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Abstract. In this paper, we give continuous version of the weighted Besov spaces of variable smoothness
and integrability and obtain their equivalent norms by Peetre’s maximal functions.

1. Introduction

Spaces of variable integrability, also known as variable exponent space, are traced back to Orlicz [26, 27],
and studied by Musielak [22] and Nakano [23, 24], but the modern development started with the work [18]
of Kovacik and Réakosnik and continued by the boundedeness of Hardy-Littlewood maximal operator on
variable Lebesgue spaces [9, 10, 25]. Function spaces of variable smoothness were studied by Besov [4-6].
Then many variable spaces have appeared, such as variable Besov and Triebel-Lizorkin spaces [1, 2,11, 13,
14, 17, 30, 35-38], weak Triebel-Lizorkin spaces with variable integrability, summability and smoothness
[19], variable exponent Herz type Besov and Triebel-Lizorkin spaces [31], Morrey-Triebel-Lizorkin spaces
with variable smoothness and integrability [34], variable Triebel-Lizorkin spaces associated with non-
negative self-adjoint operators [32], Variable integral and smooth exponent Besov spaces associated to
non-negative self-adjoint operators [33], weighted Besov spaces of variable smoothness and integrability
[28]. As a continuation of [28], we will give equivalent norms of the weighted Besov spaces of variable
smoothness and integrability by Peetre’s maxiaml functions and continuous Fourier analytical tools.

The plan of the paper is as follows. In Section 2, we give continuous version of weighted Besov spaces
of variable smoothness and integrability and their equivalent norms. Their proof will be given in Section
3. In Section 4, we show that the continuous version of weighted Besov spaces of variable smoothness and
integrability is equivalent to that in [28]. In Section 5, we extend the results in Sections 2 and 4 for w € Ay,
tow € Aw.
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2. Notations and main results

In this section, we first recall some definitions and notations. Let IN be the collection of all natural
numbers and INg = N U {0}. Let Z be the collection of all integers. Let R" be n-dimensional Euclidean
space, where n € N. Put R = R!, whereas C is the complex plane. Let p(-) be a measurable function on R”
taking values in [1, o), the Lebesgue space with variable exponent L’)(IR") is defined by

LPO(R") := {f is measurable on R" : p,()(f/A) < oo for some A > 0},

where and what follows p,() := f]R,, |f (x)P¥dx. Then LP)(R") is a Banach function space equipped with the
norm

I fllpyo == inffA > 0 ppy(f/A) < 1).

These spaces are generalization of the classical constant exponent Lebesgue spaces. The space Lfég(lR”) is
defined by LY(R") := {f : fxx € LPO(R") for all compact subsets K C R"}, where and what follows, xs

denotes the Cli)faracteristic function of a set S € R". Let p() : R" — (0, ), we denote p~ := essinf,cgr: p(x),
p* = esssup,g. p(x). The set P(R") consists of all p(-) satisfying p~ > 1 and p* < co; Py(IR") consists of all
p(-) satisfying p~ > 0 and p* < co. Let p(:) € P(R"). Then p’(-) be the conjugate exponent of p(:), that means
/p()+1/p'() = 1.

Let p(-) € P(R") and w be a weight which is a nonnegative measurable function on R". Then the
weighted variable exponent Lebesgue space Lfv(')(]R”) is the set of all complex-valued measurable functions

f such that fw € LPO(R"). The space LIZ,(')(]R") is a Banach space equipped with the norm
10 = [l fwllo.
Let f € L}, (IR"). Then the standard Hardy-Littlewood maximal function of f is defined by

1

Mf(x) :=sup — flf(y)ldy, Vx eR",
Bax IB| B

where the supremum is taken over all balls containing x in IR”. In general, the Hardy-Littlewood maximal

operator is not bounded on weighted variable Lebesgue spaces. But if p(-) € P(R") and satisfies the

following global log-Holder continuity condition and w € Ay, then M is bounded on LZ,(')(]R”) in [8].

Definition 1. Let a(-) be a real-valued measurable function on IR".
(i) The function a(-) is locally log-Holder continuous if there exists a constant Cioga) such that

CIOg(a)

() =Wl < oA =)

1
x,yeR", x -yl < 7
Denote by Cizf(]R”) the set of all locally log-Holder continuous functions on IR™.
(ii) The function a(-) is log-Holder continuous at the origin if there exists a constant C, such that

a(x) - a(0)) < ——2
log(

2 yyeR"
er /) T E

Denote by Cg’g(IR”) the set of all log-Holder continuous functions at the origin.
(iii) The function a(-) is log-Holder continuous at infinity if there exists oo € R and a constant Cs such that

a(x) — to < —C

3 n
< —log(e+ )’ Vx e R".

