

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On the automorphism-invariance of finitely generated ideals and formal matrix rings

Le Van Thuyeta, Truong Cong Quynhb,*

^aDepartment of Mathematics, College of Education, Hue University, 34 Le Loi, Hue city, Viet Nam ^bDepartment of Mathematics, The University of Danang - University of Science and Education, 459 Ton Duc Thang, Danang city, Vietnam

Abstract. In this paper, we study rings having the property that every finitely generated right ideal is automorphism-invariant. Such rings are called right fa-rings. It is shown that a right fa-ring with finite Goldie dimension is a direct sum of a semisimple artinian ring and a basic semiperfect ring. Assume that R is a right fa-ring with finite Goldie dimension such that every minimal right ideal is a right annihilator, its right socle is essential in R_R , R is also indecomposable (as a ring), not simple, and R has no trivial idempotents. Then R is QF. In this case, QF-rings are the same as q-, fq-, a-, fa-rings. We also obtain that a right module (X, Y, f, g) over a formal matrix ring $\begin{pmatrix} R & M \\ N & S \end{pmatrix}$ with canonical isomorphisms \tilde{f} and \tilde{g} is automorphism-invariant if and only if X is an automorphism-invariant right R-module and Y is an automorphism-invariant right S-module.

1. Introduction

Johnson and Wong [7] proved that a module M is invariant under any endomorphism of its injective envelope if and only if any homomorphism from a submodule of M to M can be extended to an endomorphism of M. A module satisfying one of these equivalent conditions is called a *quasi-injective* module. Clearly any injective module is quasi-injective. A module M which is invariant under automorphisms of its injective envelope has been called an *automorphism-invariant* module. The class of these modules were investigated by many authors, e.g., [1], [5], [9, 10], [12], [15–20], [22]. The generalizations of quasi-injectivity were considered. Many results were obtained for a right q-ring (i.e., every right ideal is quasi-injective) (see [4], [6]), for a right q-ring (i.e., every finitely generated right ideal is automorphism-invariant) (see [8]), for a right q-ring (i.e., every finitely generated right ideal is automorphism-invariant) (see [15]). In this paper, we continue to consider the structure of a q-ring with some addition conditions, for example, the finite Goldie dimension of the ring q-ring q-ring q-ring with some addition consider the automorphism-invariance of formal matrix rings.

2020 Mathematics Subject Classification. 16D50, 16D70, 16D80, 16S50.

Keywords. Automorphism-invariant module; fa-ring, Finite Goldie dimension; Formal matrix ring.

Received: 30 November 2022; Accepted: 23 June 2023

Communicated by Dijana Mosić

The authors acknowledge the support/partial support of the Core Research Program of Hue University, Grant No. NCM.DHH.2020.15. Parts of this paper were written during a stay of the authors in the Vietnam Institute For Advanced Study in Mathematics (VIASM)

* Corresponding author: Truong Cong Quynh

Email addresses: lvthuyet@hueuni.edu.vn (Le Van Thuyet), tcquynh@ued.udn.vn (Truong Cong Quynh)

Throughout this article all rings are associative rings with identity and all modules are right unital unless stated otherwise. For a submodule N of M, we use $N \le M$ (N < M, resp.) to mean that N is a submodule of M (proper submodule, resp.), and we write $N \le^e M$ and $N \le^\oplus M$ to indicate that N is an essential submodule of M and N is a direct summand of M, respectively. We denote by Soc(M) and E(M), the socle and the injective envelope of M, respectively. The Jacobson radical of a ring R is denoted by J(R) or M. It is equivalent to every finitely generated right (left) R-module has a projective cover. A module is called R-module is the intersection of any two nonzero submodules is nonzero. A ring R is called R-module is contains no infinite orthogonal family of idempotents. A ring R is said to have R-module R-module is contain an infinite direct sum of nonzero right ideals. A ring R is called right R-module for R-module is contain an infinite direct sum of nonzero right ideals. A ring R is called right R-module for R-module is contain an infinite direct sum of nonzero right ideals. A ring R is called right R-module for R-module is contain an infinite direct sum of nonzero right ideals. A ring R is called right R-module for R-module for R-module is contained by R-module for R-module for

Our paper will be structured as follows: In Section 1, we will give the basic concepts and some known results that are used or cited throughout in this paper. Section 2 deals with rings whose finitely generated ideals are automorphism-invariant. We prove that a right fa-ring with finite Goldie dimension is a direct sum of a semisimple artinian ring and a basic semiperfect ring. Next, we consider the right fa-ring with finite Goldie dimension such that every minimal right ideal is a right annihilator and its right socle is essential in R_R . We obtain some properties of the kind of these rings. From these, we have that for this ring and moreover it is also indecomposable (as ring), not simple with non-trivial idempotents then it is QF. In this case, QF-rings are the same as q-, fq-, a-, fa-rings. Section 3 discusses about the invariance of formal matrix rings. Let $K = \begin{pmatrix} R & M \\ N & S \end{pmatrix}$ and (X, Y, f, g) be a right K-module, \tilde{f} and \tilde{g} be isomorphisms. Then (X, Y, f, g) is an automorphism-invariant right K-module and Y is an automorphism-invariant right K-module.

2. On fa-Rings with finite Goldie dimension

Recall that a ring R is a right fa-ring (resp., fq-ring) if every finitely generated right ideal of R is automorphism-invariant (resp., quasi-injective).

Remark 2.1. Applying [8, Lemma 2.1] we deduce the following result: Let R be commutative ring. Then R is a fa-ring if and only if it is an automorphism-invariant ring.

Example 2.2. It is clear that a-rings are fa-rings. And we have the example of a-rings but not self-injective. For example, consider the ring R consisting of all eventually constant sequences of elements from \mathbb{F}_2 . Clearly, R is a commutative a-ring. But R is not self-injective. Thus, fa-rings are not fq-rings.

