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Abstract. LetA be a unital ∗-algebra. In this paper, under some mild conditions onA, it is shown that a
mapΦ : A→A is a nonlinear mixed bi-skew Lie triple derivation if and only ifΦ is an additive ∗-derivation.
As applications, nonlinear mixed bi-skew Lie triple derivations on prime ∗-algebras, von Neumann algebras
with no central summands of type I1, factor von Neumann algebras and standard operator algebras are
characterized.

1. Introduction

LetA be a ∗-algebra over the complex field C. For A,B ∈ A, define the bi-skew Jordan product of A and
B by A ◦ B = A∗B + B∗A and the bi-skew Lie product of A and B by [A,B]⋄ = A∗B − B∗A. The bi-skew Jordan
product and bi-skew Lie product have attracted many scholars to study (see for example [2–6, 10, 14–17]).
Particular attention has been paid to understand maps which preserve the bi-skew Jordan product and the
bi-skew Lie product on C∗-algebras. M. Wang and G. Ji [15] proved that every bijective map preserving
bi-skew Lie product between factor von Neumann algebras is a linear ∗-isomorphism or a conjugate linear
∗-isomorphism. C. Li et al. [10] proved that every bijective map preserving bi-skew Jordan product between
von Neumann algebras with no central abelian projections is just the sum of a linear ∗-isomorphism and
a conjugate linear ∗-isomorphism. A. Taghavi and S. Gholampoor [14] studied surjective maps preserving
bi-skew Jordan product between C∗-algebras.

Recall that an additive map Φ : A → A is said to be an additive derivation if Φ(AB) = Φ(A)B + AΦ(B)
holds for all A,B ∈ A. Furthermore, Φ is said to be an additive ∗-derivation if it is an additive derivation
and satisfies Φ(A∗) = Φ(A)∗ for all A ∈ A.We say that Φ : A → A is a nonlinear bi-skew Lie derivation or
bi-skew Jordan derivation if

Φ([A,B]⋄) = [Φ(A),B]⋄ + [A,Φ(B)]⋄

or
Φ(A ◦ B) = Φ(A) ◦ B + A ◦Φ(B)
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hold for all A,B ∈ A. Recently, many authors have studied nonlinear bi-skew Lie derivations and bi-skew
Jordan derivations. For example, L. Kong and J. Zhang [6] proved that any nonlinear bi-skew Lie derivation
on factor von Neumann algebraA with dimA ≥ 2 is an additive ∗-derivation. A. Taghavi and M. Razeghi
[15] investigated nonlinear bi-skew Lie derivations on prime ∗-algebras. Let Φ be a nonlinear bi-skew Lie
derivation on a unital prime ∗-algebra with a nontrivial projection. They proved that if Φ(I) and Φ(iI) are
self-adjoint, then Φ is an additive ∗-derivation. V. Darvish et al. [2] proved any nonlinear bi-skew Jordan
derivation on prime ∗-algebra is an additive ∗-derivation. A. Khan [5] proved that any nonlinear bi-skew
Lie triple derivation on factor von Neumann algebra A with dimA ≥ 2 is an additive ∗-derivation. V.
Darvish et al. [3] proved any nonlinear bi-skew Jordan triple derivation on prime ∗-algebra is an additive
∗-derivation.

Recently, many authors have studied derivations corresponding to some mixed products (see for exam-
ple [8, 9, 11, 12, 18, 19]). Y. Zhou, Z. Yang and J. Zhang [18] proved any map Φ from a unital ∗-algebra A
containing a non-trivial projection to itself satisfying

Φ([[A,B]∗,C]) = [[Φ(A),B]∗,C] + [[A,Φ(B)]∗,C] + [[A,B]∗,Φ(C)]

for all A,B,C ∈ A, is an additive ∗-derivation, where [A,B] = AB − BA is the usual Lie product of A and B
and [A,B]∗ = AB − BA∗ is the skew Lie product of A and B. Y. Zhou and J. Zhang [19] proved that any map
Φ on factor von Neumann algebraA satisfying

