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Global asymptotic stability for a classical controlled nonlinear periodic
commensalism AG-ecosystem with distributed lags on time scales
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Abstract. Commensalism is a common phenomenon in nature. The Ayala-Gilpin (AG) dynamical system
model is commonly used to describe the nonlinear interactions between species in ecosystems. Combining
commensalism with AG-system models, the manuscript emphasizes on a classical controlled nonlinear
periodic commensalism AG-ecosystem with distributed lags on time scales. In our model, the discrete
and continuous cases are unified and generalized in the sense of time scale. Firstly, it is proved that a
class of auxiliary functions have only two zeros in the real number field. Then, with the aid of these
auxiliary functions, using the coincidence degree theory and inequality technique, we obtain some sufficient
criteria for the existence of periodic solutions. Meanwhile, we prove that the periodic solution is globally
asymptotically stable by applying Lyapunov stability theory. Finally, an example is numerically simulated
with the help of MATLAB tools.

1. Introduction

The manuscript stresses on a nonlinear commensalism AG-ecosystem with distributed delays on time
scales as follows X∆(τ) = r1(τ) − a11(τ)[eX(τ)]ϑ1 − φ1(τ)e−X(τ), τ ∈ T,

Y
∆(τ) = r2(τ) − a22(τ)[eY(τ)]ϑ2 + a21(τ)

∫ 0

−ξ(τ) k(s)eX(τ+s)∆s − φ2(τ)e−Y(τ), τ ∈ T,
(1)

where T is a time scale, ∆ is the delta derivative on T, X(τ) is the population density of the host, Y(τ) is
the population density of cohabitants, r1(τ) > 0 and r2(τ) > 0 represent the inherent growth rates, a11(τ) > 0
and a22(τ) > 0 are the intraspecific competition rates, a21(τ) > 0 represents the population growth rate of
cohabitants who obtain benefits from the host without harming them, k(τ) is a kernel function of distributed
delays, ξ(τ) > 0 is a distributed delayed function, φ1(τ) > 0 and φ2(τ) > 0 indicate human control such as
fishing and catching, the constants ϑ1 > 0 and ϑ2 > 0 measure the nonlinear interferences within species.

In an ecosystem, commensalism is one of the interactions between different species. In commensalism,
one species benefits from interactions such as shelter and food, while the other species is unaffected. The
beneficiary species are called cohabitants, while the unaffected species are called hosts. Commensalism is
a common phenomenon, for example, sharks and sucker fish, sea cucumber and imperial shrimp, livestock
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and cattle egret, hermit crab and gastropods. Therefore, it is of great value to use mathematical models
to explore the dynamic behavior of commensalism ecosystems. In 2010, Zhao and Li [40] established a
Lotka-Volterra (LV) model to investigate the multiplicity of solutions to a commensalism ecosystem with
two species. In addition, the AG-ecosystem model was first proposed by Ayala, Gilpin and Eherenfeld [3]
in 1973. When studying the competition relationship between fruit flies, they built the following nonlinear
model

dX(τ)
dτ = r1X(τ)

[
1 −

(
X(τ)
K1

)ϑ1
− a12

Y(τ)
K2

]
,

dY(τ)
dτ = r2Y(τ)

[
1 −

(
Y(τ)
K2

)ϑ2
− a21

X(τ)
K1

]
,

(2)

where r1 > 0 and r2 > 0 are natural growth rates, K1 > 0 and K2 > 0 express the maximum number of
species in the environment without competition. The nonlinear interferences within species are measured
by constants ϑ1 > 0 and ϑ2 > 0. a12 > 0 and a21 > 0 are the measures of competition between species.

Taking ϑ1 = ϑ2 = 1 in (2), we get the following LV-system dX(τ)
dτ = r1X(τ)

[
1 − X(τ)

K1
− a12

Y(τ)
K2

]
,

dY(τ)
dτ = r2Y(τ)

[
1 − Y(τ)

K2
− a21

X(τ)
K1

]
.

