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Abstract. A new class of warped product manifolds which is known as sequential warped product
manifolds have been defined in [15] and studied in detail in [9]. This article is dedicated to study sequential
warped product submanifolds having factors holomorphic, totally real and pointwise slant submanifolds
of nearly Kaehler manifolds. We obtained Chen’s inequality for sequential warped product submanifolds
involving second fundamental form and warping functions.

1. Introduction

The study on warped product manifolds is continuously growing day by day. Many authors are
exploring this field in various settings. A wide range of applications of warped product manifolds emerged
in Physics and Cosmology. To this fact, Mathematicians have been exploring it in the spaces with different
stand point. Latest in the sequence is “Sequential warped product manifolds”. These warped product
manifolds were introduced by S. Shenawy [15] and a detailed study of curvatures was done in [9].
Warped product manifolds were first defined by Bishop and O’Neill [4] to examine the manifolds of negative
curvature. It is well known that warped product manifolds are generalization of product manifolds. A
warped product manifold N1 × f N2 is simply a product of two Riemmanian manifolds N1 and N2 with
metric 1 = 1N1 + f 21N2 where (N1, 1N1 ) is base and (N2, 1N2 ) is fiber and f is positive valued smooth function
on N1.

In the early years of 21st century, warped product manifolds emerge more significantly when B. Y. Chen
[5] characterize CR-submanifolds as warped product submanifolds in Kaehler manifold. He obtained
a sharp inequality for the squared norm of the second fundamental form which is known as Chen’s
inequality. Later, many authors generalize Chen’s inequality in different settings to characterize warped
product manifolds and obtained its applications [7],[8],[12].

Apart from (single) warped product manifold, biwarped product and multiply warped product man-
ifolds were also defined and studied thoroughly for their extrinsic properties (see [6],[11],[17]). We see
that in all these types of warped products, the warping function (a positive valued smooth function) is
taken on the base (which is a single manifold) of warped product. Now the question arises that what if
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the base manifold is itself a warped product. There are many space-time manifolds where base, fiber or
both can be expressed as warped products. Some of them are Taub-Nut and stationary metrics (see [16])
and generalized Riemannian anti de Sitter T2 black hole metrics (see [2]). The answer to this is sequential
warped product.

Sequential warped products was defined in [15]. Later De et. al [9] explored its geometry by taking
into account its curvature formulas. They also provide characterization for Killing and concircular vector
fields on sequential warped product manifolds. In [13], Sahin studied these warped products in Kaehler
manifolds and obtained an estimate in terms of second fundamental form. As nearly Kaehler manifolds
are more general than Kaehler manifolds, it is natural to see whether sequential warped products exist
in nearly Kaehler manifold and if it exist then what would be its geometry. In this paper, we establish
that the sequential warped product manifolds with factors holomorphic, totally real and pointwise slant
subamnifolds i.e. of type (NT × f N⊥) ×h Nθ exist in nearly Kaehler manifold and we obtain a sharp
inequality in terms of second fundamental form involving the warping functions and slant angle. Our
result generalizes many existing results in different settings like CR-warped product, pointwise semi-slant
warped product and biwarped product submanifolds in nearly Kaehler manifolds.

The paper is organized as follows: Section 2 is devoted to basic definitions, formulae and preliminary
results which are required for the study of sequential warped products. In Section 3, we explore the existence
of sequential warped product submanifolds in nearly Kaehler and prove our main results. Bibliography is
given at the end of the paper.

2. Preliminaries

All manifolds, vector bundles, functions etc. are assumed to be of class C∞. The set of locally defined
sections of a vector bundle E is denoted by Γ(E).

We know that nearly Kaehler manifolds are the most important class of almost Hermitian manifolds
which are not integrable. An almost Hermitian manifold M̄ is a nearly Kaehler manifold if its almost complex
structure J satisfies

(∇̄U J)U = 0, (1)

for all vector fields U on M̄, where ∇̄ denotes the Levi-Civita connection on M̄ and satisfies

(∇̄U J)V = ∇̄U JV − J∇̄UV, (2)

for any U,V ∈ Γ(TM̄).
If the almost complex structure J is parallel with respect to the Levi-Civita connection ∇̄ on M̄ i.e.,

∇̄J = 0, the almost Hermitian manifold M̄ is called a Kaehler manifold. If the Nijenhuis tensor of J vanishes,
the nearly Kaehler manifold is a Kaehler manifold. The nearly Kaehler manifolds with dimension 4 are
Kaehler manifolds.