Φ([[A,B],C]∗) = [[Φ(A),B],C]∗ + [[A,Φ(B)],C]∗ + [[A,B],Φ(C)]∗

for all A,B,C ∈ A, is also an additive ∗-derivation. X. Zhao and X. Fang [17] gave similar result on finite
von Neumann algebra with no central summands of type I1. Y. Pang, D. Zhang and D. Ma [11] proved that
if Φ is a second nonlinear mixed Jordan triple derivable mapping on a factor von Neumann algebraA, that
is, if Φ satisfies

Φ(A ◦ B • C) = Φ(A) ◦ B • C + A ◦Φ(B) • C + A ◦ B •Φ(C)

for all A,B,C ∈ A, then Φ is an additive ∗-derivation, where A ◦ B = AB+ BA is the usual Jordan product of
A and B and A•B = AB+BA∗ is the Jordan ∗-product of A and B. Lately, N. Rehman, J. Nisar and M. Nazim
[12] generalized the above result to general ∗-algebras. C. Li and D. Zhang [8, 9] studied the derivations
corresponding to the mixed products [A,B]∗ • C and [A • B,C]∗.

Motivated by the above mentioned works, in this paper, we will consider the derivations corresponding
to the new product of the mixture of the bi-skew Lie product and the bi-skew Jordan product. A map
Φ : A→A is said to be a nonlinear mixed bi-skew Lie triple derivation if

Φ([A ◦ B,C]⋄) = [Φ(A) ◦ B,C]⋄ + [A ◦Φ(B),C]⋄ + [A ◦ B,Φ(C)]⋄

holds for all A,B,C ∈ A. In this paper, we will give the structure of the nonlinear mixed bi-skew Lie triple
derivations on ∗-algebra. Under some mild conditions on a ∗-algebra A, we prove that Φ is a nonlinear
mixed bi-skew Lie triple derivation onA if and only if Φ is an additive ∗-derivation.

2. Main result and corollaries

The following is our main result in this paper.

Theorem 2.1. LetA be a unital ∗-algebra with the unit I. Assume thatA contains a nontrivial projection P which
satisfies

(♠) XAP = 0 implies X = 0

and
(♣) XA(I − P) = 0 implies X = 0.

Then a map Φ : A→A satisfies

Φ([A ◦ B,C]⋄) = [Φ(A) ◦ B,C]⋄ + [A ◦Φ(B),C]⋄ + [A ◦ B,Φ(C)]⋄

for all A,B,C ∈ A if and only if Φ is an additive ∗-derivation.
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Recall that an algebraA is prime if AAB = {0} for A,B ∈ A implies either A = 0 or B = 0. It is easy to see
that prime ∗-algebras satisfy (♠) and (♣). Applying Theorem 2.1 to prime ∗-algebras, we have the following
corollary.

Corollary 2.2. LetA be a prime ∗-algebra with unit I and P be a nontrivial projection inA. Then a mapΦ : A→A
satisfies

Φ([A ◦ B,C]⋄) = [Φ(A) ◦ B,C]⋄ + [A ◦Φ(B),C]⋄ + [A ◦ B,Φ(C)]⋄

for all A,B,C ∈ A if and only if Φ is an additive ∗-derivation.

Let B(H) be the algebra of all bounded linear operators on a complex Hilbert spaceH andF (H) ⊆ B(H)
be the subalgebra of all bounded finite rank operators. A subalgebraA ⊆ B(H) is called a standard operator
algebra if it contains F (H). Now we have the following corollary.

Corollary 2.3. LetA be a standard operator algebra on an infinite dimensional complex Hilbert spaceH containing
the identity operator I. Suppose thatA is closed under the adjoint operation. Then Φ : A→A satisfies

Φ([A ◦ B,C]⋄) = [Φ(A) ◦ B,C]⋄ + [A ◦Φ(B),C]⋄ + [A ◦ B,Φ(C)]⋄

for all A,B,C ∈ A if and only if Φ is a linear ∗-derivation. Moreover, there exists an operator T ∈ B(H) satisfying
T + T∗ = 0 such that Φ(A) = AT − TA for all A ∈ A, i.e., Φ is inner.