Example 2.3. The ring of linear transformations $R := End(V_D)$ of a vector space V infinite-dimensional over a division ring D. Then R is not a right a-ring, because V is not finite dimensional. But R is a right fa-ring, since every finitely generated ideal is a direct summand of R and R is right self-injective.

Let R be a semiperfect ring. Then, there exists a set of orthogonal local idempotents $\{e_1, e_2, \ldots, e_m\}$ such that $1 = e_1 + e_2 + \cdots + e_m$. We may assume that $\{e_i R/e_i J(R) | 1 \le i \le n\}$ is a complete set of representatives of the isomorphism classes of the simple right R-modules. In this case, $\{e_1, e_2, \ldots, e_n\}$ is called the set of *basic idempotents* for R, and if $e = e_1 + e_2 + \cdots + e_n$, the ring eRe is called the *basic ring* of R. Note that $eR \cong fR$ if and only if $eR/eJ(R) \cong fR/fJ(R)$ for idempotents e and e of e by Jacobson's Lemma (see [14, Lemma B.12]). The ring e is itself called a *basic semiperfect* ring if e if e is a basic set of local idempotents.

Lemma 2.4. If R is a right automorphism-invariant I-finite ring, then R is a semiperfect ring.

The following result is the main result of this section.

Theorem 2.5. Let R be a right fa-ring with finite Goldie dimension. Then R is a direct sum of a semisimple artinian ring and a basic semiperfect ring.

Proof. By Lemma 2.4, R is a semiperfect ring, and so there exists a set of orthogonal local idempotents $\{e_1, e_2, \ldots, e_m\}$ such that $1 = e_1 + e_2 + \cdots + e_m$. Suppose that $e_i R \not\equiv e_j R$ for all $i \neq j$ with $i, j \in \{1, 2, \ldots, m\}$. Then, we are done. Assume that e_i , for some $i \in \{1, 2, \ldots, m\}$, is a local idempotent of R such that there are direct summands isomorphic to $e_i R$ in each decomposition of R_R as a direct sum of indecomposable modules. Thus, there exists an idempotent e' of R such that $e_i R \cap e' R = 0$ and $e_i R \cong e' R$. It follows, from [15, Lemma 4.2], that $e_i R$ is a semisimple right R-module. On the other and, we have that $e_i R$ is an idecomposable module and obtain that $e_i R$ is simple. Let e R be the direct sum of all copies of $e_i R$ in the decomposition of $R = e_1 R \oplus e_2 R \oplus \cdots \oplus e_m R$. Note that e R is a direct summand of R. We can assume that e is an idempotent of R. Then, we have a decomposition $R = e R \oplus (1 - e)R$. Next, we show that e R and e R are ideals of R. In order to show this, it is necessary to prove that e R (1 - e) R = 0 and e R (1 - e) R = 0.

Suppose $(1-e)Re \neq 0$. Take $(1-e)te \neq 0$ for some $t \in R$. Then, there are primitive idempotents e_j and e_k such that $e_jR \cong e_iR$, $e_kR \ncong e_iR$ with $j,k \in \{1,2,\ldots,m\}$, $e_j \in eR$, $e_k \in (1-e)R$ and $e_kte_j \neq 0$. We consider the following map $\alpha: e_jR \to e_kR$ defined by $\alpha(e_jr) = e_kte_jr$ for all $r \in R$. One can check that α is a nonzero homomorphism. Note that e_jR is simple. Thus, α is a monomorphism. Since R is a right fa-ring, $e_jR \oplus e_kR$ is an automorphism-invariant module, and so e_jR is e_kR -injective by [12, Theorem 5]. From this, it immediately follows that α splits. We have that e_kR is simple and obtain $e_jR \cong e_kR$, a contradiction. We deduce that (1-e)Re = 0, and so eR is an ideal of R.

Similarly to the above proof, suppose that $eR(1-e) \neq 0$. Call $eu(1-e) \neq 0$ for some $u \in R$. Then there are primitive idempotents e_p and e_q of R such that $e_pR \cong e_iR$, $e_qR \ncong e_iR$ with $p,q \in \{1,2,\ldots,m\}$, $e_p \in eR$, $e_q \in (1-e)R$ and $e_pue_q \neq 0$. We consider the following map $\beta: e_qR \to e_pR$ defined by $\beta(e_qr) = e_pue_qr$ for all $r \in R$. Then, β is a nonzero epimorphism by the simplicity of e_pR . Since e_pR is projective, β splits. One can check that $e_qR \cong e_pR$. This is a contradiction, and so eR(1-e) = 0. We deduce that (1-e)R is an ideal of R.

Thus, eR is a semisimple artinian ring and (1 - e)R is a basic semiperfect ring.

П

Next, we give some properties of minimal right and left ideals of *R*. Moreover, the self-injectivity of *R* is considered.

Lemma 2.6. Let R be a right automorphism-invariant ring and $Soc(R_R) \le^e R_R$ such that every minimal right ideal is a right annihilator.

