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Approximation properties of bivariate extension of blending type
operators

Jaspreet Kaur®, Meenu Goyal?

“Thapar Institute of Engineering and Technology, Patiala-147004, India

Abstract. The present article is in the continuation of our previous work [26], where we have improved
the order of approximation of a—Bernstein Paltinea operators. In the given note, we study the bivariate
extension of first order modification of these operators and their approximation properties such as conver-
gence, error of approximation in terms of complete and partial modulus of continuity and their asymptotic
formula. We present numerical examples to show the convergence of functions of two variables with the
help of MATLAB software. Also, we construct the GBS operators associated to the bivariate extension and
present their approximation behavior.

1. Introduction

The famous advantageous proof of Weierstrass approximation theorem was proved by S. N. Bernstein,
named as Bernstein operators. Due to its useful properties, many generalizations have been carried out
[8, 9, 19, 30, 35]. The rate of convergence of well known Bernstein operators and its generalizations is
slow, so different approaches are available to improve their order of convergence. Butzer [15] initiated it
by employing linear combination of Bernstein operators. Micchelli [28] presented another procedure in
which he used iterative combinations of Bernstein operators. Recently, Khosravian-Arab [27] propounded
another process for improving the order of approximation by perturbing the recurrence formula satisfied
by Bernstein polynomials. Using this new approach, many operators have been modified in a very short
period of time as we can see [1, 3, 21, 23]. Similarly, in [26], we have modified the summation-integral
operators presented by Kajla and Goyal [25] having Paltdnea basis function [31] in integral depending on
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a parameter p > 0 given as below:

n 1
Jp(9: ) Zpi;}(y) fo w, (Ng(r)dr,  ye[0,1], a€[0,1], 1)
j=0

where pZ:jl.(y) a(y, n)pz_w(y) +a(l-y,n) pz_l/j_l(y), 0<j<n-1,

[(n ; 2)}/(1 —a)+ (7;: ;)(1 -y -a)+ (?)ay(l - y)] yr -y,

n>2,

such that p;i‘,].(y)

riP(1 = r)=p
B(jp+1,(n=j)p+1)
B(m, n) is the beta function and a(y, n) = a1(n)y + ao(n). The sequences ag(n) and a;(n) are to be determined
in an appropriate way. It can be easily observed that for the sequences a;(n) = —1,a0(n) = 1, operators

(1) reduce to the original operators given in [25]. In order to keep the operators J; ,(g; y) positive, we will
assume the conditions on these sequences a;(n),i = 0, 1

)

and yZ ,].(r)

2a0(n) +a1(n) =1, ap(n) >0 and ap(n)+ai(n) > 0.
Now onwards, we will denote ¢; = ¥ and ¢;; = y'z/,i=0,1,2,---,j=0,1,2,---.

Lemma 1.1. [26] The moments of the operators (1) are given as:

]g,p(eo; ]/) = 1,
1-2 +1—
]g/p(el; ) v+ ( y)(sp — P”O(n));
1
Inplex¥) = ¥+ oo oYL+ )3 = 59) = 200(mp(1 = 29) + (1~ 2(1 = (1 + @)

+3p(1 = 2y) + 2(1 - 3y7) - ag(Wp(p(dy® — 4y + 1) + 3(1 - 2y))].
Lemma 1.2. [26] For the operators (1), we have the central moments as:

(1 -2y)(p +1— pag(n))
np +2 !