Consider a Riemannian manifold M isometrically immersed in an almost Hermitian manifold M̄. The
Gauss and Weingarten formulas are respectively given by

∇̄UV = ∇UV + σ(U,V), (3)

∇̄Uξ = −AξU + ∇⊥Uξ (4)

for U,V ∈ Γ(TM) and ξ ∈ Γ(T⊥M); where ∇ denotes the covariant differentiation with respect to the induced
metric, σ the second fundamental form, ∇⊥ the normal connection, Aξ the shape operator (corresponding
to the normal vector field ξ) and TM (resp. T⊥M) is the tangent (resp. normal) bundle of M. The relation
between Aξ and σ is given as

1(AξU,V) = 1(σ(U,V), ξ) (5)

where 1 denotes the Riemannian metric on M̄ as well as the induced metric on M.
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Consider a submanifold M of an almost Hermitian manifold M̄. The complex structure J when applied
to the tangent bundle TM generates various distributions on M.

(i) A distribution DT on a submanifold M of an almost Hermitian manifold M̄ is called a holomorphic
distribution if JDT

⊆ DT.
(ii) A distribution D⊥ on M is called totally real distribution if JD⊥ ⊆ T⊥M.
A submanifold is said to be a CR-submanifold if it is endowed with a pair of orthogonal complementary

distributions DT and D⊥ such that DT is holomorphic and D⊥ is totally real [3] .
(iii) Let Dθ be a distribution on a submanifold M of an almost Hermitian manifold M̄. For any x ∈ M

and any non-zero vector X ∈ Dθ
x , if the angle θ(X) ∈ [0, π/2] between JX and the vector space Dθ

x does not
depend on the choice of x ∈M and X ∈ Dθ

x , we say that Dθ is a slant distribution on M. The constant angle θ
is called the Wirtinger angle of Dθ in M. Moreover, if the angle θ(X) is independent of the choice of X ∈ Dθ

x
only, Dθ is called pointwise slant distribution on M. In this case θ is called slant function.

A submanifold M is called a slant submanifold if the tangent bundle Γ(TM) is slant. Holomorphic and
totally real submanifolds are special cases of slant submanifolds with Wirtinger angle 0 andπ/2 respectively.
Also, a submanifold is pointwise slant submanifold if the tangent bundle Γ(TM) is pointwise slant.

Semi-slant and pointwise semi-slant are two another classes of submanifolds. If a submanifold is
endowed with two orthogonal complementary distributions DT and Dθ where DT is holomorphic subman-
ifold. The submanifold is called semi-slant if Dθ is slant and it is called pointwise semi-slant if Dθ is pointwise
slant.

For any x ∈M and any U ∈ TxM, JU can be decomposed as

JU = PU + FU, PU ∈ TxM and FU ∈ T⊥x M. (6)

P and F are respectively the endomorphism P : TxM −→ TxM and a normal valued linear map F : TxM −→
T⊥x M defined by (6). We also denote the (1, 1) tensor field and the normal valued 1-form on M determined
by P and F by the same letters. Similarly, for ξ ∈ Γ(T⊥M), we put

tξ = tan(Jξ) and fξ = nor(Jξ). (7)

The covariant derivatives of these tensor fields are defined as:

(∇̄UP)V = ∇UPV − P∇UV, (8)

(∇̄UF)V = ∇⊥UFV − F∇UV, (9)

(∇̄Ut)ξ = ∇Utξ − t∇⊥Uξ, (10)

(∇̄U f )ξ = ∇⊥U fξ − f∇⊥Uξ. (11)

If we denote by (M̃, J, 1) a nearly Kaehler manifold and M a submanifold of M̃. If PUV (resp. QUV)
denote the tangential (resp. normal) part of (∇̄U J)V for any U,V ∈ Γ(TM̃), then it is straightforward to see
that

PUV = (∇̄UP)V − AFVU − tσ(U,V), (12)

QUV = (∇̄UF)V + σ(U,PV) − fσ(U,V). (13)

It is easy to see that tensor fields P and Q satisfy the following:

1(PUV,W) = −1(V,PUW) and 1(QUV, ξ) = −1(V,PUξ)

where W ∈ Γ(TM) and ξ ∈ Γ(T⊥M).
The (Riemannian) product manifolds have been generalized by using warping functions to define

warped product of manifolds viz. warped product, biwarped product, multiply warped product manifolds
(see [6], [7], [17]).
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Let (N1, 11) and (N2, 12) be two Riemannian manifolds with Riemannian metrics 11 and 12 respectively
and ψ be a positive differentiable function on N1. If π : N1 × N2 → N1 and η : N1 × N2 → N2 are the
projection maps given by π(p, q) = p and η(p, q) = q for every (p, q) ∈ N1 × N2, then the warped product
manifold M = N1 ×ψ N2 is the product manifold N1 ×N2 equipped with the Riemannian metric 1 defined as

1(X,Y) = 11(π∗X, π∗Y) + (ψ ◦ π)212(η∗X, η∗Y),

for all X,Y ∈ Γ(TM), where ∗ denotes the tangent map. The function ψ is called the warping function of the
warped product manifold. For a constant warping function, the warped product is trivial [4]. One can
generalize this definition to multiply warped product manifolds as follows.