(3)

So the AG-model extends the LV-model. In fact, the AG-model also includes other models. For example, (2)
is the square root model, provided thatϑ1 = ϑ2 =

1
2 . Consequently, many scholars have conducted extensive

and in-depth research on the AG-model. Some papers [6, 8, 15, 16, 19] dealt with the persistence, extinction
and attraction. The others [11, 22–25, 41] probed the existence, multiplicity and stability of solutions.
Furthermore, some scholars began to investigate the AG-type models concerned with some special effects
such as time-delays [6, 15, 19, 22–25, 41], impulses [8, 26, 39] and randomness [1, 13, 14, 16, 21]. Moreover,
there have been some papers [2, 6, 8, 14, 20–23, 41] involving in generalized or modified AG-type models.

As is well known, the number of cohabitants in a commensalism ecosystem does not increase instanta-
neously due to benefits from the host, and this process has a time delay. The number of various species in an
ecosystem is usually influenced by environmental factors with periodic changes such as climate, weather,
food, and mating. Additionally, the human behavior of catching, fishing, and logging has led to a decrease
in the number of species in the ecosystem. Therefore, the model (1) describes these actual situations of the
commensalism ecosystem.

In mathematical theory, the model (1) includes many types of functional differential equations. For
example, if T =N+, then the model (1) converts to a difference equation below

X(τ + 1) − X(τ) = r1(τ) − a11(τ)[eX(τ)]ϑ1 − φ1(τ)eX(τ), τ ∈N+,

Y(τ + 1) −Y(τ) = r2(τ) − a22(τ)[eY(τ)]ϑ2 + a21(τ)
0∑

s=−ξ(τ)
k(s)eX(τ+s)

− φ2(τ)eY(τ)
]
, τ ∈N+. (4)

If T = R, set x(τ) = eX(τ), y(τ) = eY(τ), then the model (1) changes into a differential equation below
dx(τ)

dτ = x(τ)
[
r1(τ) − a11(τ)[x(τ)]ϑ1

]
− φ1(τ), τ ∈ R,

dy(τ)
dτ = y(τ)

[
r2(τ) − a22(τ)[y(τ)]ϑ2 + a21(τ)

∫ 0

−ξ(τ) k(s)x(τ + s)ds
]
− φ2(τ), τ ∈ R.

(5)

Actually, a time scale T is a nonempty closed subset of R. To uniformly deal with discrete and continuous
cases, the calculus on time scales was first proposed in Hilger’s Ph.D. thesis [9] in 1988. Many scholars
focused on and studied calculus and differential equation theory on time scales. For example, Srivastava
and Tseng et al. [17, 18] studied some important inequalities on time scales. After more than 20 years of
development, fruitful results have been achieved in the study of time scales and their differential equations.
These achievements have been summarized and published as monographs. Specifically, readers can refer
to the following two monographs [4, 5] to understand the theory of differential equations on time scales. In
addition, there have been some research works involving ecosystems on time scales (see [26–28, 39]).
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To the best our knowledge, there are few papers dealing with the solvability and stability of periodic
commensalism AG-ecosystem on time scales. Therefore, the project of this manuscript is important and
interesting. The remaining structure of this manuscript is as follows. Section 2 mainly includes the basic
concepts and results of time scales, important assumptions and necessary propositions. In Section 3,
sufficient conditions for the existence of periodic solutions are obtained. We shall show that the periodic
solution is globally asymptotically stable by using Lyapunov functional in Section 4. A numerical example
and simulation are provided in Section 5. Finally, Section 6 makes a brief summary and outlook.

2. Preliminaries

Thanks to [4, 5], we first retrospect some concepts and important conclusions of calculus on time scales
in this portion.

A nonempty closed subset T ⊂ R is called a time scale. Two jump operators σ, ρ : T → T to forward
and backward, and the graininess µ : T→ R+ are defined, respectively, by

σ(τ) = inf{s ∈ T : s > τ}, ρ(τ) = sup{s ∈ T : s < τ} and µ(τ) = σ(τ) − τ, for all τ ∈ T.