- (1) If xR is a minimal right ideal of R, then $l_R r_R(x) = Rx$ and Rx is a minimal left ideal of R.
- (2) If Ry is a minimal left ideal of R then yR is a minimal right ideal of R and $l_R r_R(Ry) = Ry$. In particular, $Soc(R_R) = Soc(_RR)$ is denoted by S.
- (3) Soc(eR) and Soc(Re) are simple for all local idempotents $e \in R$.
- (4) If R is I-finite then R is a right PF-ring.
- *Proof.* (1) Assume that xR is a minimal right ideal of R. It is easy to see that $Rx \le l_R r_R(x)$. For the converse, let $t \in l_R r_R(x)$ be a nonzero element. Then, we have $r_R(x) \le r_R(t)$, and so $r_R(x) = r_R(t)$ by the maximality of $r_R(x)$. It follows that Rx = Rt by [16, Lemma 1]. Then, $t \in Rx$ and so $l_R r_R(x) \le Rx$ or $l_R r_R(x) = Rx$. On the other hand, for any nonzero element y in Rx, we have $r_R(x) \le r_R(y)$, and so $r_R(x) = r_R(y)$ by the maximality of $r_R(x)$. It shows that Rx = Ry is a minimal left ideal. We deduce that Rx is a minimal left ideal of R.
- (2) Suppose that Ry is a minimal left ideal of R. Since $Soc(R_R) \le^e R_R$, yR contains a minimal right ideal mR of R. Thus, $l_R(y) = l_R(m)$. It follows that $y \in r_R l_R(y) = r_R l_R(m) = mR \le yR$ by our assumption, and so yR = mR. Thus, yR is a minimal right ideal of R. The rest is followed by (1).
- (3) Take kR a minimal right ideal of eR. Then, Rk is a minimal left ideal of R. Therefore, $l_R(kR) \ge R(1-e)$ and $l_R(kR) = l_R(k) \ge J(R)$. It follows that $l_R(kR) = J(R) + R(1-e)$ because J(R) + R(1-e) is the unique maximal left ideal containing R(1-e). By our assumption we have

$$kR = r_R l_R(kR) = r_R [J(R) + R(1-e)] = r_R(J(R)) \cap eR = Soc(R_R) \cap eR = Soc(eR)$$

It shows that Soc(eR) is a minimal right ideal of R.

Similarly, we also have Soc(Re) is simple for all local idempotents $e \in R$.

(4) From the hypothesis, we have R is a semiperfect ring. We have a decomposition $R = e_1R \oplus e_2R \oplus \cdots \oplus e_mR$. By (2), we have that e_iR is uniform for any $i \in \{1, 2, ..., m\}$, and so R is right self-injective by [12, Corollary 15]. We deduce that R is a right PF-ring. \square

Fact 2.7. All endomorphism rings of indecomposable automorphism-invariant modules are local rings.

Lemma 2.8. Let R be a right fa-ring with finite Goldie dimension, e be a primitive idempotent of R. Then the following conditions hold:

- (1) If $\alpha : eR \to R$ is a nonzero homomorphism with $eR \cap \alpha(eR) = 0$ then $\alpha(eR)$ is a simple module.
- (2) If $(1 e)Re \neq 0$ then $eR(1 e) \neq 0$.
- *Proof.* (1) Note that eR is local. Then, $\alpha(eR)$ is indecomposable. Let U be an arbitrary essential submodule of $\alpha(eR)$, then $E(U) = E(\alpha(eR))$. Since R has finite Goldie dimension, there exists a finitely generated right ideal I with $I \leq^e U$. It follows that $I \leq^e U \leq^e \alpha(eR)$, and so $E(I) = E(U) = E(\alpha(eR))$. Since $I \oplus eR$ is a finitely generated right ideal of R, $I \oplus eR$ is automorphism-invariant. It follows that I is eR-injective. On the other hand, there exists a homomorphism $\bar{\alpha} : E(eR) \to E(\alpha(eR))$ such that $\bar{\alpha}|_{eR} = \alpha$. We have that $E(I) = E(\alpha(eR))$ and I is eR-injective and obtain that $\bar{\alpha}(eR) \leq I \leq U$. It shows that $\alpha(eR) \leq U$. We deduce that $\alpha(eR) = Soc(\alpha(eR))$, and so $\alpha(eR)$ is semisimple. We deduce that $\alpha(eR)$ is simple.
- (2) Assume that $(1-e)Re \neq 0$. Note that R is automorphism-invariant, eR is (1-e)R-injective and (1-e)R is eR-injective. Call $\alpha: eR \to (1-e)R$ a nonzero homomorphism. Now, we assume that eR(1-e)=0. Then, eRe=eR is a local ring with its unique maximal ideal eJ(R). If eJ(R)=0 then eR is simple right R-module and so $\alpha(eR)\cong eR$. It follows that $\alpha^{-1}:\alpha(eR)\to eR$ is extended to a homomorphism from (1-e)R to eR. It means that $eR(1-e)\neq 0$. Now, if eJ(R) is nonzero, then we get a nonzero element eRe is local and obtain that there exists an eRe-epimorphism eRe: eR in eR in eR is an eR-homomorphism. From (1) it immediately infers that $eR/eJ(R)\cong \alpha(eR)\leq (1-e)R$. Then, there exists a nonzero homomorphism eRe: $eR/eJ(R)\to (1-e)R$. It follows that composition of eRe and eRe is a nonzero homomorphism eRe: eR is an extension of eRe. Again, eRe-injective we have that there is a nonzero homomorphism eRe: eR is an extension of eRe. Moreover, we have eRe: eR: eR

Proposition 2.9. An indecomposable right fa-ring with finite Goldie dimension such that every minimal right ideal is a right annihilator. Then the following conditions are equivalent:

- (1) R has essential right socle.
- (2) $Soc(R_R) = Soc(_RR)$.

Proof. (1) \Rightarrow (2) by Lemma 2.6.

(2) \Rightarrow (1). Assume that $Soc(R_R) = Soc(R_R)$. Since R is semiperfect, $R = e_1R \oplus e_2R \oplus \cdots \oplus e_mR$ with a set of orthogonal local idempotents $\{e_1, e_2, \ldots, e_m\}$ of R. Since R is an indecomposable ring, $e_iR(1 - e_i) \neq 0$ or $(1 - e_i)Re_i \neq 0$ for all $i \in \{1, 2, \ldots, m\}$. Suppose that $(1 - e_i)Re_i \neq 0$. Then by Lemma 2.8 we have $e_iR(1 - e_i) \neq 0$. We deduce that $e_iR(1 - e_i) \neq 0$ for all $i \in \{1, 2, \ldots, m\}$. Take $\alpha_i : (1 - e_i)R \rightarrow e_iR$ a nonzero homomorphism. Then by Lemma 4.2 in [15], $Im(\alpha_i)$ is semisimple. It follows that $Soc(e_iR) \neq 0$ for all $i \in \{1, 2, \ldots, m\}$.