Let {Ni}i=1,2,··· ,k be Riemannian manifolds with respective Riemannian metrics {1i}i=1,2,··· ,k and let {ψi}i=2,3,··· ,k
are positive real valued functions on N1. Then the product manifold M = N1 ×N2 × · · · ×Nk endowed with
Riemannian metric 1 given by

1 = π∗1(11) +
k∑

i=2

(ψi ◦ π1)2π∗i (1i)

is called multiply warped product manifold denoted by M = N1 ×ψ2 N2 × · · · ×ψk Nk where πi(i = 1, 2, · · · , k) are
the projection maps of M onto Ni respectively. The functions ψi are known as the warping functions [6]. If
each of the warping function is constant, the warped product is simply a Riemannian product of manifolds,
known as a trivial multiply warped product manifold.

As a particular case of multiply warped product manifolds, one can define biwarped product manifolds
for i = 3. Multiply warped product manifolds reduces to (singly) warped product manifolds for i = 2.

We note that in multiply warped product manifolds, the warping functions are defined on the first factor
N1. Particularly, we consider the case of biwarped product manifolds in which the warping functions (say
ψ1 and ψ2) are defined on N1. Now if the function ψ1 is defined on N1 and the function ψ2 is defined on
N1 ×N2, in this case, we define the following.

Definition 2.1. [15] Let Ni (for i = 1, 2, 3) be pseudo-Riemannian manifolds with pseudo-Riemannian metrics 1i
respectively. Let f : N1 → (0,∞) and h : N1×N2 → (0,∞) be two smooth functions on N1 and N1×N2 respectively,
then the sequential warped product is the product manifold (N1 × N2) × N3 denoted by (N1 × f N2) ×h N3 endowed
with the metric tensor 1 = (11 ⊕ f 212) ⊕ h213.

The positive valued functions f and h are called warping functions.

It is obvious that if (Ni, 1i) are Riemannian manifolds for i = 1, 2, 3 then the sequential warped product
manifold (N1 × f N2) ×h N3 is a Riemannian manifold with Riemannian metric 1.

Related to the geometry of the sequential warped product manifold, we have the following:

Proposition 2.2. [15] Let M̄ = (N1 × f N2) ×h N3 be a sequential warped product manifold with metric 1 and if
Xi ∈ Γ(TNi) (for i = 1, 2, 3). Then we have

1. ∇̄X1 X2 = ∇̄X2 X1 = X1(ln f )X2

2. ∇̄X3 X1 = ∇̄X1 X3 = X1(ln h)X3

3. ∇̄X2 X3 = ∇̄X3 X2 = X2(ln h)X3

A sequential warped product manifold is proper if the warping functions f and h are not constants i.e.
they satisfy X1 ln f , 0, X1 ln h , 0 and X2 ln h , 0 for X1 ∈ Γ(TN1) and X2 ∈ Γ(TN2).
We also have the following consequences of Heipko’s [10] characterization of warped product manifold.

Corollary 2.3. Consider M = (NT × f N⊥) ×h Nθ be a sequential warped product submanifold of a nearly Kaehler
manifold M̃ such that NT is holomorphic, N⊥ is totally real and Nθ is a pointwise proper slant submanifold of M̃. We
have the following:
(a) NT is a totally geodesic submanifold in NT × f N⊥.
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(b) N⊥ is a spherical submanifold in NT × f N⊥.
(c) NT × f N⊥ is totally geodesic in (NT × f N⊥) ×h Nθ.
(d) Nθ is spherical submanifold in (NT × f N⊥) ×h Nθ.

If M is an n−dimensional Riemannian manifold with the local orthonormal frame of the vector fields
{e1, e2, . . . , en}, the gradient of a function ψ is defined as

1(∇ψ,X) = Xψ, (14)

for all X ∈ Γ(TM). We also have

∥∇ψ∥2 =
n∑

i=1

(ei(ψ))2. (15)

3. Sequential warped product submanifolds

In this section, first we seek the existence of the sequential warped product submanifolds M = (N1 × f

N2) ×h N3 for Riemannian submanifolds N1,N2 and N3 in a nearly Kaehler manifold M̃ with warping
functions f on N1 and h on N1×N2. For three submanifolds, there are 3! possible sequential warped product
submanifolds. If we consider NT, N⊥ and Nθ as holomorphic submanifold, totally real submnaifold and
proper pointwise slant submanifold respectively of M̃, then following are the sequential warped product
submanifold of M̃with NT, N⊥ and Nθ as factors of the warped product subamnifold of M̃.