A point τ ∈ T is named left-dense (right-dense) when τ > infT and ρ(τ) = τ (τ < supT and σ(τ) = τ),
left-scattered (right-scattered) when ρ(τ) < τ (σ(τ) > τ). If T achieves a left-scattered maximum M, then
Tk = T \ {M}; otherwise Tk = T. If T reachs a right-scattered minimum m, then Tk = T \ {m}; otherwise
Tk = T.

Let T be a time scale, if there exists a constant ω > 0 such that, for all τ ∈ T⇒ τ+ω ∈ T, then T is called
an ω-periodic time scale. Obviously, if T is an ω-periodic time scale, then T is unbounded above.

Definition 2.1. A function u : T → R is called re1ulated, provided that its right-side limits u(τ+) and left-side
limits u(τ−) all exist (finite) for all τ ∈ T.

Definition 2.2. A function u : T → R is called rd-continuous, provided that it is continuous at right-dense point
in T and its left-side limits exist (finite) at left-dense points in T. The set of rd-continuous functions u : T → R is
denoted by Crd(T,R).

Definition 2.3. Assume u : T → R and τ ∈ Tk. Then u∆(τ) is defined to be the number (if exists) satisfying that,
for given any ε > 0 there exists a neighborhood U of τ (i.e., U = (τ − δ, τ + δ) ∩ T for some δ > 0) such that

|[u(σ(τ)) − u(s)] − u∆(τ)[σ(τ) − s]| < ε|σ(τ) − s|,

for all s ∈ U. u∆(τ) is called the delta (or Hilger) derivative of u at τ. The set of functions u : T → R that are
∆-differentiable and u∆(τ) is rd−continuous, is denoted by C1

rd(T,R).

According to the above definitions, one easily knows that u is ∆-differentiable ⇒ u is continuous ⇒ u is
rd-continuous⇒ u is regulated.

Lemma 2.4. Let u be regulated, then there has a function F which is ∆-differentiable with region of differentiation D
such that

F∆(τ) = u(τ), ∀ τ ∈ D.

Definition 2.5. Assume u : T → R is a regulated function. Any function F as in Lemma 2.1 is called a ∆-
antiderivative of u. The indefinite integral of a regulated function u is defined by∫

u(τ)∆τ = F(τ) + C,

where C is an arbitrary constant and F is a ∆-antiderivative of u. We define the definite integral by∫ b

a
u(s)∆s = F(b) − F(a), ∀ a, b ∈ T.
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A function F : T→ R is called an antiderivative of u : T→ R, provided that

F∆(τ) = u(τ) ∀ τ ∈ Tk.

Lemma 2.6. If a, b ∈ T, α, β ∈ R and u, v ∈ Crd(T,R), then

(1)
∫ b

a [αu(τ) + βv(τ)]∆τ = α
∫ b

a u(τ)∆τ + β
∫ b

a v(τ)∆τ;

(2) ∀ a ≤ τ < b, u(τ) ≥ 0⇒
∫ b

a u(t)∆τ ≥ 0;

(3) ∀ τ ∈ [a, b) ≜ {τ ∈ T : a ≤ τ < b}, |u(τ)| ≤ v(τ)⇒ |
∫ b

a u(τ)∆τ| ≤
∫ b

a v(τ)∆τ.

Lemma 2.7. (Mawhin’s coincidence theorem [7]) LetX and Y be two Banach spaces,Ω ⊂ X be a nonempty bounded
open set, L : X→ Y be a zero index Fredholm operator, an operator N : X× [0, 1]→ Y be L -compact onΩ× [0, 1],
Q : Y→ Y be a projection operator, J : Y→ Y be a homotopy operator. Assume that the following conditions hold.

(i) every solution w of L w = λN (w, λ) satisfies w < ∂Ω ∩Dom(L ), ∀λ ∈ (0, 1);

(ii) QN (w, 0)w , 0, ∀w ∈ ∂Ω ∩ Ker(L );

(iii) deg(J QN (w, 0),Ω ∩ Ker(L ), 0) , 0.

Then L w = N (w, 1) exists at least one solution in Ω ∩Dom(L ).

