2–11], and [∞,C]-symmetric operator enjoys many
properties of [m]-complex symmetric operator.

2. [∞,C]-symmetric operator

We next show that the following result about eigenvectors for (∞,C)-isometric operators does not extend
to [∞,C]-symmetric operators, see part (a) of Theorem 2.2 in [1].

Theorem 2.1. [1] Let T ∈ B(H). If T is an (∞,C)-isometric operator and satisfies (T − α)x = 0 and (T − β)y = 0
with αβ , 1, then (Cx, y) = 0.

Example 2.2. LetH = C2 and let C be a conjugation onH satisfying C
(
x
y

)
=

(
x
y

)
. If T =

(
1 2
5 4

)
on C2, simple

calculations show that (T − 6)
(
2
5

)
= 0, (T + 1)

(
1
−1

)
= 0, and T is a [2]-complex symmetric operator, hence T is an

[∞,C]-symmetric operator, while (C
(
2
5

)
,

(
1
−1

)
) = −3 , 0.

But we have the following result.

Theorem 2.3. Suppose that T ∈ B(H) is an [∞,C]-symmetric operator.
(i) If there exist nonzero vectors x, y such that (T − α)x = 0 and (T∗ − β)y = 0 with α , β, then (Cx, y) = 0.
(ii) If there exists nonzero vector x such that (T − α)x = 0 and (T∗ − β)Cx = 0, then α = β.
(iii) If there exist sequences of unit vectors {xn} and {yn} such that lim

n→∞
(T − α)xn = 0 and lim

n→∞
(T∗ − β)yn = 0 with

α , β, then {(Cxn, yn)} has a subsequence {(Cxnl, ynl)} which converges to 0.
(iv) If there exists a sequence of unit vectors {xn} such that lim

n→∞
(T − α)xn = 0 and lim

n→∞
(T∗ − β)Cxn = 0, then α = β.

Proof. (i) Let x, y be nonzero vectors such that (T − α)x = 0 and (T∗ − β)y = 0. Then

(Cwm(T)x, y) = (C
m∑

i=0

(−1)m−i(m
i )CTiCTm−ix, y)

= (
m∑

i=0

(−1)m−i(m
i )Tiαm−iCx, y)

=

m∑
i=0

(−1)m−i(m
i )(αm−iCx, βiy)

=

m∑
i=0

(−1)m−i(m
i )αm−iβ

i
(Cx, y)

= (β − α)m(Cx, y),
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and hence
|β − α||(Cx, y)|

1
m = |(Cwm(T)x, y)|

1
m ≤ ||wm(T)||

1
m ||x||

1
m ||y||

1
m .

Since T is an [∞,C]-symmetric operator, we have

lim
m→∞

|β − α||(Cx, y)|
1
m ≤ lim

m→∞
||wm(T)||

1
m ||x||

1
m ||y||

1
m = 0. (2.1)

Since α , β, it follows from (2.1) that
lim

m→∞
|(Cx, y)|

1
m = 0.

This implies (Cx, y) = 0.
(ii) Assume that α , β. Set y = Cx. Then y is a nonzero vector. By (i), ||x||2 = (Cx,Cx) = 0, which

contradicts with the fact that x is a nonzero vector. Hence α = β.
(iii) Let {xn} and {yn} be sequences of unit vectors such that

lim
n→∞

(T − α)xn = 0 and lim
n→∞

(T∗ − β)yn = 0.

Since {(Cxn, yn)}∞n=1 is bounded, there exists a convergent subsequence {(Cxnl, ynl)}. Set lim
l→∞

(Cxnl, ynl) = µ. For

∀m ≥ 1,

|(α − β)mµ| = |(α − β)m
| lim

l→∞
|(Cxnl, ynl)|

= lim
l→∞
|

m∑
i=0

(−1)m−i(m
i )αm−iβ

i
(Cxnl, ynl)|

= lim
l→∞
|

m∑
i=0

(−1)m−i(m
i )(CTm−ixnl,T∗iynl)|

= lim
l→∞
|(C

m∑
i=0

(−1)m−i(m
i )CTiCTm−ixnl, ynl)|

= lim
l→∞
|(Cwm(T)xnl, ynl)|

≤ ||wm(T)||.

Since T is an [∞,C]-symmetric operator, we have

|α − β| lim
m→∞

|µ|
1
m ≤ lim sup

m→∞
||wm(T)||

1
m = 0.

Since α , β, it follows that µ = 0, i.e., lim
l→∞

(Cxnl, ynl) = 0.