(i) (NT × f N⊥) ×h Nθ, (ii) (N⊥ × f NT) ×h Nθ,

(iii) (NT × f Nθ) ×h N⊥, (iv) (Nθ × f NT) ×h N⊥,

(v) (N⊥ × f Nθ) ×h NT, (vi) (Nθ × f N⊥) ×h NT

In [13], B. Sahin investigated all possible sequential warped product submanifolds of the Kaehler
manifold. He proved the non-existence of the sequential warped product submanifolds of the type (ii)-
(vi) in Kaehler manifold. He established the existence of the sequential warped product submanifolds of
the Kaehler manifold of the type (i) i.e. (NT × f N⊥) ×h Nθ. He provided an example and obtained some
inequalities involving second fundamental form. Motivated by the results in [13], we study these sequential
warped products in nearly Kaehler manifolds.

Let us consider M = (NT × f N⊥) ×h Nθ a sequential warped product submanifold of a nearly Kaehler
manifold (M̃, J, 1) with warping functions f on NT and h on NT × f N⊥ such that NT is holomorphic, N⊥ a
totally real and Nθ a pointwise proper slant submanifold of M̃. Thus, the tangent bundle TM of M has the
following direct sum decomposition

TM = DT
⊕D⊥ ⊕Dθ,

where DT is holomorphic distribution, D⊥ is totally real and Dθ is pointwise proper slant distribution with
the slant function θ. The normal bundle T⊥M of M is decompounded as

T⊥M = JD⊥ ⊕ FDθ
⊕ ν,

where ν is the orthogonal complementary distribution of JD⊥ ⊕ FDθ in T⊥M. It is easy to see that ν is an
invariant subbundle of T⊥M with respect to J.

Throughout, we denote by X,Y the vector fields tangential to the submanifold NT, by Z etc, the vector
fields tangential to N⊥ and by W etc, the vector fields tangential to Nθ.

Theorem 3.1. There do not exist proper sequential warped product submanifolds of nearly Kaehler manifold of the
form (Nθ × f N⊥) ×h NT.
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Proof. On using formula (3), we can write

1(σ(X, JX), JZ) = 1(∇̄JXX, JZ) = −1(J∇̄JXX,Z). (16)

As JX ∈ D for X ∈ D, using (2) and (3), we get

1(J∇̄JXX,Z) = −1((∇̄JX J)X,Z) − 1(∇JXZ, JX).

Now, in view of Proposition 2.2, the last term of the above equation leads to

1(J∇̄JXX,Z) = −1((∇̄JX J)X,Z) − Z ln h1(X,X) (17)

Using (16) and (17), we obtain

1(σ(X, JX), JZ) = Z ln h1(X,X) + 1((∇̄JX J)X,Z) (18)

If X is replaced by JX in the above equation, we get

−1(σ(X, JX), JZ) = Z ln h1(X,X) − 1((∇̄X J)JX,Z) (19)

Adding (18) and (19) and using the nearly Kaehler condition (2), we obtain

Z ln h 1(X,X) = 0.

As X is arbitrary vector field on NT, it follows from the above equation that h is constant on N⊥, that is the
warped product (Nθ × f N⊥) ×h NT is not proper.

In [12], V. A. Khan et. al established the following:

Theorem 3.2. [12] In a nearly Kaehler manifold M̃, the proper warped product submanifolds of the form M =
N ×ψ NT, where N and NT are respectively Riemannian and holomorphic submanifolds of M̄ and ψ is the warping
function on N, do not exist.

In view of the above result, we can conclude that

Corollary 3.3. If NT, N⊥ and Nθ are the holomorphic, totally real and pointwise proper slant submanifolds then
(proper) sequential warped product submanifolds of type (ii) and (iv) in a nearly Kaehler manifold are non-existent.

Since with base as totally real submanifold N⊥ and fiber as pointwise slant submanifold Nθ, N⊥ × f Nθ is
a warped product submanifold which is itself a Riemannian submanifold, we can use Theorem 3.2 for the
sequential warped product of type (v) to deduce that

Corollary 3.4. The proper sequential warped product subamnifolds (N⊥ × f Nθ) ×h NT in a nearly Kaehler manifold
do not exist.

The sequential warped product submanifolds of type (i) i.e. (NT × f N⊥) ×h Nθ do exist in Kaehler
manifold [13]. Therefore we study these warped products in nearly Kaehler manifold and obtain a sharpe
inequality involving the second fundamental form and warping functions. In a Kaehler manifold, the
proper sequential warped product submanifolds of type (iii) do not exist [13]. In a nearly Kaehler manifold,
they are subject to investigate and will be studied separately.