Denote by C%B(R") the set of all log-Holder continuous functions at infinity.
(iv) The function a(-) is global log-Holder continuous if a(-) are both locally log-Holder continuous and log-Holder
continuous at infinity. Denote by C'°8(R") the set of all global log-Holder continuous functions.
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Definition 2. Let p(-) € P(IR"), a positive measurable function w is said to be in Ay, if there exists a positive
constant C for all balls B in R" such that

-1 -1
IBI™ lwxsllpollw™ xsllpro < C

In [8], Cruz-Uribe, Fiorenza and Neugebauer obtained the following result, which generalizes the result
for constant exponent Lebesgue spaces in [21].

Lemma 1 (see [8, Theorem 1.5]). Ifp() € C°8(R") NP(R") and w € Ay, then there is a positive constant C such
that for each f € L'O(R"),

IMf)wllo < Cll fwllppo.

Let {fiJo<t<1 be a family of measurable functions when ¢ is a continuous variable. We set

1
. =+ dt
pfq(j@.))({ft}o«sl) = L inf {At : Pp(-)(ftw/)\tq()) < 1}7,

The norm is

I fiosestll o, = inf{u > 0+ p s (filoaesi /0) < 1

o)

In the following we denote by S(IR") the Schwartz space of rapidly decreasing functions on R". For
f € S(R"), let F f or f denote the Fourier transform of f defined by

n

FFE) = o) = @m) " f e f()dx, & € R,

while V(&) = ﬁ—é) denote the inverse Fourier transform of f.
Select a pair of Schwartz functions @ and ¢ satisfying

suppFPCci{xeR":|x| <2}, suppFecCixeR":1/2<|x| <2} 1)

and
! dt .,
FOE) + f Fot)T =1, EeR" @)
0

Such a resolution (1) and (2) of unity can be constructed as follows. Let u € S(R") be such that |¥ u(&)| > 0
for 1/2 < |&| < 2. There exists n € S(R") with

suppFncixeR":1/2 < |x] <2}

such that
® dt
f FREFne) T =1, €20,
0
see [7], [15] and [16]. We set ¥ ¢ = F uF n and

[T Fed  if £#0,

Then ¥ ® € S(R"), and as ¥ 1 is supported in {x € R" : 1/2 < |x| < 2}, we see that supp FO C {x € R" : |x] <
2}.
Now we define continuous version of weighted Besov spaces with variable exponents as follows.
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Definition 3. Let s(-) : R" = R, p(-) € P(R"), q(-) € Po(R") and w be a weight.. Let {F D, F @} be a resolution of
unity as above and we put @;(-) = t 7" @(-/t), 0 < t < 1. The Besov space B;((:))'Z;(')(R") is the collection of all f € S'(IR")
such that

D, i —s(-) ey
At = 10« fllg + MO Flocszall g, < o0

When g = o, the Besov space B;(())Z:o (IR™) consists of all distributions f € §’(IR") such that

D —s(-
Il =10 flyo + sup I e fll, 570, <

p(),e0

Before going on, we dente by A < B that there is a constant C such that A < CB. If A < Band B < A, we
denote A ~ B. First, these spaces are independent of the choice of ® and ¢.

Theorem 1. Let {F @, F ¢} and {(FW, F P} be two resolutions of unity satisfying (1) and (2). Let s(-) € Cigf(]R”) N
L=(R"), p(-), q(-) € P(R") N C'8(R"), and w € Apy. Then

D, W,
WA 2o = NAIL 2
B0 B0

Leta>0,s(-) € C}Zf(lR”) NL*(R") and t > 0. For each f € §'(R"), the Peetre maximal functions for f are
defined by

t=Wg; + f(y)l
#1750 £(x) := sup ————7—
r Je) yellg’ L+t x =yl

and

af) e sup 2SO
P = A ey

Then these spaces can be characterized via the Peetre maximal functions.
Theorem 2. Let s(-) € Cizf(]R”) NL2(RM), p(-), 9(-) € P(R") N C°8(R"), w € Ay and a > n/p~. Then

”f”;;c«),w = ||q)*'ﬂ||LfU(_) + ||((P*’ut_s(')f)0<t§1||

01 PO
P04() 10(LY,”)

is an equivalent quasi-norm in B‘; (('_))’L;(_)(]R”).

The proofs of Theorems 1 and 2 will be given in the next section.