For any $i \in \{1, 2, ..., m\}$, take kR a minimal right ideal of e_iR . Then, Rk is a minimal left ideal of R. Therefore, $l_R(kR) \ge R(1 - e_i)$ and $l_R(kR) = l_R(k) \ge J(R)$. It follows that $l_R(kR) = J(R) + R(1 - e_i)$ because $J(R) + R(1 - e_i)$ is the unique maximal left ideal containing $R(1 - e_i)$. By our assumption we have

$$kR = r_R l_R(kR) = r_R [J(R) + R(1 - e_i)] = r_R(J(R)) \cap e_i R = Soc(R_R) \cap e_i R = Soc(e_i R)$$

It shows that $Soc(e_iR)$ is a minimal right ideal of R for all $i \in \{1, 2, ..., m\}$. It follows that $Soc(e_iR)$ is essential in e_iR . Thus, Soc(R) is essential in R_R . \square

In this section, we assume that R is a right fa-ring with finite Goldie dimension such that every minimal right ideal is a right annihilator and $Soc(R_R)$ is essential in R_R . Moreover, R is semiperfect, and so there exists a set of orthogonal local idempotents $\{e_1, e_2, \ldots, e_m\}$ of R such that $1 = e_1 + e_2 + \cdots + e_m$. Call $\{e_1, e_2, \ldots, e_n\}$ a set of basic idempotents for R with $n \le m$.

Lemma 2.10. *If* e and f are two orthogonal idempotents of R then $eRf \subseteq Soc(R_R)$.

Proof. Suppose that e and f are two orthogonal idempotents of R. Then, $eR \cap fR = 0$. If eRf = 0, we are done. Otherwise, let exf be a nonzero arbitrary element of eRf. We consider a nonzero homomorphism $\alpha: fR \to eR$ defined by $\alpha(fr) = exfr$ for all $r \in R$. By [15, Lemma 4.2], we have that $Im(\alpha) = exfR$ is semisimple. It follows that $exf \in Soc(R_R)$. We deduce that $eRf \subseteq Soc(R_R)$. \square

Let R be a semiperfect ring with basic idempotents $\{e_1, e_2, \ldots, e_n\}$. A permutation σ of $\{1, 2, \ldots, n\}$ is called a *Nakayama permutation* for R if $Soc(Re_{\sigma(i)}) \cong Re_i/J(R)e_i$ and $Soc(e_iR) \cong e_{\sigma(i)}R/e_{\sigma(i)}J(R)$ for each $i = \{1, 2, \ldots, n\}$. A ring R is called *quasi-Frobenius* (brief, QF) if R is one-sided artinian one-sided self-injective, see [14]. It is well-known that every QF-ring has a Nakayama permutation.

Lemma 2.11. Let R be an indecomposable ring with non-trivial idempotents. Then, R has a Nakayama permutation σ of $\{1, 2, ..., n\}$. In particular, $\sigma(i) \neq i$ for all i = 1, 2, ..., n if R is not a simple ring.

Proof. By the hypothesis, *R* is indecomposable and so *R* is either semisimple artinian or basic semiperfect by Theorem 2.5. If *R* is a semisimple artinian ring then *R* has a Nakayama permutation. Now, we assume that *R* is not a simple ring. It follows that *R* is a basic semiperfect ring.

For any $i \in \{1, 2, ..., n\}$, from the simplicity of $Soc(e_iR)$, it infers that there exists $\sigma(i) \in \{1, 2, ..., n\}$ such that $Soc(e_iR) \cong e_{\sigma(i)}R/e_{\sigma(i)}J(R)$. This map σ is a permutation of $\{1, 2, ..., n\}$ because $\sigma(i) = \sigma(j)$ implies that $Soc(e_iR) \cong Soc(e_jR)$. By the injectivity of e_iR and e_jR , we infer that $e_iR \cong e_jR$, and so i = j (because the e_i are basic). Let $\alpha : e_{\sigma(i)}R/e_{\sigma(i)}J(R) \to Soc(e_iR)$ be an isomorphism and $s_i = \alpha(e_{\sigma(i)} + e_{\sigma(i)}J(R))$. It follows that $s_iR = Soc(e_iR)$ is a minimal right ideal of R. One can check that $J(R) + R(1 - e_i) \le I_R(s_i)$. But $R/[J(R) + R(1 - e_i)] \cong Re_i/J(R)e_i$ is simple, and so $I_R(s_i) = J(R) + R(1 - e_i)$. It follows that $Rs_i \cong Re_i/J(R)e_i$. Now observe that $s_i = s_ie_{\sigma(i)} \in Soc(_RR)e_{\sigma(i)} = Soc(Re_{\sigma(i)})$. We have, from Lemma 2.6, that $Soc(Re_{\sigma(i)})$ is simple and obtain that $Soc(Re_{\sigma(i)}) \cong Re_i/J(R)e_i$. Thus, R has a Nakayama permutation σ of $\{1, 2, ..., n\}$.