(iv) Assume that α , β. Set yn = Cxn. It follows from (iii) that {(Cxn,Cxn)} has a subsequence {(Cxnl,Cxnl)}
which converges to 0. While (Cxnl,Cxnl) = 1, which is a contradiction. Hence α = β.

Theorem 2.4. Suppose that T ∈ B(H). If TCTC = CTCT, then

lim sup
m→∞

||wm(T)||
1
m = r(T − CTC),

where r(A) denotes the spectral radius of A. In particular, if r(T −CTC) = 0, then T is an [∞,C]-symmetric operator.

Proof. Since TCTC = CTCT, we have

wm(T) =
m∑

i=0

(−1)m−i(
m

i )CTmCTm−i = (CTC − T)m,
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and hence
lim sup

m→∞
||wm(T)||

1
m = lim sup

m→∞
||(T − CTC)m

||
1
m = r(T − CTC).

In particular, if r(T − CTC) = 0, then T is an [∞,C]-symmetric operator.

Lemma 2.5. Suppose that T,Q ∈ B(H) satisfy TQ = QT and TCQC = CQCT. Then, for m ≥ 2,

||wm(T +Q)|| ≤Mm(max
j≤n≤m

||wn(T)|| + max
j≤n≤m

||Qn
||),

where M = 2(2||T|| + 2||Q|| + 1) and j = [ m
3 ] is the integer part of m

3 .

Proof. Since

[(a + b) − (c + d)]m =[(a − c) + b − d]m

=
∑

m1+m2+m3=m

(−1)m2 ( m
m1,m2,m3

)(a − c)m1 dm2 bm3 ,

we have
wm(T +Q) =

∑
m1+m2+m3=m

(−1)m2 ( m
m1,m2,m3

)wm1 (T)(CQC)m2 Qm3 .

Suppose that j = [ m
3 ] is the integer part of m

3 . Put

Mi =
∑

m1+m2+m3=m,mi≥ j

( m
m1,m2,m3

)||wm1 (T)(CQC)m2 Qm3 ||, i = 1, 2, 3.

Since m1 +m2 +m3 = m, then there exists some mi ≥ j, i = 1, 2, 3, and

||wm(T +Q)|| ≤
∑

m1+m2+m3=m

( m
m1,m2,m3

)||wm1 (T)(CQC)m2 Qm3 ||

≤M1 +M2 +M3.

On the other hand,

M1 =
∑

m1+m2+m3=m,m1≥ j

( m
m1,m2,m3

)||wm1 (T)(CQC)m2 Qm3 ||

≤

∑
m1+m2+m3=m,m1≥ j

( m
m1,m2,m3

)||wm1 (T)||||Q||m2 ||Q||m3

≤ max
j≤n≤m

||wn(T)||(2||Q|| + 1)m

≤(
M
2

)m max
j≤n≤m

||wn(T)||.

Since ||wk(T)|| ≤ (2||T||)k for all k ∈N, by the similar way, we have

M2 ≤ max
j≤n≤m

||Qn
||(2||T|| + ||Q|| + 1)m

≤(
M
2

)m max
j≤n≤m

||Qn
||

and

M3 ≤ max
j≤n≤m

||Qn
||.(2||T|| + ||Q|| + 1)m

≤(
M
2

)m max
j≤n≤m

||Qn
||.
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Hence

||wm(T +Q)|| ≤(
M
2

)m max
j≤n≤m

||wn(T)|| + 2(
M
2

)m max
j≤n≤m

||Qn
||

≤Mm(max
j≤n≤m

||wn(T)|| + max
j≤n≤m

||Qn
||).

Theorem 2.6. Suppose that T ∈ B(H) and C is a conjugation onH . Then the following statements hold:
(i) If T is an [∞,C]-symmetric operator, Qn = 0 for some n ∈ N, TQ = QT and TCQC = CQCT, then T + Q is an
[∞,C]-symmetric operator.
(ii) If Tn is a sequence of commuting [∞,C]-symmetric operators which satisfy lim

n→∞
||Tn − T|| = 0, then T is an

[∞,C]-symmetric operator.

Proof. (i) Let T be an [∞,C]-symmetric operator and Qn = 0 for some n ∈ N, Then for a given 0 < ε < 1,
there exists N which satisfies

||wn(T)|| ≤ εn and ||Qn
|| ≤ εn

for all n ≥ N. It follows from Lemma 2.5, for m ≥ 3N and j = [ m
3 ] ≥ N,

||wm(T +Q)||
1
m ≤M(max

j≤n≤m
||wn(T)|| + max

j≤n≤m
||Qn
||)

1
m

≤M(2εn)
1
m ≤M(2ε j)

1
m

=2
1
m Mε

j
m = 2

1
m Mε

1
m [ m

3 ].