Proof. Since A is prime, we have that Φ is an additive ∗-derivation. It follows from [13] that Φ is a linear
inner derivation, i.e., there exists an operator S ∈ B(H) such that Φ(A) = AS − SA. Since Φ(A∗) = Φ(A)∗, we
have

A∗S − SA∗ = Φ(A∗) = Φ(A)∗ = −A∗S∗ + S∗A∗

for all A ∈ A. Hence A∗(S+ S∗) = (S+ S∗)A∗, and then S+ S∗ = λI for some λ ∈ R. Let T = S− 1
2λI. It is easy

to see that T + T∗ = 0 such that Φ(A) = AT − TA.

A von Neumann algebraM is a weakly closed, self-adjoint algebra of operators on a Hilbert space H
containing the identity operator I. M is a factor von Neumann algebra if its center only contains the scalar
operators. It is well known that a factor von Neumann algebra is prime. Now we have the following
corollary.

Corollary 2.4. LetM be a factor von Neumann algebra with dim(M) ≥ 2. Then a map Φ :M→M satisfies

Φ([A ◦ B,C]⋄) = [Φ(A) ◦ B,C]⋄ + [A ◦Φ(B),C]⋄ + [A ◦ B,Φ(C)]⋄

if and only if Φ is an additive ∗-derivation.

It is shown in [1] and [7] that if a von Neumann algebraM has no central summands of type I1, thenM
satifies (♠) and (♣). Now we have the following corollary.

Corollary 2.5. LetM be a von Neumann algebra with no central summands of type I1. Then a map Φ : M→M
satisfies

Φ([A ◦ B,C]⋄) = [Φ(A) ◦ B,C]⋄ + [A ◦Φ(B),C]⋄ + [A ◦ B,Φ(C)]⋄

if and only if Φ is an additive ∗-derivation.

3. The proof of main result

The proof of Theorem 2.1. In the following, let P1 = P and P2 = I − P. Denote Ai j = PiAP j(i, j = 1, 2).
Then A = A11 + A12 + A21 + A22. Let N = {A ∈ A : A∗ = −A} ,N12 = {P1NP2 + P2NP1 : N ∈ N} ,Nii =
PiNPi(i = 1, 2). Thus, for every N ∈ N , N = N11 +N12 +N22, where N11 ∈ N11,N12 ∈ N12,N22 ∈ N22.

Proof. Clearly, we only need to prove the necessity. We will complete the proof by several claims.
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Claim 1.. Φ(0) = 0.
Indeed, we have

Φ(0) = Φ([0 ◦ 0, 0]⋄) = [Φ(0) ◦ 0, 0]⋄ + [0 ◦Φ(0), 0]⋄ + [0 ◦ 0,Φ(0)]⋄ = 0.

Claim 2.. For every N ∈ N , we have Φ(N) ∈ N .

For any N ∈ N , N = [N ◦
i
2

I,
i
2

I]⋄. Since [A ◦ B,C]⋄ ∈ N for all A,B,C ∈ A, we get

Φ(N) = Φ([N ◦
i
2

I,
i
2

I]⋄)

= [Φ(N) ◦
i
2

I,
i
2

I]⋄ + [N ◦Φ(
i
2

I),
i
2

I]⋄ + [N ◦
i
2

I,Φ(
i
2

I)]⋄ ∈ N .

Claim 3.. For every C11 ∈ N11,N12 ∈ N12 and D22 ∈ N22, we have

Φ(C11 +N12) = Φ(C11) + Φ(N12)

and
Φ(N12 +D22) = Φ(N12) + Φ(D22).

Let T = Φ(C11 +N12) −Φ(C11) −Φ(N12). By Claim 2, we have T∗ = −T. Since [I ◦ P2,C11]⋄ = 0, we obtain

[Φ(I) ◦ P2,C11 +N12]⋄ + [I ◦Φ(P2),C11 +N12]⋄ + [I ◦ P2,Φ(C11 +N12)]⋄
= Φ([I ◦ P2,C11 +N12]⋄)
= Φ([I ◦ P2,C11]⋄) + Φ([I ◦ P2,N12]⋄)
= [Φ(I) ◦ P2,C11 +N12]⋄ + [I ◦Φ(P2),C11 +N12]⋄ + [I ◦ P2,Φ(C11) + Φ(N12)]⋄.