Lemma 2.8. Let a, b, c, θ > 0 be some constants, consider the function h(z) = ae(1+θ)z
− bez + c. Assume that

θa−
1
θ

(
b

1+θ

) 1+θ
θ > c, then the following assertions are true:

(i) h(z) has a unique minimum point z0 =
1
θ ln

[
b

a(1+θ)

]
in (−∞,+∞), and the minimum h(z0) = −θa−

1
θ

(
b

1+θ

) 1+θ
θ
+

c < 0.

(ii) h(z) is strict decreasing in (−∞, z0] and increasing in [z0,+∞), respectively.

(iii) h(z) has only two zeros z1 and z2 satisfying −∞ < z1 < z0 < z2 < +∞.

Proof. Since h′(z) = a(1 + θ)e(1+θ)z
− bez, h′′(z) = a(1 + θ)2e(1+θ)z

− bez, we follows from h′(z) = 0 that z0 =

1
θ ln

[
b

a(1+θ)

]
and h′′(z0) = bθez0 > 0. Combining hypothesis θa−

1
θ

(
b

1+θ

) 1+θ
θ > c, we know that z0 is a unique

minimum point of h(z) in (−∞,+∞) and the minimum h(z0) = −θa−
1
θ

(
b

1+θ

) 1+θ
θ
+ c < 0. Moreover, h(z) is

strict decreasing in (−∞, z0] and increasing in [z0,+∞), respectively. Thus the assertions (i) and (ii) hold. In
addition,

lim
z→−∞

h(z) = c > 0, lim
z→+∞

h(z) = lim
z→+∞

ez(aeθz
− b + c) = +∞ > 0.

It follows from existence theorem of zeros that there only exist two real numbers z1, z2 such that −∞ < z1 <
z0 < z2 < +∞ and h(z1) = h(z2) = 0. The proof is completed.

For simplicity, we use the following symbols.

κ = min{[0,+∞) ∩ T}, Iω = [κ, κ + ω] ∩ T, u = sup
τ∈Iω

u(τ),

u = inf
τ∈Iω

u(τ), û =
1
ω

∫
Iω

u(s)∆s =
1
ω

∫ κ+ω

κ
u(s)∆s,

where u ∈ Crd(T,R) satisfies u(τ + ω) = u(τ) for all τ ∈ T. In the whole paper, we need the following
assumptions.

(H1) Assume that 0 < r1(τ), r2(τ), ξ(τ), φ1(τ), φ2(τ), a11(τ), a22(τ), a21(τ), k(τ) ∈ Crd(T,R) are all ω-periodic,
and

∫ 0

−ξ
k(s)∆s < ∞, where ξ = supτ∈Iω ξ(τ).
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3. Existence of periodic solution

This section focuses on the existence of periodic solution for system (1) by applying Lemma 2.7. To this
end, set X = Y =W1 ⊕W2, where W1 = {w(τ) ≡ (C1,C2)T

∈ R2
},

W2 =
{
w(τ) = (w1(τ),w2(τ))T : w j(τ) ∈ Crd(T,R),w j(τ + ω) = w j(τ), j = 1, 2

}
,

A norm ∥ · ∥ is defined by

∥w∥ = max
1≤ j≤2

sup
τ∈Iω
|w j(τ)|, ∀w = (w1,w2)T

∈ X = Y. (6)

Using similar methods in Ref. [39], we can easily get Lemmas 3.1-3.4. Therefore, their proof is omitted.

Lemma 3.1. Under the norm || · || defined as (6), X = Y is a Banach space.

Lemma 3.2. For all w(τ) = (w1(τ),w2(τ))T
∈ X, define L : X → Y as L w(τ) = w∆(τ) = (w∆1 (τ),w∆2 (τ))T, then

L is a zero index Fredholm operator.