Since ε is arbitrary, lim sup
m→∞

||wm(T +Q)||
1
m = 0, i.e., T +Q is an [∞,C]-symmetric operator.

(ii) Suppose that TnTk = TkTn for all k,n ∈ N. Then TTn = TnT for all n ≥ 1. For a given 0 < ε < 1, there
exists n0 which satisfies

||T − Tn0 || ≤ ε and ||wn(Tn0 )|| ≤ εn

for all n ≥ n0. It follows from Lemma 2.5, for m ≥ 3n0 and j = [ m
3 ] ≥ n0,

||wm(T)||
1
m = ||wm(Tn0 + T − Tn0 )||

1
m

≤M(max
j≤n≤m

||wn(Tn0 )|| + max
j≤n≤m

||T − Tn0 ||
n)

1
m

≤ 2
1
m Mε

j
m = 2

1
m Mε

1
m [ m

3 ].

Since ε is arbitrary, lim sup
m→∞

||wm(T)||
1
m = 0, i.e., T is an [∞,C]-symmetric operator.

We use Theorem 2.6 (ii) to illustrate the following example.

Example 2.7. Let Cn : Cn
→ Cn be the conjugation given by

Cn(x1, x2, · · · , xn)T = (x1, x2, · · · , xn)T.

Put T = ⊕∞n=1Tn, where Tn is an nth order matrix such that

Tn = In +Nn

=



1 0 0 · · · 0 0
0 1 0 · · · 0 0
...
. . .

. . .
. . .

. . .
...

0 0 0
. . . 1 0

0 0 0 · · · 0 1


+



0 0 0 · · · 0 0
1

2n 0 0 · · · 0 0
...

. . .
. . .

. . .
. . .

...

0 0 0
. . . 0 0

0 0 0 · · ·
1

2n 0


.
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Since Nn is a nilpotent operator of order n, it follows from [11] that Tn is a [2n − 1]-complex symmetric operator
with conjugation Cn, we have T is an [∞,C]-symmetric operator with a conjugation C = ⊕∞n=1Cn. In fact, Set
Sn = T1 ⊕ · · · ⊕ Tn ⊕ I ⊕ I ⊕ · · · . Then Sn is a [2n − 1]-complex symmetric operator with conjugation C and
SnSk = SkSn for all n, k ≥ 1. Since Sn → T in the operator norm, it follows from Theorem 2.6 (ii) that T is an
[∞,C]-symmetric operator.

In the following, we study the product properties of [∞,C]-symmetric operators.

Lemma 2.8. Suppose that T,R ∈ B(H) satisfy TR = RT and T(CRC) = (CRC)T. Then

wm(TR) =
m∑

i=0

(m
i )CTiCwm−i(T)wi(R)Rm−i,

where w0(∗) = I.

Proof. Suppose that TR = RT and T(CRC) = (CRC)T. Since

(ab − cd)m = [(a − c)b + (b − d)c]m

=

m∑
i=0

(m
i )ci(a − c)m−i(b − d)ibm−i,

it follows that

wm(TR) =
m∑

i=0

(−1)m−i(m
i )C(TR)iC(TR)m−i

=

m∑
i=0

(m
i )CTiCwm−i(T)wi(R)Rm−i.

Theorem 2.9. Suppose that T and R are [∞,C]-symmetric operators. If TR = RT and T(CRC) = (CRC)T, then TR
is an [∞,C]-symmetric operator.

Proof. Suppose that T and R are [∞,C]-symmetric operators. Then for a given 0 < ε < 1, there exist N1 and
N2 such that

||wn1 (T)|| ≤ εn and ||wn2 (R)|| ≤ εn

for n1 ≥ N1 and n2 ≥ N2. Set N = max{N1,N2}. Then it suffices to show that there exists a constant M > 0
which satisfies for m ≥ 2N,

||wm(TR)|| ≤Mmε
m
2 .