3. Proofs of Theorems 1 and 2

To prove Theorems 1 and 2, we need further preparation.
For a positive real number m, let 1, be the function as

Mm = (1 +x)™™.

For v € Ny and a positive real number m, we denote

()= — 2
o= A 2y
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Lemma 2 (see [36, Lemma 3.14]). Let p(-), q(-) € Po(R") and f be a measurable function on R". If
Al s =1,
Lat)
then

A < [IA17 >|| -

Lemma 3 (see [11, Lemma 6.1]). If9(:) € C}Sf(]R") and R > Ciog(s), where Ciog(s) is the constant in (i) of Definition
1 for 9 = a, then

2S(x)77v,m+R(-x - y) < CZS(y)nv,m(x - y)

with C > 0 independent of x,y € R" and v € INj.

If9 e Cigf(lR”) and R > Clog(s), then by Lemma 3 for x, y € R” and v € Ny,
28(x)77v,m+R * f(x) < N * (28(')f)(x)'

Lemma 4 (see [28, Lemma 4]). If p(-) € C°8(R") N P(R") and w € Ap(), then for every m > n there exists C > 0
such that,

720, * gl o < Cllgllypo

forallv >0, functions g € L2 (R).

Lemma 5 (see [11, Lemma A.6]). Let r > 0,v € Ny and m > n+ 1. Then there exists C = C(r,m, n) > 0 such that
9| < Clapon * g1 ()7

for all x € R", and every g € S'(R") with supp F g C {& : |&] < 2"*1}.

Similar to Lemma 3 in [33], we have the following lemma.

Lemma 6. Let p(-), q(-) are positive functions on R" such that 0 < p~,q~ p*,q" < co. Let 6 € (0,00). Let w be a
weight. For any sequence {g, o Of nonnegative measurable functions on R" denote

Gi(x) := Z 2710 g (), x € R".

Then there is a positive constant C = C(p(+), q(-), 6) such that
||{Gj}?o:0||€q(.)(LZ$-)) < C||{gk};10||€,,(.)(%<->)-
The next lemma is Hardy type inequalities; see [20].

Lemma 7. Lets > 0 and {e}o<i<1 be a sequence of positive measurable functions when t is a continuous variable. Let

1 ¢
dt dt

= tsf T8, — and O; = t‘sf e —.
; T 0 T

Then there exists a constant C > 0 depending only on s such that

1
f t—+f t—<Cf €t%.
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Lemma 8 (see [28, Lemma 6]). Lef p(-), () € C'°8(R") N P(R"), w € Ap(y, and m > n + Ciog1/q), Where Ciog1/g)
is the constant in (i) of Definition 1 for 1/q = a. Then there exists a positive constant C such that

“{T]v,m *fv}::o=0||€q(-)(L5'U(')) < C”{fv}so:o”(q(-)(%('))
holds for every sequence {f,};” , of locally Lebesgue integrable functions.

Lemma 9. Let p(-), q(-) € C°8(R") N P(R"), w € Apy and m > 1 + Ciog1/q), Where Ciog1/q) is the constant in (i) of
Definition 1 for 1/q = a. Then there exists a positive constant C such that

It * filo<ecall < ||t fido<e<t|

) )
holds for every sequence functions { fi}o<¢<i.

Proof. By the scaling argument, without loss of generality we may assume that ||{f:}o<t<1ll =1 We

0w
only prove that there exists a constant c such that

f et * £t 02 <2.
0 Lo t
This clearly follows from the inequality

g0

|||CT]t,m *ﬂ|q(~)wq(~)”Lp(_) < |||ﬁ|q(~>wq(~)HL% 1= 6
for any t € (0, 1]. This claim can be reformulated as showing that

157 e * it OwO| o <1
L490)

which is equivalent to

|6, ™ e * f,f|)Lg> <1, te(0,1].
Since 1/4(-) is log-Holder continuous and 6; € (t, 1 + t], then by Lemma 3, we have

6[—1/‘7(-)mt,m % ft| < C|T]t'm_clog(1/q) " (6;1/q(')ﬁ)|. (3)
Then by (3) and Lemma 4, we obtain

1 1 1

”(St " m * fllpo < chf/m—clogwm * (0, q(')ﬁ)“LZf') < Hét "”ﬁ“ng-)
with an appropriate choice of ¢ > 0. Now the right-hand side is bounded if and only if