Next, we suppose that $\sigma(i) = i$ for some $i \in \{1, 2, ..., n\}$ or $Soc(e_iR) \cong e_iR/e_iJ(R)$. Assume that $e_iR(1-e_i) \neq 0$. Since R is a basic semiperfect ring, there would exist $j \in \{1, 2, ..., n\}$ with $j \neq i$ such that $e_iRe_j \neq 0$. Then, there exists a nonzero homomorphism $\beta : e_jR \to e_iR$. By [8, Lemma 4.1] and e_iR is uniform, we infer that $Im(\beta)$ is simple. It follows that $Im(\beta) = Soc(e_iR)$ and $Ker(\beta)$ is maximal in e_jR . Then, $Ker(\beta) = e_jJ(R)$ which implies that $e_jR/e_jJ(R) \cong Soc(e_iR) \cong e_iR/e_iJ(R)$. From this, it immediately infers that $e_iR \cong e_jR$, a contradiction. It is shown that $e_iR(1-e_i) = 0$. Similarly, we have $(1-e_i)Re_i = 0$. In fact, if $(1-e_i)Re_i \neq 0$, then $e_kRe_i \neq 0$ for some $k \in \{1, 2, ..., n\}$ with $k \neq i$. By the above similar proof, we infer that $Soc(e_iR) \cong e_iR/e_iJ(R) \cong Soc(e_kR)$. By the injectivity of e_iR and e_kR , we have $e_iR \cong e_kR$ which is impossible. It is shown that e_i is central, a contradiction. We deduce that $\sigma(i) \neq i$ for all i = 1, 2, ..., n.

Lemma 2.12. Let R be an indecomposable ring not simple with non-trivial idempotents. Then, e_iRe_i is a division ring for any $i \in \{1, 2, ..., n\}$.

Proof. By the hypothesis, R is a basic semiperfect ring and $1 = e_1 + e_2 + \cdots + e_n$. For any $i \in \{1, 2, \dots, n\}$, there exists $j \neq i$ with $j \in \{1, 2, \dots, n\}$ such that $e_i R e_j \neq 0$ by Lemma 2.11. Suppose that $e_i R (1 - e_i) = 0$. Then, $e_i R (\sum_{k \neq i}^n e_k) = 0$ which implies that $e_i R e_j = 0$, a contradiction. Thus, $e_i R (1 - e_i) \neq 0$. Next, we show that $e_i J (R) e_i = 0$. We have $e_i R (1 - e_i) \subset \operatorname{Soc}(eR)$ by Lemma 2.10, and so $e_i R (1 - e_i) = \operatorname{Soc}(e_i R) (1 - e_i)$. Now, we show that $e_i J (R) e_i$ is a submodule of $e_i R$. Since R is right automorphism-invariant, $J(R) = \{a \in R : r_R(a) \leq^e R_R\}$

by [5, Proposition 1] and so $J(R)\operatorname{Soc}(e_iR) = 0$. Now $(e_iJ(R)e_i)\operatorname{Soc}(e_iR) = e_iJ(R)\operatorname{Soc}(e_iR) = 0$ which implies $(e_iJ(R)e_i)(e_iR(1-e_i)) = 0$. On the other hand, we have

$$e_i J(R)e_i R = e_i J(R)e_i (Re_i + R(1 - e_i)) = e_i J(R)e_i Re_i \subset e_i J(R)e_i$$
.

Hence $e_i J(R)e_i$ is an R-submodule of $e_i R$. Since $Soc(e_i R)$ is simple, we have $e_i J(R)e_i \cap Soc(e_i R) = 0$ or $Soc(e_i R) \le e_i J(R)e_i$. Suppose $Soc(e_i R) \le e_i J(R)e_i$. Then $e_i R(1-e_i) = Soc(e_i R)(1-e_i) \le e_i J(R)e_i(1-e_i) = 0$, a contradiction. It follows that $e_i J(R)e_i \cap Soc(e_i R) = 0$. Thus $e_i J(R)e_i = 0$ because $Soc(e_i R)$ is essential in $e_i R$. Note that $e_i Re_i \cong End(e_i R)$ is a local ring. We deduce that $e_i Re_i$ is a division ring.

Theorem 2.13. *If R is an indecomposable (as ring) ring not simple with non-trivial idempotents, then R is a QF-ring.*

Proof. By Lemma 2.6 and the hypothesis, R is a basic semiperfect right self-injective ring and $Soc(R_R)$ is an artinian right R-module. We have a decomposition $R = e_1 R \oplus e_2 R \oplus \cdots \oplus e_n R$. Then

$$R = \sum_{i=1}^{n} e_i R e_i + \sum_{i \neq j}^{n} e_i R e_j$$

Note that $e_iRe_j \subseteq Soc(R_R)$ for all $i \neq j$ by Lemma 2.10. We consider the following mapping

$$\phi: R/Soc(R_R) \to \bigoplus_{i=1}^n e_i Re_i$$

via $\phi(\sum_{i=1}^n e_i r_i e_i) + Soc(R_R) = \sum_{i=1}^n e_i r_i e_i$ We show that ϕ is an isomorphism. If $\sum_{i=1}^n e_i r_i e_i \in S$, then $e_i r_i e_i \in e_i Se_i$ for all i = 1, 2, ..., n. Since $e_i J(R)$ is the unique maximal submodule of $e_i R$, $e_i Soc(R_R) \leq e_i J(R)$, and so $e_i r_i e_i \in e_i J(R) e_i$. Note that $e_i J(R) e_i = 0$ by Lemma 2.12. It shows that ϕ is a mapping. One can check that ϕ is a ring homomorphism. Moreover, ϕ is a bijection, and so ϕ is a ring isomorphism. It shows that $R/Soc(R_R)$ is a semisimple artinian ring. We deduce that R is a right artinian ring, and so R is QF. \Box

Corollary 2.14. *Let* R *be an indecomposable (as ring) ring not simple with non-trivial idempotents. Then, the following conditions are equivalent:*

- (1) R is a right q-ring.
- (2) R is a right fq-ring.
- (3) *R* is a right a-ring.
- (4) R is a right fa-ring.
- (5) $eRf \subseteq Soc(R_R)$ for each pair e, f of orthogonal idempotents of R.
- (6) R is an QF-ring.