Let j = [ m
2 ] denote the integer part of m

2 . It follows from Lemma 2.8 that

wm(TR) =
j∑

i=0

(m
i )CTiCwm−i(T)wi(R)Rm−i

+

m∑
i= j+1

(m
i )CTiCwm−i(T)wi(R)Rm−i.
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If i ≤ j = [ m
2 ], then m − i ≥ [ m

2 ] = j ≥ N, and so ||wm−i(T)|| ≤ εm−i
≤ ε j. Since ||C|| = 1, ||wi(R)|| ≤ (2||R||)i for all

i ≥ 1. Thus we have

||

j∑
i=0

(m
i )CTiCwm−i(T)wi(R)Rm−i

||

≤

j∑
i=0

(m
i )||wm−i(T)||||CTiC||||Rm−i

||||wi(R)||

≤

j∑
i=0

(m
i )ε j
||T||i||R||m−i(2||R||)i

≤ ε j(2||T||||R|| + ||R||)m.

Similarly, if i ≥ j + 1 ≥ N, then ||wi(R)|| ≤ ε j, and hence we have

||

m∑
i= j+1

(m
i )CTiCwm−i(T)wi(R)Rm−i

|| ≤ ε j(||T|| + 2||T||||R||)m.

Then for m ≥ 2N
||wm(TR)|| ≤ ε[ m

2 ]((2||T||||R|| + ||R||)m + (||T|| + 2||T||||R||)m).

Hence lim sup
m→∞

||wm(TR)||
1
m = 0, i.e., TR is an [∞,C]-symmetric operator.

We use Theorem 2.9 to illustrate the following example.

Example 2.10. Let C be the conjugation onH given by

C(x1, x2, · · · , xn, · · · )T = (x1, x2, · · · , xn, · · · )T.

Suppose that T,S ∈ B(H) satisfy Ten = αen and Sen = βnen+1 with βn =
1
n for all n ≥ 1. Then T and S + I are

[∞,C]-symmetric operators, and it is easy to compute

TCSCen = TCSen = TC(βnen+1) = Tβnen+1 = αβnen+1

and
CSCTen = CSC(αen) = CS(αen) = C(αβnen+1) = αβnen+1.

Moreover, TSen = Tβnen+1 = βnαen+1 and STen = Sαen = αβnen+1. Hence TCSC = CSCT and TS = ST, it follows
from Theorem 2.9 that T(I + S) is an [∞,C]-symmetric operator.

Corollary 2.11. Suppose that T is an [∞,C]-symmetric operator. If T(CTC) = (CTC)T, then Tn is an [∞,C]-
symmetric operator for any n ∈N.

Proof. We shall prove Tn is an [∞,C]-symmetric operator by induction. It’s easy to show that T2 is an
[∞,C]-symmetric operator by Theorem 2.9. Assume that Tn−1 is an [∞,C]-symmetric operator. Since
Tn−1CTC = CTCTn−1, it follows from Theorem 2.9 that Tn is an [∞,C]-symmetric operator.

Theorem 2.12. Suppose that T ∈ B(H). Then the following statements hold:
(i) T is an [∞,C]-symmetric operator if and only if T∗ is an [∞,C]-symmetric operator.
(ii) If T is an invertible [∞,C]-symmetric operator, then T−1 is an [∞,C]-symmetric operator.



J. Shen et al. / Filomat 37:30 (2023), 10145–10152 10152

Proof. (i) Let T be an [∞,C]-symmetric operator. Since

wm(T∗) =
m∑

i=0

(−1)m−i(m
i )CT∗iCT∗m−i,

then

wm(T∗) =
m∑

i=0

(−1)m−i(m
i )CT∗iCT∗m−i

= C
m∑

i=0

(−1)m−i(m
i )T∗iCT∗m−iCC

=

{
C(wm(T))∗C, i f m is even,
−C(wm(T))∗C, i f m is odd.

Therefore,

lim sup
m→∞

||wm(T∗)||
1
m = lim sup

m→∞
||C(wm(T))∗C||

1
m

≤ lim sup
m→∞

||(wm(T))∗||
1
m

= lim sup
m→∞

||wm(T)||
1
m

= 0,

i.e., T∗ is an [∞,C]-symmetric operator. The converse implication holds by a similar way.
(ii) Note for any b, c ∈ C,

bm(c−1
− b−1)mcm = (b − c)m =

m∑
i=0

(−1)m−i(m
i )bicm−i.

Take c = T and b = CTC. Then we have

wm(T) = (−1)m(CTC)mwm(T−1)Tm.

Therefore,
(−1)m(CTC)−mwm(T)T−m = wm(T−1).

Hence
lim sup

m→∞
||wm(T−1)||

1
m ≤ lim sup

m→∞
||T−1
||||wm(T)||

1
m ||T−1

|| = 0,

i.e., T−1 is an [∞,C]-symmetric operator.
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