Lemma 3.3. For all w = (X,Y)T
∈ X = Y, define an operator N (w, λ) : X × [0, 1] → Y and two projection

operators P : X→ Y, Q : Y→ Y as follows:

N (w, λ) =

 r1(τ) − a11(τ)eϑ1X(τ)
− φ1(τ)e−X(τ)

r2(τ) − a22(τ)eϑ2Y(τ) + λa21(τ)
∫ 0

−ξ(τ) k(s)eX(τ+s)ds − φ2(τ)e−Y(τ)

 ,
Pw = Qw = (X̂, Ŷ)T =

(
1
ω

∫ κ+ω

κ
X(τ)∆τ,

1
ω

∫ κ+ω

κ
Y(τ)∆τ

)T

,

Ker(L ) = {w = (X,Y) ∈ X : (X,Y) = (C1,C2), τ ∈ T},

Im(L ) = {w = (X,Y) ∈ Y : (X̂, Ŷ) = (0, 0)},

(L −1
|P)(w(τ)) =

 ∫ τ
κ
X(s)∆s − 1

ω

∫ κ+ω
κ

∫ τ
κ
X(s)∆s∆τ∫ τ

κ
Y(s)∆s − 1

ω

∫ κ+ω
κ

∫ τ
κ
Y(s)∆s∆τ

 ,
Then, on Ω × [0, 1], N (w, λ) is L -compact.

Lemma 3.4. LetT be anω-periodic time scale. Supposeψ : T→ R be anω-periodic function which is rd-continuous,
then

0 ≤ sup
s∈Iω

ψ(s) − inf
s∈Iω

ψ(s) ≤
1
2

∫ κ+ω

κ
|ψ∆(s)|∆s.

(H2) Suppose that the following inequalities are fulfilled.

ϑ1(a11e−ωϑ1r1 )−
1
ϑ1

(
r1

1 + ϑ1

) 1+ϑ1
ϑ1

> φ1,

ϑ2(a22e−ωϑ2r2 )−
1
ϑ2

 r2 + a21eL+
∫ 0

−ξ
k(s)∆s

1 + ϑ2


1+ϑ2
ϑ2

> φ2.
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Theorem 3.5. If the conditions (H1) and (H2) hold, then model (1) exists at least anω-periodic solution (X̃(τ), Ỹ(τ))T

on time scaleT satisfying L−−ωr1 < X̃(τ) < L+ and M−
−ωr2 < Ỹ(τ) < M+, where L−, L+ are two roots of f (Z) = 0,

M−, M+ are two roots of 1(Z) = 0, and f (Z), 1(Z) are given by

f (Z) =(a11e−ωϑ1r1 )e(1+ϑ1)Z
− r1eZ + φ1,

1(Z) =(a22e−ωϑ2r2 )e(1+ϑ2)Z
−

[
r2 + a21eL+

∫ 0

−ξ
k(s)∆s

]
eZ + φ2 = 0.

Proof. To apply Lemma 2.7 showing that model (1) has anω-periodic solution, we defineX andY as Lemma
3.1 and L ,N ,P ,Q as Lemmas 3.2-3.3.

Now we find the existence regionΩ ⊂ X of solution. Assume that an operator equation L w = λN (w, λ)
has an ω-periodic solution w = (X,Y)T

∈ X, then we have X∆(τ) = λ
[
r1(τ) − a11(τ)eϑ1X(τ)

− φ1(τ)e−X(τ)
]
,

Y
∆(τ) = λ

[
r2(τ) − a22(τ)eϑ2Y(τ) + λa21(τ)

∫ 0

−ξ(τ) k(s)eX(τ+s)∆s − φ2(τ)e−Y(τ)
]
.

(7)

We integrate at both ends of (7) to obtain 0 =
∫ κ+ω
κ

[
r1(τ) − a11(τ)eϑ1X(τ)

− φ1(τ)e−X(τ)
]
∆τ,

0 =
∫ κ+ω
κ

[
r2(τ) − a22(τ)eϑ2Y(τ) + λa21(τ)

∫ 0

−ξ(τ) k(s)eX(τ+s)∆s − φ2(τ)e−Y(τ)
]
∆τ.