Proof. (1) \Rightarrow (2), (3); (2) \Rightarrow (4) and (3) \Rightarrow (4) are obvious.

- $(4) \Rightarrow (5)$ by Lemma 2.10.
- $(5) \Rightarrow (6)$. By Theorem 2.13, R is a basic semiperfect QF-ring.
- (6) ⇒ (1). Since R is QF, it follows that R_R is injective cogenerator. Thus, R is a right q-ring by [4, Theorem 2.9]. \square

3. The automorphism-invariance of formal matrix rings

Let R and S be two rings and M be an R-S-bimodule and N be a S-R-bimodule. Take the set of matrices

$$K = \begin{pmatrix} R & M \\ N & S \end{pmatrix} = \left\{ \begin{pmatrix} r & m \\ n & s \end{pmatrix} \middle| r \in R, s \in S, m \in M, n \in N \right\}$$

Assume that there exist an R-homomorphism $\varphi: M \otimes_S N \to R$ and an S-homomorphism $\psi: N \otimes_R M \to S$ such that

$$\varphi(m\otimes n)m'=m\psi(n\otimes m'),\ \psi(n\otimes m)n'=n\varphi(m\otimes n')$$

for all $m, m' \in M$ and $n, n' \in N$. For convenience in using notations, we can write $\varphi(m \otimes n) := mn$, $\psi(n \otimes m) := nm$ and $MN := \varphi(M \otimes_S N)$, $NM := \psi(N \otimes_R M)$.

Then, *K* is a ring with the addition and multiplication as follows:

$$\begin{pmatrix} r & m \\ n & s \end{pmatrix} + \begin{pmatrix} r' & m' \\ n' & s' \end{pmatrix} = \begin{pmatrix} r + r' & m + m' \\ n + n' & s + s' \end{pmatrix}$$

$$\begin{pmatrix} r & m \\ n & s \end{pmatrix} \begin{pmatrix} r' & m' \\ n' & s' \end{pmatrix} = \begin{pmatrix} rr' + mn' & rm' + ms' \\ nr' + sn' & nm' + ss' \end{pmatrix}$$

The ring K is called a *formal matrix ring or generalized matrix rings* (see [11] or [13]). It is well-known that the category of right K-module Mod-K is equivalent to the category $\mathcal{A}(K)$ of objects (X,Y,f,g), where X is a right K-module, Y is a right X-module, Y is an X-homomorphism and Y with right X-module Y with right X-module Y with right X-action given by

$$(x \ y)$$
 $\begin{pmatrix} r & m \\ n & s \end{pmatrix} = (xr + g(y \otimes n), f(x \otimes m) + ys)$

such that the following diagrams are commutative

$$X \otimes_{R} M \otimes_{S} N \xrightarrow{f \otimes 1_{N}} Y \otimes_{S} N \xrightarrow{g} X$$

$$\downarrow 1_{X} \otimes \varphi \qquad \downarrow 1_{X}$$

$$X \otimes_{R} R \xrightarrow{\mu} X$$

$$Y \otimes_{S} N \otimes_{R} M \xrightarrow{g \otimes 1_{M}} X \otimes_{R} M \xrightarrow{f} Y$$

$$\downarrow 1_{Y} \otimes \psi \qquad \downarrow 1_{Y}$$

$$Y \otimes_{S} S \xrightarrow{\nu} Y$$

where $\mu: X \otimes_R R \to X$ and $\nu: Y \otimes_S S \to Y$ are canonical isomorphisms.

Next, we consider homomorphisms of K-modules. Let (X_1, Y_1, f_1, g_1) and (X_2, Y_2, f_2, g_2) be right K-modules. A right K-homomorphism $\varphi: (X_1, Y_1, f_1, g_1) \to (X_2, Y_2, f_2, g_2)$ is a pair (φ_1, φ_2) where $\varphi_1: X_1 \to X_2$ is an K-homomorphism and $\varphi_2: Y_1 \to Y_2$ is an K-homomorphism such that the following diagrams are commutative

$$X_{1} \otimes_{R} M \xrightarrow{f_{1}} Y_{1}$$

$$\downarrow^{\varphi_{1} \otimes 1_{M}} \qquad \qquad \downarrow^{\varphi_{2}}$$

$$X_{2} \otimes_{R} M \xrightarrow{f_{2}} Y_{2}$$

Note that a *K*-homomorphism $\varphi = (\varphi_1, \varphi_2) : (X_1, Y_1, f_1, g_1) \to (X_2, Y_2, f_2, g_2)$ is a monomorphism (epimorphism, resp.) if and only if φ_1 and φ_2 are monomorphisms (epimorphisms, resp.).

A submodule of a right *K*-module (X, Y, f, g) is a quadrupe (X_0, Y_0, f_0, g_0) , where $X_0 \le X_R$, $Y_0 \le Y_S$ such that the following diagrams are commutative.

with $\iota_1: X_0 \to X$, $\iota_2: Y_0 \to Y$ the inclusion maps. This is equivalent $X_0M \subseteq Y_0$ and $Y_0N \subseteq X_0$.

Let $K = \begin{pmatrix} R & M \\ N & S \end{pmatrix}$ and X be a right R-module. Denote by $H(X) = \operatorname{Hom}_R(N,X)$. We consider the following homomorphisms

$$u_X: X \otimes_R M \longrightarrow \operatorname{Hom}_R(N, X)$$

 $x \otimes m \longmapsto u(x \otimes m): N \to X$
 $n \mapsto u(x \otimes m)(n) = x(mn)$

and

$$v_X : \operatorname{Hom}_R(N, X) \otimes_S N \longrightarrow X$$

 $\alpha \otimes n \longmapsto \alpha(n)$

One can check that $(X, H(X), u_X, v_X)$ is a right K-module. Similarly, we also have that $(H(Y), Y, v_Y, u_Y)$ is a right K-module for all right S-module Y with $H(Y) = \operatorname{Hom}_S(M, Y)$ and $v_Y : H(Y) \otimes_R M \to Y$ and $u_Y : Y \otimes_S N \to H(Y)$.