Jnp =5 )
Lio(r=y%y) = m [np(1 +p)y(1 —y) — y(1 — YI6(1 + 2p) + 2p*(1 + @)}
+(p+1D(p+2)+ap(m)p(p +3)4y(1 —y) - 1)];

3p%(1+ p)*y*(1 — y)y*n? 1
(np +2)(np + 3)(np + 4)(np + 5) * (ﬁ)

T o(r = )% )

In dealing with many real life problems i.e. cost of a product, profit of a store, etc., we need more than
one particular factor. Thus, Mathematical modeling of these problems requires functions of two or several
variables. Moreover, these functions and their approximations are used in every field such as Economics,
Continuum Mechanics, Thermo Dynamics, Fluid Dynamics etc. In order to approximate the functions of
two and several variables, the initialization of new positive linear operators, defined in two as well as
several dimensions in the approximation theory, is to be done by Stancu [37]. The operators defined in two
variables, are popularly known as bivariate operators. In [11], Barbosu obtained the results of the bivariate
extension of Stancu generalization of g—Bernstein operators. Following that, there was a lot of work done
on the approximation of positive linear operators in two variables [6, 17, 20, 24, 36, 38]. Agrawal and
Goyal [4] presented the bivariate extensions of the different operators in their work, which contain discrete
and summation integral type operators. Motivated by this literature and applications of two-dimensional
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operators, we provide the bivariate extension of the above defined operators J; ,(.; y) in the present article.
The format of the current article is as follows: we will start by defining the bivariate extension of the
operators (1) followed by some preliminary findings like moments and central moments as well as some
required definitions. In section 3, we present our results such as convergence of operators, Voronovskaja
type asymptotic results, error of operators from the Lipschitz continuous functions and in form of approx-
imation tools as complete and partial modulus of continuity, second order modulus of continuity. In the
next section 4, we will display some graphs of certain functions to verify our above proved theoretical
results. In the last section, we discuss the concept of Bogel continuity and its related terms and define the
Generalized Boolean Sum operators associated with the operators J; ,(.; ¥) (1) and study their results.

2. Construction of the operators

Let I = [0,1] x [0, 1], and C(I?) be the space of all continuous functions on I?, with the norm defined as:

llgll = sup |g(y,2)|.

(y,z)el?

The bivariate extension of the operators (1) is defined as:
o =YY P f f W00 02 (5) gl 5) s ©

i=0 j=0

where y (r) y (s) are same as in (2) and
P (y) = aty, m)pyt, () +a(l =y, m)pet, (),

pfnzjl(z) b(z,m) p5> (z) +b(1 —z,m)p;> L @)
For any f(y), g(z) € C(I), our operators (3) satisfy the following relationship:
Tupros FW)-9E); ¥,2) = T, 00 (F W) ¥, 2)-Tinap 00 (9(2); Y, 2)-

Lemma 2.1. For the operators (3) and test functions e;j, we have the following:

]n m p1 02 (600; Y, z) = 1
Jumprpa(€10:Y,2) = Y+ npr +2 ;
12 , _ (1 -22)(p2 + 1 — pabo(m))
]nmp] pz(EOL%Z) - + mps ) 7
a 0 1
Tuinpup(€0:y,2) = >+ [np1yl(1 + p1)(3 — 5y) — 2a0(n)p1(1 — 2y)}

(np1 +2)(np1 +3)
+ p12(1 = 2y(1 = y)(1 + @) + 3p1(1 — 2y) + 2(1 - 3y7)
—ao(m)p1(p(4y” — 4y +1) +3(1 - 2y))|;

1
2
+ Wip2 7 2)mps 3) [mp2z{(1 + p2)(3 — 52) — 2by(m)p2(1 — 2z)}

+ p22(1 = 2z(1 — 2)(1 + ap)) + 3p2(1 — 22) +2(1 — 32%)
—bo(m)pa(pa(42 — 4z + 1) + 3(1 - 22)) .