We start with the following lemmas which will be helpful in proving our main result.

Lemma 3.5. Let (NT × f N⊥) ×h Nθ be a sequential warped product submanifold of a nearly Kaehler manifold M̃
where NT, N⊥ and Nθ are respectively the holomorphic, totally real and pointwise slant submanifolds of M̃, then we
have the following identities:

1(σ(X,Y), JZ) = 0 (20)

and

1(σ(X,Y),FW) = 0 (21)

for X,Y ∈ Γ(TNT),Z ∈ Γ(TN⊥) and W ∈ Γ(TNθ).
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Proof. On using (2) and (3), we have

1(σ(X,Y), JZ) = 1(∇̄XY, JZ)
= −1(∇̄X JY,Z) + 1((∇̄X J)Y,Z)
= 1(∇XZ, JY) + 1((∇̄X J)Y,Z)

Now, applying Proposition 2.2, it takes the form

1(σ(X,Y), JZ) = (X ln f )1(Z, JY) + 1((∇̄X J)Y,Z).

Hence,

1(σ(X,Y), JZ) = 1((∇̄X J)Y,Z).

The left hand side in the above equation is symmetric in X and Y while the right hand side is skew-symmetric,
therefore

1(σ(X,Y), JZ) = 0.

This proves (20). Now to prove (21), by the use of (3) and (6), we have

1(σ(X,Y),FW) = 1(∇̄XY, JW) − 1(∇XY,PW).

By applying Heipko’s characterization for the sequential warped product (NT × f N⊥) ×h Nθ, NT is totally
geodesic submanifold in NT × f N⊥ resulting in ∇XY ∈ Γ(TNT). With this fact the above equation becomes

1(σ(X,Y),FW) = 1(∇̄XY, JW)

Now, in a similar way as in the proof of equation (20), we get (21).

On a nearly Kaehler manifold M̃, for any U,V ∈ Γ(TM̃)

PUV +PVU = 0. (22)

Now, for X ∈ Γ(TNT) and Z ∈ Γ(TN⊥), using (12), we have

PXZ +PZX = (∇̄XP)Z + (∇̄ZP)X − AFZX − 2th(X,Z).

Further, using (22), (8) and the fact that PZ = 0 for Z ∈ Γ(TN⊥), we have

∇ZPX − P∇ZX − P∇XZ − AFZX − 2th(X,Z) = 0.

By the use of Proposition 2.2, the above equation reduces to

(PX ln f )Z = AFZX + 2th(X,Z) (23)

where f is the warping function on NT. Proceeding in the same way as above, we can get

(PX ln h)W − (X ln h)PW = AFWX + 2th(X,W) (24)

for any X ∈ Γ(TNT) and W ∈ Γ(TNθ) and h being the warping function on NT ×N⊥.

Lemma 3.6. For a sequential warped product submanifold (NT × f N⊥)×h Nθ of a nearly Kaehler manifold M̃ where
NT, N⊥ and Nθ are respectively the holomorphic, totally real and pointwise slant submanifolds of M̃, we have

1(σ(X,Z),FW) = 1(σ(X,W),FZ) = 0 (25)

for X ∈ Γ(TNT),Z ∈ Γ(TN⊥) and W ∈ Γ(TNθ).
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Proof. By taking the inner product of W ∈ Γ(TNθ) in (23), we get

1(σ(X,W),FZ) = 21(σ(X,Z),FW) (26)

Again taking the inner product of Z ∈ Γ(TN⊥) in (24), we get

1(σ(X,Z),FW) = 21(σ(X,W),FZ). (27)

(25) follows from (26) and (27).

Lemma 3.7. Let (NT × f N⊥) ×h Nθ be a sequential warped product submanifold of a nearly Kaehler manifold M̃
where NT, N⊥ and Nθ are respectively the holomorphic, totally real and pointwise slant submanifolds of M̃. Then
(i) for Z1,Z2 ∈ Γ(TN⊥), we have

1(σ(X,Z1),FZ2) = −(JX ln f )1(Z1,Z2), (28)

(ii) for W1,W2 ∈ Γ(TNθ), we have

1(σ(X,W1),FW2) =
1
3

(X ln h)1(PW1,W2) − (PX ln h)1(W1,W2) (29)

Proof. If Z1,Z2 ∈ Γ(TN⊥), by using (23), we can write

(PX ln f )1(Z1,Z2) = 1(σ(X,Z2),FZ1) − 21(σ(X,Z1),FZ2). (30)

Interchanging Z1 and Z2 in the above equation and subtracting the two equations, we get