Let (X, Y, f, g) be a right K-module. Then, we have the following R-homomorphism

$$\tilde{f}: X \longrightarrow \operatorname{Hom}_{S}(M, Y) = H(Y)$$

$$x \longmapsto \tilde{f}(x): M \to Y$$

$$m \mapsto \tilde{f}(x)(m) = f(x \otimes m)$$

and S-homomorphism

$$\tilde{g}: Y \longrightarrow \operatorname{Hom}_{S}(N, X) = H(X)$$

$$y \longmapsto \tilde{g}(y): N \to X$$

$$n \mapsto \tilde{g}(y)(n) = g(y \otimes n)$$

Theorem 3.1. Let $K = \begin{pmatrix} R & M \\ N & S \end{pmatrix}$ and (X, Y, f, g) be a right K-module. Assume that \tilde{f} and \tilde{g} are isomorphisms. Then the following conditions are equivalent:

- (1) (X, Y, f, q) is an automorphism-invariant right K-module.
- (2) (a) X is an automorphism-invariant right R-module.
 - (b) Y is an automorphism-invariant right S-module.

Proof. (2) ⇒ (1). By Lemma 2.3 in [13], there exist isomorphisms $\tilde{\mu}$: $E(X) \to Hom_S(M, E(Y))$ and $\tilde{\eta}$: $E(Y) \to Hom_R(N, E(X))$ such that $(E(X), E(Y), \mu, \eta)$ is the injective envelope of (X, Y, f, g). Let $\varphi = (\varphi_1, \varphi_2)$ be an automorphism of $(E(X), E(Y), \mu, \eta)$ then φ_1 is an R-automorphism of E(X) and φ_2 is an S-automorphism of E(Y). Since X is an automorphism-invariant right R-module and Y is an automorphism-invariant right R-module.

(1) \Rightarrow (2) Assume that (X, Y, f, g) is an automorphism-invariant right K-module. We show that X is an automorphism-invariant right R-module. To prove this, firstly we show that $(X, Y, f, g) \cong (X, H(X), u_X, v_X)$. In fact we consider the mapping $(1_X, \tilde{g}) : (X, Y, f, g) \to (X, H(X), u_X, v_X)$. Since (X, Y, f, g) is a right K-module, $g \circ (f \otimes 1_N) = \mu \circ (1_X \otimes \varphi)$, where $\mu : X \otimes_R R \to X$ is the canonical isomorphism and $\varphi : M \otimes_S N \to R$ is the multipilication in K. Then, for all $X \in X$, $X \in M$ and $X \in M$, we have

$$(\tilde{q} \circ f)(x \otimes m)(n) = q(f(x \otimes m) \otimes n) = \mu(1_X \otimes \varphi)(x \otimes m \otimes n) = x(mn)$$

and

$$u_X(1_X \otimes 1_M)(x \otimes m)(n) = u_X(x \otimes m)(n) = x(mn)$$

It shows that $\tilde{g} \circ f = u_X \circ (1_X \otimes 1_M)$ and so the following diagram is commutative.

On the other hand, for all $y \in Y$ and $n \in N$, we have

$$v_X(\tilde{q} \otimes 1_N)(y \otimes n) = v_X(\tilde{q}(y) \otimes n) = \tilde{q}(y)(n) = q(y \otimes n) = 1_X q(y \otimes n)$$

and so $1_X \circ g = v_X \circ (\tilde{g} \otimes 1_N)$. It means that the following diagram is commutative.

Thus, $(1_X, \tilde{g}): (X, Y, f, g) \to (X, H(X), u_X, v_X)$ is a K-homomorphism. By our assumption, \tilde{g} is an isomorphism, $(1_X, \tilde{g})$ is an isomorphism. Then,

 $(X, H(X), u_X, v_X)$ is an automorphism-invariant right *K*-module.

Now, we show that X is an automorphism-invariant right R-module. Let $\alpha: A \to X$ be an R-monomorphism. Then, we have that $(A, H(A), u_A, v_A)$ is a submodule of $(X, H(X), u_X, v_X)$. We consider the mapping $\beta: H(A) \to H(X)$ via by the relation $\beta(h)(n) = \alpha(v_A(h \otimes n))$. One can check that β is an S-homomorphism. For all $a \in A$, $m \in M$ and $n \in M$, we have

$$(\beta \circ u_A)(a \otimes m)(n) = \alpha(v_A(u_A(a \otimes m) \otimes n)) = \alpha(\mu(1_A \otimes \varphi)(a \otimes m \otimes n)) = \alpha(a)mn$$

and

$$u_X(\alpha \otimes 1_M)(a \otimes m)(n) = u_X(\alpha(a) \otimes m)(n) = \alpha(a)mn$$

It shows that $\beta \circ u_A = u_X \circ (\alpha \otimes 1_M)$ and so the following diagram is commutative.

$$A \otimes_{R} M \xrightarrow{u_{A}} H(A)$$

$$\downarrow^{\alpha \otimes 1_{M}} \qquad \downarrow^{\beta}$$

$$X \otimes_{R} M \xrightarrow{u_{X}} H(X)$$

On the other hand, for all $h \in H(A)$ and $n \in N$, we have

$$v_X(\beta \otimes 1_N)(h \otimes n) = v_X(\beta(h) \otimes n) = \beta(h)(n) = \alpha v_A(h \otimes n)$$

and so $\alpha \circ v_A = v_X \circ (\beta \otimes 1_N)$. It means that the following diagram is commutative.

$$H(A) \otimes_{S} N \xrightarrow{v_{A}} A$$

$$\beta \otimes 1_{N} \downarrow \qquad \qquad \downarrow \alpha$$

$$H(X) \otimes_{S} N \xrightarrow{v_{X}} X$$

Thus, $(\alpha, \beta): (A, H(A), u_A, v_A) \to (X, H(X), u_X, v_X)$ is a K-monomorphism. Since $(X, H(X), u_X, v_X)$ is an automorphism-invariant right K-module, there exists an endomorphism (γ, θ) of $(X, H(X), u_X, v_X)$ such that (γ, θ) is an extension of (α, β) . Thus, $\gamma: X \to X$ is an extension of α . We deduce that X is an automorphism-invariant right K-module.