Jiviigr 2 (€025 Y5 2)
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Lemma 2.2. For the operators (3), we have the following central moments:

(1-2y)(p1 + 1 — prao(n))
npy +2 ’
(1 =22)(p2 + 1 — paby(m))
mpa + 2 ’
1
(np1 +2)(np1 +3)
+(p1+ D(p1 +2) +ao(m)pr(p1 + 3)dy(1 —y) - D]
- 2)1(mp2 5 [mpa(1 + p2)z(1 = 2) = 2(1 = 2){6(1 + 2p) + 2p2*(1 + ta)}
+ (p2 + 1)(p2 +2) + bo(m)pa(p2 + 3)(4z(1 - z) - 1)];
aar (g A _ 3p1*(1 + p1)’y*(1 — y)*n? 1y,
i =092 = G s S8 i)
3p22(1 + p2)?z%(1 — 2)*m?

a0 _ 4. _ i)
Bihn =599 = G syinpn s v * Ol )

Iz,lr%offz)l,pz (1’ —yY Z)

]ftl,]f;lgfél,pz (S - Z; }// Z)

T o (" = 9)%5 Y, 2) [np1(1+ p1)y(1 = y) = y(1 = 6 +2p1) +20:%(1 + )}

, 2.
]g,]mcf,?)hpz((s -2)5 Y, Z)

Corollary 2.3. From the Lemma 2.2, we can easily get:

ai,an _ 2. t _ 2+—‘01
Juupnpn (=15 y,2) < npr 42 [y(l y)+ on+ 2],

a0 _ 2. t P2 _ 2+ P2
]n,m,m,pz((s 2)5Y,2) < mpa + 2 |:Z(1 Z) + mpy + 2] :

Now, we define some definitions related to bivariate functions:

Definition 2.4. Complete Modulus of Continuity: ([7], p.80) For any g € C(I?), we have:

w(g; 61,62) sup{l 9(v,w) - 9(y,2) ; (v,w), (v,2) € P& |v -y S 1, |w -z |< &),

or  w(g;0) supf| g(v,w) — 9(y,2) |; \/(v -y +(w-2)?2<9, (v,w),(y,z) € 2,

with the following properties:

i) w(g;01,00) =0 as 01,0, —= 0.

ii) |{](U,w) —g(y,Z) |< a)(g;51,52)(1 + | 06—1]/ |)(1 + |w6_22 |)

Definition 2.5. Partial Modulus of Continuity: ([7], p.81) For any g € C(I?), the partial modulus of continuity
is defined by:

@'(g;61) sup{l g(y1,2) = 9(y2,2) Lz € L y1 — y2 IS 81,
and  @*(g;02) = supll g(y,z1) = 9(y,z2) Ly € I,| z1 — 22 |< ).

Definition 2.6. Lipschitz Condition: ([5], p.377) A function g satisfies Lipschitz condition i.e. g € Lippm(C, 1) is
defined as
19(,9) = g(y,2) [<M|r=y[|s =z,

where C,n € (0,1].
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. dg dyg 2y
Let C*(I?) be the space of all functions g € C(I?) such that —, — € C(I*),i = 1,2.

dy’ dz
The norm on the space C%(I?) is defined as:

Igllceey = llgll + Z( H

Definition 2.7. K—functional: Peetre [32] introduced the K—functional for g € C(I?):

82’

K(g;0) = inf{llg = fIl + 8l fllczqy; f € C2(IP))-
Definition 2.8. Second order modulus of smoothness: ([2], p.5558) For g € C(I?):
wz(g;0) = supllg(y + 20,z + 2w) = 29(y + v,z + w) + g(y, 2)|; (v, 2), (y + 20,z + 2w) € P ol | wl< 6.
Also, K-functional and second order modulus of continuity are related by the following relation[16]:

K(g;9) < C[wa(g; VB) +min(1,6)lgl] (4)

3. Approximation Results

Theorem 3.1. Let g € C(I?), the operators 52 (g; Y, z) converge uniformly to g(y, z).

n,m,p1,p2

Proof. By Lemma 2.1, we can calculate:

s ay,a2 . .
n/lnllllloo Jumprp€10,¥,2) =y
: ay,an . — .
n/];'llgloo ]n,m,pl,pz (601/ Y, Z) =z
: ai,an . 2 2
n,lnllr—I)lOo ]n,m,pl,pz (820 + eo2; Y, Z) =V +2z