1(σ(X,Z1),FZ2) = 1(σ(X,Z2),FZ1). (31)

From (30) and (31), we get (28). This proves part (i).
Now to prove part (ii), we take any W1,W2 ∈ Γ(TNθ). On using (24), we obtain

(PX ln h)1(W1,W2) − (X ln h)1(PW1,W2) = 1(σ(X,W2),FW1) − 21(σ(X,W1),FW2) (32)

Interchanging W1 and W2 and then adding and subtracting with the above equation, we arrive at the
following

1(σ(X,W1),FW2) + 1(σ(X,W2),FW1) = −2(PX ln h)1(W1,W2) (33)

1(σ(X,W1),FW2) − 1(σ(X,W2),FW1) =
2
3

(X ln h)1(PW1,W2) (34)

The above two equations give (29).

Let M = (NT × f N⊥) ×h Nθ be a sequential warped product submanifold of a nearly Kaehler manifold
M̃ with dim (M) = n, dim (M̃) = ñ, dim(NT) = p = 2m, dim(N⊥) = q and dim(Nθ) = r = 2s. For any
local orthonormal frame {ẽi}, i = 1, 2, · · · ,n of the tangent bundle and {Ek}, k = 1, 2, · · · , (ñ − n) of the normal
bundle of the manifold M, the norm of the second fundamental form σ is defined as

||σ||2 =
n∑

i, j=1

1(σ(ẽi, ẽ j), σ(ẽi, ẽ j)) =
n∑

i, j=1

(ñ−n)∑
k=1

1(σ(ẽi, ẽ j),Ek)2. (35)

For the local frame of othonormal vector fields {ẽi} for tangent bundle of M, we adopt the following
convention of indices:
For 1 ≤ i ≤ p, ẽi = ei, for p + 1 ≤ i ≤ p + q, ẽi = ēi and for p + q ≤ i ≤ p + q + r, ẽi = êi. Moreover
DT = span{e1, e2, · · · , ep}where p = 2m and em+i = Jei, i = 1, 2, · · · ,m
D⊥ = span{ē1, ē2, · · · , ēq}
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Dθ = span{ê1, ê2, · · · , êr}where r = 2s and ês+k = secθPêk, k = 1, 2, · · · , s.
The local orthonormal frame {Ek} for normal bundle T⊥M will be given as
JD⊥ = span{Jē1, Jē2, · · · , Jēq}

FDθ = span{cscθFê1, cscθFê2, · · · , cscθFêr}

ν = span{e∗1, e
∗

2, · · · , e
∗

t}where t = ñ − q − r.
Therefore, the tangent bundle of M is spanned by {e1, e2, · · · , ep, ē1, ē2, · · · , ēq, ê1, ê2, · · · , êr} with dim(M) =
p + q + r.

Now we prove Chen’s inequality for sequential warped product submanifold of a nearly Kaehler
manifold. From now we consider the ranges of indices as follows:

i, j = 1, 2, · · · p; α, β, γ = 1, 2, · · · q; k, l,u = 1, 2, · · · r

Theorem 3.8. Let (NT × f N⊥)×h Nθ be a (p+ q+ r)-dimensional sequential warped product submanifold of a nearly
Kaehler manifold M̃ such that NT, N⊥ and Nθ are respectively the holomorphic, totally real and pointwise slant
submanifolds of M̃, then

||σ||2 ≥ 2q||∇ ln f ||2 + 2r(csc2 θ +
1
9

cot2 θ)||∇T ln h||2 (36)

where ∇ ln f is the gradient of ln f on M and ∇T ln h is the gradient of ln h on NT. If the equality in (36) holds
identically, we obtain
(i) NT × f N⊥ is totally geodesic in M̃ if and only if 1(σ(DT,D⊥), JD⊥) = 0.
(ii) Nθ is totally umbilical in M̃ with mean curvature vector −(∇ ln h).
(iii) M is minimal in M̃.

Proof. For the adapted frame of orthonormal vector fields, (35) can be written as