This implies that [I ◦ P2,T]⋄ = 0, and hence P1TP2 = P2TP1 = P2TP2 = 0.
Next, it follows from [I ◦ (P2 − P1),N12]⋄ = 0 that

[Φ(I) ◦ (P2 − P1),C11 +N12]⋄ + [I ◦Φ(P2 − P1),C11 +N12]⋄
+ [I ◦ (P2 − P1),C11 +N12]⋄
= Φ([I ◦ (P2 − P1),C11 +N12]⋄)
= Φ([I ◦ (P2 − P1),C11]⋄) + Φ([I ◦ (P2 − P1),N12]⋄)
= [Φ(I) ◦ (P2 − P1),C11 +N12]⋄ + [I ◦Φ(P2 − P1),C11 +N12]⋄
+ [I ◦ (P2 − P1),Φ(C11) + Φ(N12)]⋄.

So [I ◦ (P2 − P1),T]⋄ = 0, and it yields that P1TP1 = 0. Hence T = 0.
Similarly, we can get that Φ(N12 +D22) = Φ(N12) + Φ(D22).

Claim 4.. For every C11 ∈ N11,N12 ∈ N12 and D22 ∈ N22, we have

Φ(C11 +N12 +D22) = Φ(C11) + Φ(N12) + Φ(D22).

Let T = Φ(C11+N12+D22)−Φ(C11)−Φ(N12)−Φ(D22). By Claim 2, we have T∗ = −T. Since [P1◦I,D22]⋄ = 0,
it follows from Claim 3 that

[Φ(P1) ◦ I,C11 +N12 +D22]⋄ + [P1 ◦Φ(I),C11 +N12 +D22]⋄
+ [P1 ◦ I,Φ(C11 +N12 +D22)]⋄
= Φ([P1 ◦ I,C11 +N12 +D22]⋄)
= Φ([P1 ◦ I,C11 +N12]⋄) + Φ([P1 ◦ I,D22]⋄)
= [Φ(P1) ◦ I,C11 +N12 +D22]⋄ + [P1 ◦Φ(I),C11 +N12 +D22]⋄
+ [P1 ◦ I,Φ(C11) + Φ(N12) + Φ(D22)]⋄.

This yields that [P1 ◦ I,T]⋄ = 0, and then P1TP1 = P1TP2 = 0. In the similar manner, we can show that
P2TP1 = P2TP2 = 0. Hence T = 0.
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Claim 5.. For every N12,B12 ∈ N12, we have

Φ(N12 + B12) = Φ(N12) + Φ(B12).

Let N12,B12 ∈ N12. Then N12 = P1NP2 + P2NP1, B12 = P1BP2 + P2BP1, where N,B ∈ N . Since

[(iP1 +N12) ◦ (iP2 + B12),
i
2

I]⋄ = N12 + B12 − iN12B12 − iB12N12,

where
N12 + B12 ∈ N12

and
−iN12B12 − iB12N12 = P1(−i(NP2B + BP2N))P1 + P2(−i(NP1B + BP1N))P2 ∈ N11 +N22,

we can get from Claim 4 that

Φ(N12 + B12) + Φ(−iN12B12 − iB12N12)
= Φ(N12 + B12 − iN12B12 − iB12N12)

= Φ([(iP1 +N12) ◦ (iP2 + B12),
i
2

I]⋄)

= [(Φ(iP1) + Φ(N12)) ◦ (iP2 + B12),
i
2

I]⋄ + [(iP1 +N12) ◦ (Φ(iP2) + Φ(B12)),
i
2

I]⋄

+ [(iP1 +N12) ◦ (iP2 + B12),Φ(
i
2

I)]⋄

= Φ([(iP1) ◦ (iP2),
i
2

I]⋄) + Φ([(iP1) ◦ B12,
i
2

I]⋄) + Φ([N12 ◦ (iP2),
i
2

I]⋄)

+ Φ([N12 ◦ B12,
i
2

I]⋄)

= Φ(B12) + Φ(N12) + Φ(−iN12B12 − iB12N12).