1,00

Now, by using Volkov’s result for bivariate functions, we get that the operators .5, ,,(7; ¥, z) converge
uniformly to g(y,z). O

Theorem 3.2. (Voronovskaja type result) For any g € C*(I?) and (y, z) € I> we obtain:

a1,01

21_1;1;10 n(]n,ﬁ,pl,‘m (gr Y, Z) - !7(% Z)) =

(Pl +1- plﬂo(”)) [(1 _ Zy)!]y(yrz) + (1 - 2Z)9z(]// Z)]
1

(1 ,01)

[0 = g4y, 2) + 201 = Dg2(y,2)] .
Proof. Using the Taylor’s formula for a fixed point (y, z) € I*:

9(rs) = 9,2+ gy, (= y) + g=(y, 2)(s — 2) + % |93, 2 - y)?
+ 20y:(y, 2)(r = Y)(5 = 2) + 9=y, 2)(s — 2] + O, ) - y)* + (s - 27,
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where lim )G)(r, s)=0and (y,z) € I%.

(rs)=(yz
Applying the operators and using its linearity property:

ap,0q 1,01

n (@0, = 902) = (0 D0 = 13,2 + 00, DT~ 2 ,2)

ap,aq

1
+§ {gyy(yz Z)]n,n,pl,pl ((1’ - ]/)2; yr Z)

ay,aq

+ 2gyz(y/ Z)]n,n,p1,p1((r - y)(S -2); Y z)

1,01

+ gZZ(y/ Z)]n,n,pl,pl ((S - Z)z} Y, Z)}
H 0 O = 92+ 6 = 2P, 2)). )

Apply Holder’s inequality to the last term of right hand side of (5):
oo @ (= ¥) + (s = 2}y, 2)

NI

n[ees @9 1,2)] I (- 9P+ - 2P ,2)]

[ ©,5y,9)]"

X V2T o (=95 y,2) + T o (6 =205 ,2)] (6)
[ (a+b)? <2(a® + 1?)]

IN

IN

(NI

By using Theorem 3.1, we get:
lim Jyu | (©%(r,5);y,2) = 0.
n—oo

With the help of central moments of order 4 in Lemma 2.2, we get:

T n T30, 0, (@@ s){(r = Y’ +(s-2%)y,2) =0,

n,n,pi,p

Using Lemma 2.2, (5) and (6), we get our required result. [J

a1,0n
n,m,p1,p2

Theorem 3.3. For any g € C(I?), the operators | (9;y, 2) satisfy the following relation:

i (@v2) -9 | < dalgay),5E),

where 01(y) = \[Titin (= Y%y, 2) and 022) = ([T, (6 = 25,2,
Proof. By using linearity of the operators (3), we have:

| Tz o @ 1,2) = 9, 2) | < Tz o, (1 9(r8) = 9(y,2) |y, 2)-
With the help of the relation (ii) of complete modulus of continuity:

o, ]Cnl,lﬁzz)l, 2(| r—y l; Y, z)
| Je @12 - 92| < w(@oiy),6@) |1+ —2E
01(y)
(1. Jumpp(I8 =2y, 2) '
02(2)

By applying the Cauchy-Schwarz’s inequality, we obtain:

Javz o r=yly,2) < [ (= y5y2)] 1:=61y),
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and
1

o (s—zby2) < [ (- 2% y2)] 1= 6.
Now, substituting the above two inequalities in (7), we obtain the result. [J
Theorem 3.4. For g € C(I?), the operators (3) have the following inequality:

| T, 00 9,2) = 9(4,2) 1< 20! (861 () + 0¥(9;62(2))]
where 01(y) and 0,(z) are defined as in Thm 3.3.