£l <o

L0

which follows from the definition of ;. O

Lemma 10. Let 0 < a < < oo, w € Ay, p(-) € PL8(R") and q(-) € Po(R") with 1/q(-) € Cigf(]R"). Let

bt dt
gr = f Nem * fr(x)—, t€(0,1], x e R
at T
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(i) Assume that 0 < Bt < 1. The inequality

pt d
leaaor] sy < [ b0 o % ws, e @1

holds for every sequence of functions (fi)o<t<1 and constant m > n + Ciog1/q) such that the first term on right-hand
side is at most one, where the constant ¢ independent of t, where Ciog1/q) is the constant in (i) of Definition 1 for

1/g=a.
(ii) The inequality

I{gt}o<t<all < Cli{fio<t<all

£10)( L”( N~ £t )(qu('))

holds for every sequence of functions (f)o<t<1 and constant m > n + Ciog(1/q) Such that the right-hand side is finite,
where Ciog(1/q) is the constant in (i) of Definition 1 for 1/q = a.

Proof. (i). We put

Bt
O = jo:t ”lcffwlq(.)“L% d?T h

Since 1/4(-) is log-Holder continuous and 6; € (t, 1 + t], then by Lemma 3, we have

8, " * fil < Clrfm gy * 07 i)l )
Then by (4) and Lemma 4, we obtain

Bt 1
”C(S gt”L”() < ft HCét ng (WT,m *fT)“LfU(')d?T
a
Bt 1 d
< L t HT]T,m-clogu/q) + (o, 70 fT)”LZ«)?T

Bt 1 d
-4 T
70
: f HCét ] fT“LF“
at v T

_1 d’l' 1 d"[

— T q0) i f ) qc) it

J I R P B o P
:=F1 +F,

where

E:={t>0: “|5ﬁ Few]®

> 1},
LpO)/aC)

By Lemma 2, we have

1 st
ofF 4T < 51 of ., 2%
h s f(ﬂt,at]mE e "”fwlq I T =0 »fa‘t iz ”L% . <1

f |5, q()fTHLpo— < Ijt d; 1o gﬁ

(ii). By the scaling argument, without loss of generality we may assume that ||(f;)o<t<i1ll —, = 1. we will

tOw)
show that

and

1
jo‘ |||Cgt|q(')w'7(')||L%% <2 whenever “'ﬁlq(')wq(')HL% =

By Lemma 7 and (i), we obtain the desired result. [
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Lemma 11 (see [3, Lemma 2.8]). Let 0 < r < 1 and m > max{n, n/r}, and {F @, F ¢} be a resolution of unuty,

1
dt
FDE) +f T(p(té)T =1, &eR"
0
(i) Let 0 € S(IR") be such that supp 0 C {£ € R" : |E| < 2}. Then there exists a constant C > 0 such that

1
dt
M1,mr * |(PT *f|r_
4

T

04 fF < Cinp 101 +C [
1/

forany f € S'(R"), where ¢ = T7"¢(-/7).
(ii) Let w € S(R") be such that supp Fw C {£ € R" : 1/2 < || < 2}. There exists a constant C > 0 such that

min{1,4t}

dt
|wt*f|rgcnl,mr*|q)*f|r+cf 771,mr*|(PT*f|r?

1/4
orany f € S’ (R")and 0 < t < 1, where w; = t™"w(-/t).
Y

Proof of Theorem 1. It is sufficient to show that there exists a constant C > 0 such that for all || f IIty;(,f N

Pe)AC)

< 00

we have

D, W,y
Il 00 < CIALG.
P00 P40

By the scaling argument, without loss of generality we may assume that || f IIEI{;(fu, = 1. We will show that

Br’('),ll(')

1
—s(- : dt
©+ £l < 1 and f et = o] v <1
W 0 qc

for some positive constant c. We have

1
FoE) = FOOTVE + [ FOOFYaT

and

0, if 0<t<i

min{1,4t} dt
Fo(te) = ft Folt)Fp(re)—+ {ﬂo(t HFWE), if t<t<1

/4
for any ¢ € R". Then

1
cp*f:q)*\y*f+f CD*Q[}T*fd—T
1/4

T

and

min{1,4t}

d
Prxf= @t*%*f—T+{
t/4 T

0, if 0<t<i
pexWxf, if ;<t<l

Form > n and }1 <1 <1, by Lemma 11, we have

|®*¢T*f|s|n0,m*lyb'[*f|
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< Mo * T Oy * f]
and
|D =W f] < 1o = W fl.