This implies that
Φ(N12 + B12) = Φ(N12) + Φ(B12).

Claim 6.. For every Cii,Dii ∈ Nii (i = 1, 2), we have

Φ(Cii +Dii) = Φ(Cii) + Φ(Dii).

Let T = Φ(C11+D11)−Φ(C11)−Φ(D11). By Claim 2, we have T∗ = −T. Since [P2◦I,C11]⋄ = [P2◦I,D11]⋄ = 0,
we obtain

[Φ(P2) ◦ I,C11 +D11]⋄ + [P2 ◦Φ(I),C11 +D11]⋄ + [P2 ◦ I,Φ(C11 +D11)]⋄
= Φ([P2 ◦ I,C11 +D11]⋄)
= Φ([P2 ◦ I,C11]⋄) + Φ([P2 ◦ I,D11]⋄)
= [Φ(P2) ◦ I,C11 +D11]⋄ + [P2 ◦Φ(I),C11 +D11]⋄ + [P2 ◦ I,Φ(C11) + Φ(D11)]⋄.

Hence [P2 ◦ I,T]⋄ = 0, and then P1TP2 = P2TP1 = P2TP2 = 0. Now we have T = P1TP1.
For every A12 ∈ A12, let N = A12 − A∗12. Then

[C11 ◦N,
i
2

I]⋄, [D11 ◦N,
i
2

I]⋄ ∈ N12.
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In view of Claim 5, we find that

[Φ(C11 +D11) ◦N,
i
2

I]⋄ + [(C11 +D11) ◦Φ(N),
i
2

I]⋄

+ [(C11 +D11) ◦N,Φ(
i
2

I)]⋄

= Φ([(C11 +D11) ◦N,
i
2

I]⋄)

= Φ([C11 ◦N,
i
2

I]⋄) + Φ([D11 ◦N,
i
2

I]⋄)

= [(Φ(C11) + Φ(D11)) ◦N,
i
2

I]⋄ + [(C11 +D11) ◦Φ(N),
i
2

I]⋄

+ [(C11 +D11) ◦N,Φ(
i
2

I)]⋄.

This yields that [T ◦ N,
i
2

I]⋄ = 0, that is, A∗12T − TA12 = 0. Multiplying the above equation by P1 from the
left, we have P1TA12 = 0 for all A12 ∈ A12. It follows from (♣) that P1TP1 = 0, and hence T = 0.

Similarly, we can show that Φ(C22 +D22) = Φ(C22) + Φ(D22).

By using Claims 4-6, one can obtain the following claim easily.

Claim 7.. Φ is additive onN .

Claim 8..

1. Φ(I) = Φ(iI) = 0;
2. For any M ∈ A such that M∗ =M, we have Φ(M)∗ = Φ(M) and Φ(iM) = iΦ(M).

For any M ∈ M, it follows from Claims 2 and 7 that

4Φ(iI) = Φ(4iI) = Φ([(iI) ◦ (iI), iI]⋄)
= [Φ(iI) ◦ (iI), iI]⋄ + [(iI) ◦Φ(iI), iI]⋄ + [(iI) ◦ (iI),Φ(iI)]⋄
= 2[−2iΦ(iI), iI]⋄ + [2I,Φ(iI)]⋄
= 12Φ(iI).

This implies that Φ(iI) = 0.
For any M ∈ A such that M∗ =M,

0 = Φ([M ◦ (iI), iI]⋄) = [Φ(M) ◦ (iI), iI]⋄ = 2(Φ(M) −Φ(M)∗).

Hence Φ(M)∗ = Φ(M) for all M∗ =M.
Now, we can get that

0 = 4Φ(iI) = Φ(4iI) = Φ([I ◦ I, iI]⋄)
= [Φ(I) ◦ I, iI]⋄ + [I ◦Φ(I), iI]⋄
= 8iΦ(I).

This yields that Φ(I) = 0.
For any M ∈ A such that M∗ =M, we have

4Φ(iM) = Φ(4iM) = Φ([I ◦M, iI]⋄)
= [I ◦Φ(M), iI]⋄
= 4iΦ(M).