Proof. With the help of linearity and partial modulus of continuity, we get:

| T8 Y,2) = 9(y,2) | o1 9(r,8) = 9(y,2) ; y,2)

< T 90,2) = 9(v,2) Y, 2) + Tainn, 0. (1 9(r8) = 9(1,2) | y, 2)
< T @G =y 0;y,2) + i, o (@2(g;1 s =2 1); ,2). 8)

As we know the relation of modulus of continuity w(A0) < (1 + A)w(5), for A > 0, then, using this
relation in (8), we obtain:

1(y)

s—2z|

ar,an a0 | r—y | 1
| Tainpues 09,2 =92 1 < Tk (1 + 5 @' (7;01(); Y,z
1,000 | . .
+]n,m,p1,[32 ((1 + 52 (Z) ) wZ (g, 62 (Z)) 'Y, Z) .

With the help of Cauchy-Schwarz inequality the above term reduces to:

i, = 9% y,2)
o1(y)

| T @ 0,2 =9y, 2) | < w'(g:01(y) {1+

i, (6 = 2P y,2)

2( .
+02(g;02(2)) |1+ 50

On choosing \/]“1'“2 (r =%y, z) = 061(y) and \/]"”""2 ((s —2)% y,2) := 02(2), the proof is done. [

n,m,p1,p2 n,m,p1,p2

Theorem 3.5. Let g € Lipa(C, ), then we have the following inequality:
| Tiipn 2 (95 ¥,2) = 9(1, 2) 1€ M(@1(9))°.(52(2))",

where M is a positive constant and 01(y) and 6,(z) are same as defined in Thm 3.3.
Proof. As g € Lipm(C, 1), then it gives:
| 9(r,s) = g(y,2) IS Ml r—y s -z [".

Now,

IA

]Z,l‘rf,%l,pz(l g(?’, S) - g(yr Z) |1 y; Z)
Juee  (Mlir—ylls—z|%y,z2)

n,m,p1,p2

M o (L =y 15y, 2) T, (s = 2 [y, 2), ©)

| ]Z}V;Tofﬁl/PZ(g" Y, Z) - 9(}/12) |

IA
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Using Holder’s inequality

NIt

Tt 7= y159,2) < I, oo (= )5 p,2)] " = @)

Similarly,
n
Jovea (s =2 1% y,2) < [Jan, (6 = 2%y, 2] = )"
Now by using these inequalities in (9), we attain the desired outcome. [

Theorem 3.6. For g € C(I), we get the error estimation in terms of first and second order modulus of continuity:

| TG ¥,2) —9(y,2) | < 4C [wz (9; % Vi (Y, z)) + mm( 1, Vn(y, z))]
+a(g; pinm(Y, 2)),
1-2 1- 2
where Vyu(y,z) = %kay+( wﬁ:#zm%mw
1-2 1— pob 2
ey + (L2 Lol ]

(1 =2y)(p1 + 1 = prag(n))\’ o ((L=22)(p2 + 1 = pabo(m)) 2
npi + 2 mpy + 2 !

and  Uum(y,z) = ((

where C > 0 is a constant and 01(y) and O,(z) are same as defined in Thm 3.3.

Proof. Firstly, we define an auxiliary operators for (y,z) € I :

Zlmafh Pz(g' Y, Z) = 31”?(2’1 Pz(g' Y, Z) + _‘7(% Z)
3 (I-2y)(p1 +1- Plﬂo(ﬂ)) (1 —2z)(p2 + 1 — paby(m))
g\ npi + 2 mpy + 2 ’

By using this definition, we get:
]zlmaf;] 02 (r-vy2=0; ]zlmaf;] 02 (s-zyz2)=0

For h € C?(I%), we consider
| Tatinpoon (33 4,2) = 9(y,2) |

IA

[Jovae  (5:9,2) = Tova @y, 2|+ [Tos @ y,2) = Taw (i y,2)|
+|Javee (1 y,2) = h(y, 2)| + (Y, 2) — 9y, 2)|

1-2y)p1 +1- Plﬂo(”)) (1 —=22)(p2 + 1 = pabo(m))
At npi +2 mpy + 2

)—ﬂ%@

+|Jone (g =y, 2)| + |Tons, (i y,2) = h(y, 2)| + |h(y, 2) - 9(y,2)]. (10)