Thus,

1

D * £ S Mo * [ = f] + f Non * T O * fl =2 1o * [V # f| + 4.
4

1/

By Lemma 4, we obtain
0. * 19 * fl] o < CINV = fll o 5 1.
For some suitable c; > 0, then by Lemma 10,
0 R | 4t
lerglO)| wo < | lleat™O e+ HrofiO| oo — <1
L0 1/4 L t

90)

which is equivalent to

llegllpo < 1.
Therefore,
1D % fll o < 1.
w

With an appropriate choice of ¢ > 0 and any t € (0, 1], then by Lemma 4

[lleps = W+ FTOWIO| 4y < 1.

L0

For m > n, t € (0,1/4], we obtain

t
dt
|(Pt*f|$f7h,m*|¢’f*f|?-
/4

For some suitable ¢ > 0, then by Lemma 10, we obtain

1
[ e ] % <1

Interchanging the roles of (®, ¢) and (W, 1)) we obtain the desired result.

Proof of Theorem 2. It is easy to see that for any f € S’(R") with ||f|I*

have

O+ f)] < @y t0 f(x).

Therefore, we obtain

Ifllgsoe <AL s -
/ om0 / B0

O

Bs(hw
BP(-),q(-)

9921

< oo and any x € R" we
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Next, we will prove that there is a constant C > 0 such that for each f € 8’ ((>)L;( )(]R”)

1/ g < CIIfIIBsow : )

PO
By the argument in the proof [3, Theorem 3.5], we obtain

1

90 f(x) < C' (- * (Olhpy + fP)))’

S(-), W
forallfeB()((

and f and Ciog(1/4) is the constant in (i) of Definition 1 for 1/q = a. By Lemma 9, we get the desired estimate
®). O

R") and any ¢ > 0 and any s > max{n/p~,a + Ciogs)}, where C’ > 0 is independent of x, ¢

4. Consistency of two versions

Itis noted that if s(-) € L*(IR") N CI°8(R"), p(-) € Po(R") N C1o8(IR") and g(-) € Po(R") N C.¥(R"), and w = 1,

0 loc loc
s B°
then B )q()(IR”) = p()q()(]R”) see [3].

In thls section we discuss the relation between the spaces in Section 2 and the spaces in [28]. Let us
recall the definition of the spaces in [28]

Definition 4. Let \V be a function in S(R") satisfying W(x) = 1 for |x| < 1 and W(x) = 0 for |x| > 2. We put
Fo(x) = W), For(x) = W(3) - W(x) and Fpu(x) = F$r(2""x), v = 2,3, . Then {F by e, is a smooth

dyadic resolution of unity,
i Fou(x) =1 forall x e R".
v=0

Thus the Littlewood-Paley decomposition holds, that is for each f € §’'(R")
f= i ¢y * f with convergence in S’(R").

Definition 5. Lef p(-), q(-) € Po(R") and s(-) € L°(IR"). Furthermore, let {d)j};?io be the system in Definition 4 and

w be a weight. The weighted Besov space with variable exponents BS(())Z;( ,(IR") is the collection of f € S'(R") such that

IAllgoe 2= 12505 % £l ) < o,
where the norm is
Aol oy = E{A > 05 p oo (Fi/ 1)) < 1),

and

(o)

Dz (F120) Z £ pro(fo/a ) <1

W—/

If g = oo, the norm is

Aol 0y = Az} Zol|
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Theorem 3. Let p(-),4(-) € C°8(R") N P(R"), w € Apyand s(-) € Clog(]R”) N L2(IR"). Then

loc

BS()ZU )(IR") —

n
ZOF(Q )(IR )

P( ) q(
in the sense of equivalent quasi-norms.

Proof. First, we show that

(- ) w n s(-)w n
B0 B = By R:

To do so, let {®, p} obey (1) and (2) and {F ¢} jen, be a resolution of unity. Let f € B (R") with

pOa()

Then, we have

min(1 2] at o if v>2
 f = s f—+4 -
poef= | VoS {gbv*cb*f, if v=0,1,2.
By Lemma 4 for some suitable positive constant ¢, we obtain
ety = @+ frotOll <1, v=0,1,2
70
By Lemma 10, we have
min{1,2~") dt
[ller @, o] o < f [IEO@e * ]| o —+2", v=2,
L0 p-v-2 Lo t
with an appropriate choice of ¢;. Taking the sum over v > 2, we obtain
S(-),w s 1.
Wlass,
Thus we have
()w n O (Rn
B;()q (RY) = P()q()(]R)
Next, we prove that
gOw (R") — BOw (R")
P()ﬂ ) POAC) ’
Again, let {®, ¢} obey (1) and (2) and {F ¢j}jen, be a resolution of unity. Let f € B;(('_))’;’(_)(]R") with
s(-),w S 1
e,