(8)

Since X(τ) and Y(τ) are all ω-periodic, there exist µ1, µ2, ν1 and ν2 ∈ Iω such that X(µ1) = X, X(µ2) = X,
Y(ν1) = Y,Y(ν2) = Y. From the first equation of (7), and (8), we get∫ κ+ω

κ
|X
∆(τ)|∆τ < 2ωr1. (9)

In light of the first equation of (8), and (9) together with Lemma 3.4, we get

ωr1 ≥

∫ κ+ω

κ
r1(s)∆s =

∫ κ+ω

κ
a11(τ)eϑ1X(τ)∆τ +

∫ κ+ω

κ
φ1(τ)e−X(τ)∆τ

>ωa11eϑ1X(µ2) + ωφ1e−X(µ1)
≥ ωa11eϑ1[X(µ1)−ωr1] + ωφ1e−X(µ1),

which implies that

(a11e−ωϑ1r1 )e(1+ϑ1)X(µ1)
− r1eX(µ1) + φ1 < 0. (10)

By Lemma 2.8, we know that f (Z) has unique minimum point L0 and minimum f (L0)

L0 =
1
ϑ1

ln

 r1

(a11e−ωϑ1r1 )(1 + ϑ1)

 , f (L0) = −ϑ1(a11e−ωϑ1r1 )−
1
ϑ1

(
r1

1 + ϑ1

) 1+ϑ1
ϑ1

+ φ1,

in (−∞,+∞) such that f ′(L0) = 0. From (H2) and Lemma 2.8, we conclude that f (L0) < 0, and there exist
only two constants L− and L+ such that

L− < L0 < L+, f (L±) = 0. (11)

From (11) and Lemma 2.8, we find the solution to inequality (10) as

L− < X(µ1) < L+. (12)
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In view of Lemma 3.4 and (12), we obtain

L− − ωr1 < X(µ2) ≤ X(µ1) < L+. (13)

Similarly, it follows from the second equation of (7) and (13) that

ωr2 + ωa21eL+
∫ 0

−ξ
k(s)∆s >

∫ κ+ω

κ
r2(τ)∆τ + λ

∫ κ+ω

κ
a21(τ)

[ ∫ 0

−ξ(τ)
k(s)eX(τ+s)∆s

]
∆τ

=

∫ κ+ω

κ
a22(τ)eϑ2Y(τ)∆τ +

∫ κ+ω

κ
φ2(τ)e−Y(τ)∆τ > ωa22eϑ2[Y(ν1)−ωr2] + ωφ2e−Y(ν1),

which indicates that

(a22e−ωϑ2r2 )e(1+ϑ2)Y(ν1)
−

[
r2 + a21eL+

∫ 0

−ξ
k(s)∆s

]
eY(ν1) + φ2 < 0. (14)

By Lemma 2.8, we conclude that 1(Z) has unique minimum point M0 and minimum 1(M0)

M0 =
1
ϑ2

ln

 r2 + a21eL+
∫ 0

−ξ
k(s)∆s

(a22e−ωϑ2r2 )(1 + ϑ2)

 ,

1(M0) = −ϑ2(a22e−ωϑ2r2 )−
1
ϑ2

 r2 + a21eL+
∫ 0

−ξ
k(s)∆s

1 + ϑ2


1+ϑ2
ϑ2

+ φ2,

in (−∞,+∞) such that 1′(M0) = 0. We derive from (H2) and Lemma 2.8 that 1(M0) < 0 and there exist two
constants M− and M+ such that

M− < M0 < M+, 1(M±) = 0. (15)

Due to (15) and Lemma 2.8, the inequality (14) is solved by

M− < Y(ν1) < M+. (16)

From Lemma 3.4 and (16), we have

M−
− ωr2 < Y(ν2) ≤ Y(ν1) < M+. (17)

According to (13) and (17), we choose

Ω =
{
(X(τ),Y(τ))T

∈ X : L− − ωr1 < X(τ) < L+,M−
− ωr2 < Y(τ) < M+

}
.