||σ||2 =
∑

i, j

∑
α

1(σ(ei, e j), Jēα)2 +
∑

i, j

∑
k

1(σ(ei, e j), cscθFêk)2

+
∑

i, j

∑
v

1(σ(ei, e j), e∗v)2 +
∑
α,β,γ

1(σ(ēα, ēβ), Jēγ)2

+
∑
α,β

∑
k

1(σ(ēα, ēβ), cscθFêk)2 +
∑
α,β

∑
v

1(σ(ēα, ēβ), e∗v)2

+
∑

k,l

∑
α

1(σ(êk, êl), Jēα)2 +
∑
k,l,u

1(σ(êk, êl), cscθFêu)2

+
∑

k,l

∑
v

1(σ(êk, êl), e∗v)2 + 2{
∑

i

∑
α,β

1(σ(ei, ēα), Jēβ)2

+
∑

i

∑
α

∑
k

1(σ(ei, ēα), cscθFêk)2 +
∑

i

∑
α

∑
v

1(σ(ei, ēα), e∗v)2

+
∑

i

∑
k

∑
α

1(σ(ei, êk), Jēα)2 +
∑

i

∑
k,l

1(σ(ei, êk), cscθFêl)2

+
∑

i

∑
k

∑
v

1(σ(ei, êk), e∗v)2 +
∑
α,β

∑
k

1(σ(ēα, êk), Jēβ)2

+
∑

i

∑
k,l

1(σ(ēα, êk), cscθFêl)2 +
∑
α

∑
k

∑
v

1(σ(ēα, êk), e∗v)2
}
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Using the observations in Lemma 3.5, Lemma 3.6 and Lemma 3.7, the above expression reduces to

||σ||2 =
∑

i, j

∑
v

1(σ(ei, e j), e∗v)2 +
∑
α,β,γ

1(σ(ēα, ēβ), Jēγ)2

+
∑
α,β

∑
k

1(σ(ēα, ēβ), cscθFêk)2 +
∑
α,β

∑
v

1(σ(ēα, ēβ), e∗v)2

+
∑

k,l

∑
α

1(σ(êk, êl), Jēα)2 +
∑
k,l,u

1(σ(êk, êl), cscθFêu)2

+
∑

k,l

∑
v

1(σ(êk, êl), e∗v)2 + 2{
∑

i

∑
α,β

(Jei ln f )21(ēα, ēβ)2

+
∑

i

∑
α

∑
v

1(σ(ei, ēα), e∗v)2

+ csc2 θ
∑

i

∑
k,l

{
1
3

(ei ln h)1(Pêk, êl) − (Jei ln h)1(êk, êl)}2

+
∑

i

∑
k

∑
v

1(σ(ei, êk), e∗v)2 +
∑
α,β

∑
k

1(σ(ēα, êk), Jēβ)2

+
∑

i

∑
k,l

1(σ(ēα, êk), cscθFêl)2 +
∑
α

∑
k

∑
v

1(σ(ēα, êk), e∗v)2
}.

A sharp inequality for ||σ||2 is given as (noting that all the terms are positive in the above expression)

||σ||2 ≥2
∑

i

∑
α,β

(Jei ln f )21(ēα, ēβ)2

+ 2 csc2 θ
∑

i

∑
k,l

{(Jei ln h)1(êk, êl) +
1
3

(ei ln h)1(êk,Pêl)}2.

If we denote by ∇T ln h, the gradient of ln h on NT then by direct computations using adapted frame, we
derive

||σ||2 ≥ 2q||∇ ln f ||2 + 2 csc2 θ(r||∇T ln h||2 +
1
9

r cos2 θ||∇T ln h||2)

or

||σ||2 ≥ 2q||∇ ln f ||2 + 2r(csc2 θ +
1
9

cot2 θ)||∇T ln h||2

which is (36).
If the equality case in (36) holds identically, we have

σ(DT,DT) = {0}, σ(D⊥,D⊥) = {0}, σ(Dθ,Dθ) = {0}, σ(D⊥,Dθ) = {0}, (37)

σ(DT,Dθ) ⊂ FDθ, σ(DT,D⊥) ⊂ JD⊥. (38)

From Corollary 2.3, we know that NT × f N⊥ is totally geodesic in M. By the use of Lemma 3.5, 3.6 and
equation (37), (38), we conclude that NT × f N⊥ is totally geodesic in M̃ if and only if 1(σ(DT,D⊥), JD⊥) = 0.
Again using Corollary 2.3, we know that Nθ is totally umbilical in M i.e. we can write

σ′(W1,W2) = 1(W1,W2)H′ (39)
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for W1,W2 ∈ TNθ where σ′ and H′ are the second fundamental form and mean curavture vector of Nθ in
M. If the second fundamental form of Nθ in M̃ is denoted by σ0, then we have

σ0(W1,W2) = σ′(W1,W2) + σ(W1,W2).

Using (37) and (39), we get

σ0(W1,W2) = 1(W1,W2)H′ (40)

which shows that Nθ is totally umbilical in M̃. Using Proposition 2.2, for any U ∈ TNT or TN⊥, it is easy to
find

1(σ′(W1,W2),U) = 1(∇W1 W2,U)
= −(U ln h)1(W1,W2).

By using (14), we obtain

σ′(W1,W2) = −1(W1,W2)∇ ln h.