We have

(Pt*f=i<m*%*
v=0

[logz(%)]+1 1

0, if 0<t<+,

= Z gof*¢V*f+ *(D*f lf t>— 4
v=[log, ()] 4}0 ! 4

9923
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and
2
@*f:Z®*¢V*
v=0

If v <0, we put ¢, * f = 0. By Lemma 4, we obtain
lle(@ =« o] o <1, v=0,1,2,
L4C

which yields,
|||(®*f)ww<')1|L% <1

for some suitable positive constant c. Let t € [27/,277*1], i € N. We have

Iogz( )+1

Oy« f] < Z EOny < Iy + ]
v=[log,(3)]
i-1

< Z 2(i—V)S_T]V,m_C10g(S) * 2VS(‘)|1PV * fl
v=i-3

=c Z 27 Njtim-Cogte) * 2O £,
=

where m > 1 + Ciog(s) + Ciog(1/4), Ciog(s) and Ciog(1/4) are the constant in (i) of Definition 1 for s = a and
1/q = a. Now by Lemma 8

[ et o] o

()

2'11
- Zf “It O (g, *f)ww()“ p() jiad

< Z 2= Js” Z ||(CT]]+, 1=Ciog(8) *2(]+’)5()|I,D " *f|w)q( ” n()

j=-3 i=0
< Z‘ ”(Cnv,m—Clog(s) * zvs(')hbv * f|w)q(.)” %
v=0 L
S C S(-),w S ].
Pl
for some suitable positive constant c. This finishes the proof. [

Finally, we give a characterization of the space B;(('_))’ZJ(_)(]R") via the so-called local means. Let kg, k € S(IR")

and S > —1 an integer such that for € > 0
Fko(&) >0 for [&] < 2¢, (6)
FHE >0 for 5 < |&] <2 ?)

and

f x*k(x)dx =0 forany |a| <, (8)
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where (6) and (7) are Tauberian conditions, (8) are moment conditions on k. We recall the notation
ke(x) = t"k(t %),  kj(x) =kp-i(x), fort>0and;jeN.
Foranya >0, f € S’(R") and x € R", we define

=Wk, =
k*”t‘s()f(x) = sup i x fW)

p——22"  jeNj.
vere (1 + 1 =y 0

Theorem 4. Let ky and k obey (6)-(8). Let p(-),q(-) € C°8(R") N P(R"), w € Apy, () € Cigf(lR”) N L=(R"),
a>nfp”ands* < S+ 1. Then
A g o= IS Al + 11660 ocestl

01 P0)
B oae) L10(LY,")

. . . S(-),w n

is an equivalent quasi-norms on Bp(.)/q(i)(]R ).

Proof. Let ¢ > 0. Take any pair of functions ¢ and ¢ € S(R") such that
Fpo(&) >0 for & < 2¢,
Fp(&) >0 for % < |&] < 2e.

We prove that there exists a constant c such taht for any f € B;((“))’Z;(.)(R”)

If ||;s((<>),w( < cllpg Il + ||((p] anjs() f)1>1”m<>(y’ ©)
Pe)AC,

s(-),w

For any f € Bp(_),q(_)(]R"), any x € R" and any 27 < t < 2!7/,i € Ny, By the argument in the proof of [3,
Theorem 4.6], we obtain

k:,ut—s(-)f(x) < 2—1'(S+1—s*)(P8,tlf(x) +C Z min{z(j—i)(5+l—s+), 2i—j}(P;,u2js(-)f(x)

- (DS +1=s%) i=jy anjs()

—Czolmm{Z ,2 }(p]. 259 f(x)
]:

= CV¥(x).

Assume that the right hand side of (9) is less than or equal one. We have

! dt Z
fo i o) ’f’(i £ f
)10
< ;:O HIC‘I’lwlq “Lm

for some positive constant c. The last term on the right hand side is less than or equal one if and only if

|k”th 5O frol )” K

W isollo o, < 1

for some suitable positive constant ¢;, which follows by Lemma 6 and the fact that s* < S + 1. Similarly, we
get for any x € R”

ky' f(x) < Coy* f(x) +C22 ](p””z]s()f(x
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Therefore, taking the L';,(')—norm and using the embedding é”i(')(Lfv(')) — €°°(LZ,(‘)), we obtain (9). Now, let
{F ¢j}jen, be a resolution of unity. By (9) and Theorem 1 in [29], we have