Obviously, Ω ⊂ X is a bounded open subset satisfying the condition (i) in Lemma 2.7.
Next, it is necessary to verify that condition (ii) of Lemma 2.7 is true, namely, when w ∈ ∂Ω∩Ker(L ) =

∂Ω ∩ R2,QN (w, 0) , (0, 0). If it is not true, then when w ∈ ∂Ω ∩ Ker(L ) = ∂Ω ∩ R2, constant vector
w∗ = (u∗, v∗) with w ∈ ∂Ω satisfies

∫ κ+ω
κ

[
r1(τ) − a11(τ)eϑ1u∗

− φ1(τ)e−u∗
]
∆τ = 0,∫ κ+ω

κ

[
r2(τ) − a22(τ)eϑ2u∗ + a21(τ)eu∗

∫ 0

−ξ(τ) k(s)∆s − φ2(τ)e−v∗
]
∆τ = 0.

(18)

Similar to (8)-(17), we derive from (18) that w∗ = (u∗, v∗) ∈ Ω ∩ R2, which contradicts with w∗ = (u∗, v∗) ∈
∂Ω ∩R2. Thus, condition (ii) in Lemma 2.7 is true.

Take J = I is the identity mapping, by direct calculation, one has

deg
{
J QN (w, 0),Ω ∩ Ker(J ), (0, 0)T

}
, 0.

Thus, all the assumptions of Lemma 2.7 are true. Consequently, the model (1) exists at least an ω-periodic
solutions (X̃(τ), Ỹ(τ))T. The proof is completed.
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4. Global asymptotic stability

In this section, we centralize on the global asymptotic stability of model (1). To this end, the following
definition is necessary.

Definition 4.1. [12] For each τ ∈ T, let U be a neighborhood of τ. Then, for V ∈ Crd(T ×Rn,R+), define the Dini
derivative D+V∆(τ, x(τ)), to mean that, given ϵ > 0, there exists a right neighborhood Uϵ ∩U of τ such that

V(σ(τ), x(σ(τ))) − V(s, x(s))
σ(τ) − s

< D+V∆(τ, x(τ)) + ϵ, ∀ s ∈ Uϵ, s > τ.

If τ is right-scattered and V(τ, x(τ)) is continuous at τ, this reduces to

D+V∆(τ, x(τ)) =
V(σ(τ), x(σ(τ))) − V(τ, x(τ))

σ(τ) − τ
.

In view of Theorem 3.5, one concludes that system (1) exists at least anω-periodic solutions (X̃(τ), Ỹ(τ))T
∈ Ω.

Let u(τ) = eX(τ), v(τ) = eY(τ), thenX∆(τ) = (ln u(τ))∆ andY∆(τ) = (ln v(τ))∆. Thus the system (1) changes into (ln u(τ))∆ = r1(τ) − a11(τ)[u(τ)]ϑ1 −
φ1(τ)
u(τ) , τ ∈ T,

(ln v(τ))∆ = r2(τ) − a22(τ)[v(τ)]ϑ2 + a21(τ)
∫ 0

−ξ(τ) k(s)u(τ + s)∆s − φ2(τ)
v(τ) , τ ∈ T.

(19)

System (19) has at least an ω-periodic positive solution (ũ(τ), ṽ(τ))T
∈ Ω̃, where

Ω̃ =
{
(u(τ), v(τ))T : eL−−ωr1 < u(τ) < eL+ , eM−−ωr2 < v(τ) < eM+

}
.

Let ρ and ϑ be some positive constants satisfying 0 < ρ < min{eL−−ωr1 , eM−−ωr2 } and ϑ ≥ max {1, ϑ1, ϑ2}.
We further assume that

(H3) −ρ
ϑ1
ϑ a11 + ρ−

1
ϑφ1 + ρ

1
ϑ a21

∫ 0

−ξ
k(s)∆s < 0 and −ρ

ϑ2
ϑ a22 + ρ−

1
ϑφ2 < 0.