Similarly, we also prove that Y is an automorphism-invariant right S-module. \square

By [11, Lemma 3.8.1] and Theorem 3.1, we have the following result:

Corollary 3.2. Let $K = \begin{pmatrix} R & M \\ N & S \end{pmatrix}$ and (X, Y, f, g) be a right K-module. Assume that MN = R and NM = S. Then the following conditions are equivalent:

- (1) (X, Y, f, g) is an automorphism-invariant right K-module.
- (2) (a) *X* is an automorphism-invariant right *R*-module.
 - (b) Y is an automorphism-invariant right S-module.

Corollary 3.3. Let e be a non-zero idempotent of a ring R, $K = \begin{pmatrix} R & Re \\ eR & eRe \end{pmatrix}$ and (X, Y, f, g) be a right K-module.

Assume that \tilde{f} and \tilde{g} are isomorphisms. Then (X, Y, f, g) is an automorphism-invariant right K-module if and only if X is an automorphism-invariant right R-module and Y is an automorphism-invariant right eRe-module.

If *e* is an idempotent of a ring *R* such that ReR = R then $R \approx eRe$. So in this case, we have:

Corollary 3.4. Let e be an idempotent of a ring R such that ReR = R and $K = \begin{pmatrix} R & Re \\ eR & eRe \end{pmatrix}$. Assume that R is a right fa-ring and \tilde{f} , \tilde{g} are isomorphisms. Then (eR, Re, f, g) is an automorphism-invariant right K-module.

Acknowledgment

The authors are grateful to the referee for her/his valuable comments.

References

- [1] A.N. Abyzov, T.C. Quynh and A. A. Tuganbaev, Modules that are invariant with respect to automorphisms and idempotent endomorphisms of their hulls and covers, J. Math. Sci., 256 (2021), 235-277.
- [2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, 1992.
- [3] S. E. Dickson and K. R. Fuller, Algebras for which every indecomposable right module is invariant in its injective envolope, Pacific J. Math., 31 (1969), 655-658.
- [4] D. A. Hill, Semi-perfect q-rings, Math. Ann, 200 (1973), 113-121.
- [5] P. A. Guil Asensio, A. K. Srivastava, Automorphism-invariant modules satisfy the exchange property, J. Algebra 388 (2013), 101-106.
- [6] S. K. Jain, S. Mohamed, S. Singh, Rings in which every right ideal is quasi-injective, Pacific J. Math., 31 (1969), 73-79.
- [7] R.E. Johnson and E.T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc., 36 (1961), 260-268.
- [8] M. T. Koşan, T. C. Quynh and A. K. Srivastava, Rings with each right ideal automorphism-invariant, J. Pure Appl. Algebra 220 (2016), 1525-1537.
- [9] M. T. Koşan, T. C. Quynh, Rings whose (proper) cyclic modules have cyclic automorphism-invariant hulls, Appl. Algebra Engrg. Comm. Comput. 32 (2021), 385-397.
- [10] M. T. Koşan, T. C. Quynh, Z. Jan, Kernels of homomorphisms between uniform quasi-injective modules, J. Algebra Appl. 21 (2022), 2250158, 15 pp.
- [11] P. Krylov, A. Tuganbaev, Formal Matrices: Algebra and Applications, Springer-Cham, 2017.
- [12] T.K. Lee and Y. Zhou, Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl., 12 (2013), 1250159,
- [13] M. Müller, Rings of quotients of generalized matrix rings, Commun. Algebra 15(1987), 1991-2015
- [14] W. K. Nicholson, M. F. Yousif, Quasi-Frobenius rings, Cambridge Univ. Press., 2003.
- [15] T. C. Quynh, A. N. Abyzov, D. T. Trang, Rings all of whose finitely generated ideals are automorphism-invariant, J. Algebra Appl., 21 (2022) 2250159, 19 pp.
- [16] T. C. Quynh, M. T. Koşan, L. V. Thuyet, On automorphism-invariant rings with chain conditions, Vietnam J. Math., 48 (2020), 23-29.
- [17] T. C. Quynh and M. T. Koşan, On automorphism-invariant modules, J. Algebra Appl., 14 (2015), no. 5, 1550074 (11 pages).
- [18] T. C. Quynh, A. Abyzov, D. D. Tai, Modules which are invariant under nilpotents of their envelopes and covers, J. Algebra Appl., 20 (2021), no. 12, 2150218
- [19] T. C. Quynh, A. Abyzov, N.T.T Ha, T. Yildirim, Modules close to the automorphism invariant and coinvariant, J. Algebra Appl. 14 (2019), 19502359.
- [20] T. C. Quynh, A. Abyzov, P. Dan, Phan, L. V. Thuyet, Rings characterized via some classes of almost-injective modules, Bull. Iranian Math. Soc. 47 (2021), 1571-1584.
- [21] A. K. Srivastava, A. A. Tuganbaev and P. A. Guil Asensio, *Invariance of modules under automorphisms of their envelopes and covers*, Cambridge University Press-Cambridge, 2021.
- [22] A. A. Tuganbaev, Automorphism-Invariant Modules, J. Math. Sci. (N.Y.), 206 (2015), 694-698.