Now, by Taylor’s polynomial for h(r,s) € C*(I?), we have:

’ 8h ,Z oh , 9%h :
R e K e e S
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TFoy 00

Applying the operators [, % . (5 y,2) :
T (s v, 2) = h(y,2)|

1,2 92h( 2) 4
nmplpz(f( > 0Y,z )

—_ * 9*h(y, w)
]nmp1 P2 (f; (S - W)W dw;y,z)

' d%h(v, z)
< Jumn, Z(f Ir — o dv ;y,Z)
pez|| J, 002
1-2y)(py +1-pyag(n
+ (2L ‘ (1-2)(p1 + 1 — prag(n)) ‘ Ph(v, 2)
+ y -0 dl)
np1+2 o0v?
32 (y, w)|
Zlmaél P2 ( f I - ’ y/
. ot (g (”312;52“’“”” . (1=29)(p2 + 1~ pabo(m)) _ &2h(y, W)
. mpy + 2
< ”mﬂl Pz((r ]/)2 Y.z )+( npi +2

(1 -22)(p2 + 1 = pabo(m)) \*
hllc2 )

o, 2.
+ In,lm,;l,pz((s - Z) 7 ]// Z) + ( mp2 + 2

With the values of 61(y) and 6,(z), we have:

[Tz (Y,2) = h(y, 2)| < Vim(y, Dl

By using the definition of operators [,

(9;y,2), we obtain:
| Titn (5 Y, 2) 1< Bligllce).-
Thus, the equation (10) becomes:

| Tampoe @Y, 2) = 9y, 2) | < 4llg = hllee) + Vam(y, DIkl
+w (!]z Hn,m(yr Z))

1
4y = ey + 5V, DMl | + @ (. 2).

Taking the infimum over h € C?(I?) and using the relation (4), we get our desired result. [

4. Numerical Verification

In this section, we provide an example with various values of parameters and sequences a;(n),7 = 0,1 to
support our previously proven theoretical findings. For this purpose, we take into the account the function
g(y,z) = y*z? = 2y%2% + yz2.

ag,0n

Firstly, we present the convergence of the operators J; 7% .,

(g; y, z) with specific values of parameters to
. - . 1 n-1 1 ~m-1
the function g(y, z) in Fig. 1 having sequences a;(n) = n,uo(n) = ,bi(m) = m,bo(m) = o
Also, we give their error estimation, which is Ej\ o (9:1,2) = | Taina 0. (3:Y,2) — 9(y,2) | for the
particular values of parameters in Fig. 2.

We can see in both images that when the values of 1, m increase, the operators converge quicker to the
specified function and the error term decrease rapidly.
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Figure 1: Approximation Process

Figure 2: Error estimation

In Fig. 3, we show the effect of the different sequences 4;(11),7 = 0,1 in the convergence of the operators
with specific parameters n = m = 30,01 = ap = 0.3,p1 = p2 = 4. For the operators J;'2 (g, y,z), we have

n,m,p1,p2
chosen the different sets of sequences with different rate of convergence:

n-—1 1 m-—1 1
111(71) - n /ao(n) - E/ bl(m) - m /bo(m) - %/

1—n? 21 1—m? 2m? -1
al(n) = n2 /ao(n) = T/bl(m) = m2 /bo(m) = 2m2 ;

al(n) = _1/ ﬂo(n) = 1/ bl(m) = _1/ bo(m) =1

Also, we have presented the error of approximation of the given function from the operators in Fig. 4.
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Figure 3: Approximation Process

9(y,2)(Blue), [a1(n) = 1,a0(n) = =1,b1(m) = =1, bo(m) = —1](Red),

n-— 1 m-—1 1
[ﬂi(”) ; T,ﬂoz(nz = 12—n,bl(m) —172/170(’”) —22—’1%] ((iy“”)
-n ns — -m m? —
Lll(n) = Trﬂo(n) = T/bl(m) = T,bo(m) = W} (Meganta)