1AW 025" Al + (160520 Dzl mazy < Wl -
Next, we prove the oppositive inequality. To do so, let {F ¢;}jen, € S(R") be such that
supp Fo Cc{EeR": /2 <|&| < 2¢}
and
supp Fpo C{EeR" 1 [E] <2¢}, €>0,

with @; = 2¢p(2/-), j € N. We will prove that

o * Flgo + @5 % Mzl oz < Wl - (10)
By the argument in the proof of [3, (4.10) of Theorem 4.6], we obtain
27j+2

zfs(x)rl(Pj*f(x)lr < f

2-j-2

kO L, xer a

Similarly, we obtain
! d
r *,0 r *0,_—s(-) raT
fpo FOON < (270 + [ (e 0y
1

Let 6 > 0 be such that max{1,(1/p)*/(1/9)"} < 8 < g~ /r. By Holder’s and Minkowski’s inequalities, we
obtain

2~ j+2

e, ] oy = ([

2= j+2
<[
272

“a_—s(- s dry?
Kt s<>fw|q<>“e&_)
Lo T

dt
K50 fol 10| —.
Ik f'm%T

So, we have
Z 270, *f)w|q(‘)“L% <1
=1

with an appropriate choice of ¢ > 0 such that the left hand side of (11) it at most one. Similarly we obtain
llet@o * Nt o <1.
Lo
Hence, we obtain (10). Now let {¥ ¢;}en, be a resolution of unity. By (9), we obtain

W%%SWMNW+WW%ﬁm%%mﬂW@W

P0)AC)

This finishes the proof. O
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5. With weights in A,
For a wight w and p(-) € P(R"), we define o= {f : IIfwPO) 0 < oo} and Il = Il fw /PO .
Definition 6. Let p(-) € P(R"), a nonnegative measurable function w is said to be in A, if

- -1
||w||Ap(,) = sup |B| PEllwxllp llw XBllproro < oo,
B

-1 _ .
where pp is the harmonic average of p(-) over B, namely, pp := (ﬁ fB ﬁdx) . The set Ap( consists of all Ap
weights.

Diening and Hésto obtained the following lemma in [12].

Lemma 12. Ifp(:) € Clog(]R”) NP(R") and w is a weight, then the Hardy-Littlewood maximal operator M is bounded
on LPO(w) if and only if w € Ay,.

Due to Definition of Ap(.) and [12, Lemma 3.1], we have the next lemma.
Lemma 13. Suppose p(),q(-) € C°8(R") N P(R") and p(-) < q(-). Then we have
A1 CA, CAyy CAyy CAp CAx.
By Lemmas 12, 13 and [11, Lemma 3.2], we have the next lemma.
Lemma 14. If p(-) € C'°8(R") N P(R") and w € A, then for every m > n there exists C > 0 such that,

||7]v,m * g”lﬁf) < C||9||HU<>

for all v > 0, functions g € L2 (R™).

Lemma 15. Let p(-), (-) € C°%(R") N P(R"), w € Aeo and m > n + Ciog(1/q), where Ciog(1/g) is the constant in (i) of
Definition 1 for 1/q = a. Then there exists a positive constant C such that

nem * fedo<eall, 5= o, < ”{ﬂ}0<t51”€q5@.))

holds for every sequence functions { fi}o<i<1.

Proof. By the scaling argument, without loss of generality we may assume that ||{ ﬂ}0<t§1||m<3(\117,f')) =1. We

only prove that there exists a constant ¢ such that

f”'c”’ + filf O OPO|| ’TdTS

This clearly follows from the inequality

|||CTIt *ﬂw()wq()/p()“ w0 < |||ﬁ|q(~)wq(-)/p(v)” o FHi= 0
70 L0
for any t € (0,1]. This claim can be reformulated as showing that
||5 Yengm *ﬁlq()w"()/”()” 9 <1
90

which is equivalent to

.
cllo, © tjm * fillpo <1, € (0,11,
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Since 1/4(-) is log-Holder continuous and 6; € (t, 1 + t], then by Lemma 3, we have

8, Mt * fil < Qe * 07 )1 (12)
Then by (12) and Lemma 14, we obtain

1 1 1
90 90 50
Hét ! Mt,m *fV”ifV(') < ”Cnf,m—clog(uq) * (6t ! ﬁ)”iﬁf) < ”(St ! ft”m()

with an appropriate choice of ¢ > 0. Now the right-hand side is bounded if and only if

|||ﬁ|q(-)wq(-)/p(-)||t§8 <6

which follows from the definition of 6;. [

Lemma16. Let 0 < a < B < 00, w € Aq, p(-) € POE(R") and g(-) € Po(R") with 1/q(-) € CB(R"). Let

loc

bt dt
gi = f Nem * fr(x)—, te(0,1],x e R".
at T

(i) Assume that 0 < Bt < 1. The inequality

It o ol @
|||cgtw1/”()|’4()||l% < [w HlfTwl/p()lq()“iZfii?T +t, te(0,1]

holds for every sequence of functions (f)o<t<1 and constant m > n + Ciog1/q) such that the first term on right-hand
side is at most one, where the constant c independent of t and Ciog(1/4) is the constant in (i) of Definition 1 for 1/q = a.
(ii) The inequality