Thus Φ(iM) = iΦ(M) for all M∗ =M.
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Claim 9.. For any A1,A2 ∈ A such that A∗1 = A1,A∗2 = A2,we have

Φ(A1 + A2) = Φ(A1) + Φ(A2)

and
Φ(A1 + iA2) = Φ(A1) + iΦ(A2).

Let A∗1 = A1, A∗2 = A2. It follows from Claims 7 and 8 that

iΦ(A1 + A2) = Φ(i(A1 + A2)) = Φ(iA1) + Φ(iA2) = i(Φ(A1) + Φ(A2)).

That is, Φ(A1 + A2) = Φ(A1) + Φ(A2).
Now, on the one hand, we have

4iΦ(A1) = Φ(4iA1) = Φ([(A1 + iA2) ◦ I, iI]⋄)
= [Φ(A1 + iA2) ◦ I, iI]⋄
= 2i(Φ(A1 + iA2) + Φ(A1 + iA2)∗).

On the other hand, we also have

4iΦ(A2) = Φ(4iA2) = Φ([(A1 + iA2) ◦ (iI), iI]⋄)
= [Φ(A1 + iA2) ◦ (iI), iI]⋄
= 2(Φ(A1 + iA2) −Φ(A1 + iA2)∗).

Comparing the above two equations, we obtain Φ(A1 + iA2) = Φ(A1) + iΦ(A2).

Claim 10..

1. For every A ∈ A, we have Φ(iA) = iΦ(A) and Φ(A∗) = Φ(A)∗;
2. Φ is additive onA.

For any A ∈ A,we have A = A1 + iA2,where A∗1 = A1,A∗2 = A2. It follows from Claim 9 that

Φ(iA) = Φ(iA1 − A2) = iΦ(A1) −Φ(A2)
= i(Φ(A1) + iΦ(A2)) = iΦ(A1 + iA2)
= iΦ(A).

Next, from Claims 8 and 9, we find that

Φ(A∗) = Φ(A1 − iA2) = Φ(A1) − iΦ(A2)
= (Φ(A1) + iΦ(A2))∗ = (Φ(A1 + iA2))∗

= Φ(A)∗.

For any A,B ∈ A, we have A = A1 + iA2 and B = B1 + iB2, where A∗1 = A1,A∗2 = A2,B∗1 = B1,B∗2 = B2. Then
we can obtain from Claim 9 that

Φ(A + B) = Φ((A1 + B1) + i(A2 + B2))
= Φ(A1 + B1) + iΦ(A2 + B2)
= (Φ(A1) + iΦ(A2)) + (Φ(B1) + iΦ(B2))
= Φ(A) + Φ(B).
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Claim 11.. Φ is an additive ∗-derivation onA.
For every A,B ∈ A, on the one hand, by Claims 8 (1) and 10, we have

2iΦ(A∗B + B∗A) = Φ(2i(A∗B + B∗A))
= Φ([A ◦ B, iI]⋄)
= [Φ(A) ◦ B, iI]⋄ + [A ◦Φ(B), iI]⋄
= 2i(Φ(A)∗B + B∗Φ(A) + A∗Φ(B) + Φ(B)∗A).

This yields that
Φ(A∗B + B∗A) = Φ(A)∗B + B∗Φ(A) + A∗Φ(B) + Φ(B)∗A.

On the other hand, we also have

−2(Φ(A∗B − B∗A)) = Φ(−2(A∗B − B∗A))
= Φ([A ◦ iB, iI]⋄)
= [Φ(A) ◦ iB, iI]⋄ + [A ◦Φ(iB), iI]⋄
= −2(Φ(A)∗B − B∗Φ(A) + A∗Φ(B) −Φ(B)∗A).

This yields that
Φ(A∗B − B∗A) = Φ(A)∗B − B∗Φ(A) + A∗Φ(B) −Φ(B)∗A.

By summing the above two equations, we have

Φ(A∗B) = Φ(A)∗B + A∗Φ(B).

Replacing A by A∗ in the above equation and using Claim 10 (1), we obtain

Φ(AB) = Φ(A)B + AΦ(B).

Hence Φ is an additive ∗-derivation onA by Claim 10. This completes the proof of Theorem 2.1.
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