Therefore, Nθ is totally umbilical in M̃with mean curvature vector −(∇ ln h).
Moreover from (37), it is clear that M is minimal in M̃.

If we consider dim(Nθ) = 0, i.e. M is CR-warped product submanifold in a nearly Kaehler manifold.
We have the following:

Corollary 3.9. Let M = NT × f N⊥ be a (p + q)-dimensional CR-warped product submanifold of a nearly Kaehler
manifold M̃ such that NT and N⊥ are respectively the holomorphic and totally real submanifolds of M̃, then

||σ||2 ≥ 2q||∇ ln f ||2 (41)

where ∇ ln f is the gradient of ln f and q is the dimension of N⊥. If the equality in (41) holds identically, we obtain
(i) NT is totally geodesic submanifold in M̃.
(ii) N⊥ is totally umbilical in M̃.
(iii) M is a minimal submanifold of M̃.

The above characterization was obtained in [1], [14].
The following was proved in [12].

Theorem 3.10. [12] Let M = NT × f Nθ be a semi-slant warped product submanifold of a nearly Kaehler manifold
M̃ such that NT and Nθ are respectively the holomorphic and slant submanifolds of M̃, then σ satisfies

||σ||2 ≥ 2r csc2 θ{1 +
cos4 θ

9
}||∇ ln f ||2 (42)

where ∇ ln f is the gradient of ln f and r is the dimension of Nθ.

If we consider dim (N⊥) = 0 in the sequential warped product, i.e. M is a pointwise semi-slant warped
product submanifold in a nearly Kaehler manifold. Under this condition, Theorem 3.8 implies the following:

Theorem 3.11. Let NT ×h Nθ be a pointwise semi-slant warped product submanifold of a nearly Kaehler manifold
M̃ such that NT and Nθ are respectively the holomorphic and pointwise slant submanifolds of M̃, then

||σ||2 ≥ 2r(csc2 θ +
1
9

cot2 θ)||∇ ln h||2 (43)

where ∇ ln h is the gradient of ln h and r is the dimension of Nθ. If the equality in (43) holds identically, NT is totally
geodesic in M̃ and Nθ is totally umbilical in M̃. Also, M is minimal in M̃.



K. Khan et al. / Filomat 37:29 (2023), 9931–9943 9942

Proof. Inequality (43) follows directly from (36) assuming the submanifold as pointwise semi-slant subman-
ifold. In view of (37), it is easy to verify that if the equality holds in (43), NT is totally geodesic in M̃ and Nθ

is totally umbilical in M̃with mean curvature vector −∇ ln h. Again from (37), M is a minimal submanifold
in M̃.

Thus Theorem 3.11 is an improved version of Theorem 3.10 proved in [12] as can be seen in the following
remark.

Remark 3.12. For θ ∈ (0, π/2),

csc2 θ
{
1 +

cos4 θ
9

}
< (csc2 θ +

1
9

cot2 θ)

This means the inequality in Theorem 3.11 is more sharp than in Theorem 3.10.

Now we consider both the warping functions f and h are on NT i.e. in this case sequential warped product
(NT × f N⊥) ×h Nθ change into biwarped product submanifold NT × f N⊥ ×h Nθ with f , h : NT → (0,∞). In a
similar manner as in Theorem 3.8, we find the following inequality for biwarped product submanifolds in
nearly Kaehler manifold.

Corollary 3.13. Let NT × f N⊥ ×h Nθ be a (p+ q+ r)-dimensional biwarped product submanifold of a nearly Kaehler
manifold M̃ such that NT, N⊥ and Nθ are respectively the holomorphic, totally real and pointwise slant submanifolds
of M̃, then

||σ||2 ≥ 2q||∇ ln f ||2 + 2r(csc2 θ +
1
9

cot2 θ)||∇ ln h||2 (44)

where ∇ ln f and ∇ ln h are the gradients of ln f and ln h respectively and q and r are the dimensions of N⊥ and Nθ

respectively. If the equality in (44) holds identically, we obtain
(i) NT is totally geodesic in M̃.
(ii) N⊥ and Nθ are totally umbilical in M̃ with mean curvature vectors −(∇ ln f ) and −(∇ ln h) respectively.

The same result was obtained in [18].

4. Conclusion

In this study on warped product manifolds, we investigated a new class of warped product manifolds
namely sequential warped product submanifolds with holomorphic, totally real and pointwise slant factor
and ambient manifold a nearly Kaehler manifold. We looked into all possible type of products and discussed
in detail the sequential warped product of type (NT × f N⊥) ×h Nθ. We obtained an inequality having the
squared norm of the second fundamental form and the warping functions and slant function. This inequality
generalizes many existing results in other leading submanifolds embedded in nearly Kaehler manifold.
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