{geho<t<ill, =50, < Cllifedo<e<tll

080 0@l

holds for every sequence of functions (fi)o<i<1 and constant m > n + Ciog(1/q) Such that the right-hand side is finite,
where Ciog(1/q) 18 the constant in (i) of Definition 1 for 1/q = a.

Proof. (i) We put

pt
o = f |||Cf7w1/”(')|‘7(')H~p(
at L

dt
y — + t.
0 T

Since 1/4(-) is log-Holder continuous and 6; € (t, 1 + t], then by Lemma 3, we have

87 e+ il < Clitemecugary * ©F " fo)l. (13)

Then by (13) and Lemma 14, we obtain
_1 Bt _1
||C6t 0 gt”ij’(‘) < f HCét R (Nem *fr)”igv(»d—’t
v at w T
Bt 1 d
< f HnT/m_Clog(‘l/q) * (Cét q(l.) fT)”zf(') ?T
at w
Bt 1
< [, il %
at “w

- -5 dt f 1 dt
B j(l;t,at]mE 0. fT”ifu(') T’ (BtatinEe es:” fT“lff') T



P. Guo et al. / Filomat 37:29 (2023), 9913-9930 9929

=F+F,,
where

L
E:= {T >0: Hléf q")ffwl/r’(<)|q(<)

> 1}.
100

By Lemma 2, we have

Flsf Hlé e fwl/P()W ”
(Bt,atINE

Pos [Tty [ - 0gt

(ii) By the scaling argument, without loss of generality we may assume that ||( ﬂ)0<t51||”(5)(\15)) = 1. we show
that

\H
I/\

()
)

= |

St
d? 5t—f |)|fw1/P(’|q(>)|Ld?sl

()

=
2=

and

)

1
f |||C!7t|q(')wq(')/”(')H~m dt <2 whenever |||ﬁ|‘7(')w‘7(')/i’()||~m =1.
0 Lae) t La

By Lemma 7 and (i), we obtain the desired result. [

Similar to Definitions 3 and 5, we denote

IAIZE, =110+ fllo + IO, * flocsl
B Ly

POAC)

“f“BS()w = ”{2]5( (P f};')i0||[q(-)(f‘lz”v('))'

Pe)A4C)

(@YY

Theorem 5. Let (¥ ®, F ¢} and {7V, F ¢} be two resolutions of unity satisfying (1) and (2). Let s(-) € Cigf(]R”) N
L=(R"), p(-), 9(-) € P(R") N C'°8(R"), and w € Aw. Then

||f||( O ||f||

Bora B0
Proof. The proof of Theorem 5 is similar to that of Theorem 1. In fact, by repeating the argument that used
in the proof of Theorem 1, where Lemmas 4 and 10 are replaced by Lemmas 14 and 16 respectively, we can
prove it. The detail is omitted. [

Theorem 6. Let s(-) € Cigf(]R”) N LR, p(-), 9(-) € P(R") N C'°8(R"), w € A and a > n/p~ Then
1 W0 5= 11Dl + (@™ t7°0 o<t

7P
Ba0 ALy

. . : (),w n

is an equivalent quasi-norm in B; Ot 5(R).

Proof. The proof of Theorem 6 is similar to that of Theorem 2. In fact, by repeating the argument that
used in the proof of Theorem 2, where Lemma 9 is replaced by Lemma 15, we can prove it. The detail is
omitted. [

Theorem 7. Let ko and k obey (6)-(8). Let p(-), q(-) € CO3(R")NP(R"), w € Aw, () € C}Zf(]R”)ﬂL‘”(lR”), a>n/p”
and s* < S+ 1. Then

I = 1K il + NGO Focrall
b POLA6) 0 Le

O@)

is an equivalent quasi-norms on B;(('.))’Z;(.)(R").

Proof. The proof of Theorem 7 is similar to that of Theorem 4. In fact, by repeating the argument that used
in the proof of Theorem 2, where Lemmas 4 and 9 are replaced by Lemmas 14 and 15 respectively, we can
prove it. The detail is omitted. O
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