5. Generalized Boolean Sum (GBS) operators

Bogel [13, 14] proposed the concept of B-continuous and B-differentiable functions in 1934 and 1935.
The approximation results concerning these functions were firstly introduced by Dobrescu and Matei
[18]. Badea and Cottin [10] established the Korovkin type theorem for B-continuous functions, which is
also famous as test function theorem. In 2013, Micldus [29] studied the approximation results of GBS
of Bernstein-Stancu operators. Agrawal and Ispir [5] studied the degree of approximation for bivariate
Chlodowsky-Szasz-Charlier type operators. Similarly, Borbosu et al. [12] proposed the GBS Durrmeyer
operators based on g—integers. The authors studied convergence and degree of approximation of these
variants. A lot of research on these operators is going on as we can see [22, 33, 34]. Inspired by these papers,
we define the GBS operators associated with the operators (3).

Firstly, we present some definitions that are required in subsequent work defined as in [13, 14].
Let Y and Z are compact subsets of real numbers.

Definition 5.1. A function f : Y X Z — R s said to be B-continuous or Bogel continuous at a point (y,z) € Y X Z if

lim Af[(r,s),(y,2)] =0,
(r5)—(y,2)

?’Uhere Af[(r/ S)/ (]// Z)] = f(r/ S) - f(]// S) - f(rlz) + f(]// Z)'
The space of all B-continuous functions is denoted by C,(Y X Z).

Definition 5.2. A function f : Y X Z — Ris called B-differentiable at (y,z) € Y X Z if

i Afl(r,s),(y,2)]
o)~z (r—y)s—z)

exists and finite. It is denoted by Dg f(y, z).
The space of all B-differentiable functions is denoted by D,(Y x Z).
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Figure 4: Error estimation

[a1(n) = 1,a0(n) = =1, b1(m) = =1, bo(m) = —1](Red),

o109 = 22 a0n) = 5o i) = 2 o) = 5| (Cyam)

1 - n? on? -1 1—-m? 2m? -1
Lh(”) = 7,110(") = 2—112,171("1) = 7,50(”1) =

o } (Meganta)

Definition 5.3. A function f : Y X Z — R is called B-bounded on Y X Z if there exists a constant M > 0 such that
| AfI(r,5), (y,2)] IS M,
for every (,5),(y,z) € Y X Z.
Definition 5.4. For any f € Cy(I?), the mixed modulus of continuity wixe : [0, 00) X [0, 00) — R is defined as:
Wmired(f; 01,02) = supf{| Af[(r,s), (v, 2)] ;| r =y |< 01,| s — 2 |< 02}
forall (y,z), (r,s) € I.
It satisfies the property:
Wmired(9; M101, A202) < (1 + A1) (1 + A2) Opivea(g; 01, 02), (11)

where A1, A, > 0.
By(Y X Z) denotes the space of all B-bounded functions having the norm

Iflle=sup [Af[(r,s),(y,2)]].

(rS)y2)eYxZ

5.1. Construction of GBS operators
Let g € Cy(I?). The GBS operators Kﬁ},ﬁfgl,pz (¢, y,2) associated to the operators |
as follows:

ag,0n
n,m,pq,p2

(g, y,2) is defined

K0 Y, = Ll al00,2) + 9(,9) = g(r9);y,2], - (,2) € I (12)
Theorem 5.5. For every g € Cy(I?), the operators (12) satisfy the following inequality:

1 1
Vnpr +2 \mpa +2 '

| Kg/l‘ff/%bpz (g/ Y, Z) - 9(3// Z) |S Ma)mixed g,

where M > 0 is a constant depending only on p1 and p;.
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Proof. As we know:
Agl(r,9), (y,2)] 9(y,2) = g(y,8) = 9(r,2) + g(1,5),
then  g(y,s) + g(r,2) - g(r,s) 9(y,2) = Agl(r,9), (y, 2)]-
Applying the operators (3) and using eq. (11), we have:

| K@ ¥,2) =9y, 2) | < Tohs, 0,(1 Agl(r,8), (v, 2] |y, 2)
a,a | r—= | -
]nlm ;271 02 (( + / )(1 + | SO_ZZ |) (‘)mixed(g; 01, 02)} Y, Z)

01

IA

(ko [ = 0% ,2)] + 037 [, 6 = 2P, ]

+ 0 1051 []2,111’10,[?)1412((7 - ]/)2/' Y, Z).]ﬁ}ﬁfﬁ],pz(( Z) 'Y, Z )] } wmzxed(g/ 01, 02)

By using Corollary 2.3, we can get:

2(1 + ‘01) 2(1 + pz)
a1, _1)\2. a0 2.
]n/m/Pl/PZ ((7‘ y) Vi y, Z) S npl + 2 ]I’l,m,pl,Pz ((S Z) /]// Z) S mpz T 2 .
Also, by choosing g1 = ; and o, = ; the proof is completed. [

, DY g 01 W 2 W/ P p .
Theorem 5.6. Let g € Dy(I?) with Dg(g) € B(I?). Then for every (y,z) € I2, we get:

M 1 1
| Kzlr;;xz 'Y,Z) — ,Z |S HD ” + Wiixe D ; s .
(5 Y,2) = 9(y, 2) NSNS [ BYJ d( B Jipi2 s 2]}

Proof. For g € Dy(I?),

Agl(r,s),(y,2)] = (—y)(s—2z)Dpg(C,n) with y<l<rz<n<s,
where Dgg(C, 1) ADgg[(C,m), (v, 2)] + Dpg(C, z) + Dpg(y,n) — Dpg(y, 2).

By using this relation and Dgg € B(I?), we get:

| Tninpnon(AgL(,8), (v, 2)]; 9, 2) |

= | Tupp:((r = ¥)(s = 2)Dpg(C, 1)y, 2) |

= | Jas o ((r = y)(s — 21ADggl(C, 1), (v, 2)] + Dsg(C, 2) + Dpg(y, n)
—Dgg(y,2)};y,2) |

Kzlmaél P2 (g’ 3// Z) 9(% Z) |

< Tampue( 7=y lls =z ADpgl(C, 1), (v, 2] |}y, 2)
e oo (17 =y I s =2 [{ Dpg(C,2) | + | Dpg(y, ) |
+1Dgg(y,2) 1Ly, 2)
< Jampie( 7=y I8 =2 | @nivea(Dpgi | 7=y | s = 2 1); ¥, 2)
+3IDpgl g 7=y I8 =2 | y,2)
< [ (r=ylls—zLy,2)

1 7a1, 2 )
+o1 Z}m‘)f;hpz((r - ]/) | 55—z |1 yr Z)
+02 7 s (7 =y 1 (s =2)% y,2)

1,000

+ 01_102_1]n,14,1,p1,p2((r - ]/)2(5 - Z)Z; Y, Z)] wmixed(DBg; 01, O_2)

+3IDpgl i 7=y 15 =2 Y, 2).
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With the help of Cauchy-Schwarz inequality, it turns out to be:

KO (gy,2) - g(0,2)] < [\/ Tnimprpo((r = 1)*(s = 2)% Y, 2)
+o17! \/] nanppa (7 = Y5 = 2)%,2)

vor T, = 926 253,

+o1 o s o (= s = 2%y, Z)]wmixed(DBg/' 01,02)

43D Il T 0 (= 26 = 259, 2).

Using Corollary 2.3, we obtain:

, 2(1 + pl) p 2(1 + pz)
(0= 9F5,2) o and TG (6 =2y S s
. 1 1
Now, by choosing 61 = ——— and 0p = ——— and Lemma 2.2, we get our result. [J

\np1 +2 \/mp2 +2
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