Let u(τ) = (ρX(τ))
1
ϑ and v(τ) = (ρY(τ))

1
ϑ , then

(ln u(τ))∆ =
[ 1
ϑ

ln(ρX(τ))
]∆
=

1
ϑ

[
lnρ + ln X(τ)

]∆
=

1
ϑ

(ln X(τ))∆,

and

(ln v(τ))∆ =
[ 1
ϑ

ln(ρY(τ))
]∆
=

1
ϑ

[
lnρ + ln Y(τ)

]∆
=

1
ϑ

(ln Y(τ))∆.

Therefore, system (19) becomes (ln X(τ))∆ = ϑ
[
r1(τ) − ρ

ϑ1
ϑ a11(τ)X

ϑ1
ϑ (τ) − ρ−

1
ϑφ1(τ)X−

1
ϑ (τ)

]
,

(ln Y(τ))∆ = ϑ
[
r2(τ) − ρ

ϑ2
ϑ a22(τ)Y

ϑ2
ϑ (τ) + ρ

1
ϑ a21(τ)

∫ 0

−ξ(τ) k(s)X
1
ϑ (τ + s)∆s − ρ−

1
ϑφ2(τ)Y−

1
ϑ (τ)

]
.

(20)

Obviously, there has a positive ω-periodic function (X̃(τ), Ỹ(τ))T = ( 1
ρ ũϑ(τ), 1

ρ ṽϑ(τ))T
∈ Ω̃′ satisfying system

(20), where

Ω̃′ =
{
(X(τ),Y(τ))T :

1
ρ

eϑ(L−−ωr1) < X(τ) <
1
ρ

eϑL+ ,
1
ρ

eϑ(M−−ωr2) < Y(τ) <
1
ρ

eϑM+
}
.

According to Theorem 3.5 and Ω̃′, we get

1 <
1
ρ

eϑ(L−−ωr1) < X̃(τ) <
1
ρ

eϑL+ , 1 <
1
ρ

eϑ(M−−ωr2) < Ỹ(τ) <
1
ρ

eϑM+ . (21)
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Theorem 4.2. If (H1)-(H3) are ture, then a uniqueω-periodic solution (X̃(τ), Ỹ(τ))T of (1) is globally asymptotically
stable.

Proof. Assume that the ω-periodic solution (X̃(τ), Ỹ(τ))T of (1) is globally asymptotically stable, then
(X̃(τ), Ỹ(τ))T is attractive, that is, for any solution (X(τ),Y(τ))T of (1), we have lim

τ→+∞
[X(τ) − X̃(τ)] = 0,

lim
τ→+∞

[Y(τ) − Ỹ(τ)] = 0. If the system (1) has another ω-periodic solution (X∗(τ),Y∗(τ))T
∈ Ω with

(X∗(τ),Y∗(τ))T , (X̃(τ), Ỹ(τ))T, without loss of generality, assume that X∗(τ) , X̃(τ), then we obtain
0 < |X̃(τ) − X∗(τ)| ≤ |X̃(τ) − X(τ)| + |X(τ) − X∗(τ)| → 0, as τ → +∞, which is a clear contradiction.
Thus, we prove that the ω-periodic solution (X̃(τ), Ỹ(τ))T of (1) is unique provided that (X̃(τ), Ỹ(τ))T is
globally asymptotically stable. In addition, since the global asymptotical stability of ω-periodic solution
(X̃(τ), Ỹ(τ))T

∈ Ω of (1) and (X̃(τ), Ỹ(τ))T of (20) is equivalent, it suffices to prove that theω-periodic solution
(X̃(τ), Ỹ(τ))T of (20) is globally asymptotically stable. In fact, by (H1) and (H2), one knows from Theorem
3.5 that (X̃(τ), Ỹ(τ))T is an ω-periodic positive solution of (20). For any positive solution (X(τ),Y(τ))T of (20),
we construct the following Lyapunov functional V(τ) = V1(τ) + V2(τ), where

V1(τ) = | ln X(τ) − ln X̃(τ)| + | ln Y(τ) − ln Ỹ(τ)|, (22)

V2(τ) = ϑρ
1
ϑ a21

∫ 0

−ξ
k(s)

[ ∫ τ

τ+s

∣∣∣∣∣X 1
ϑ (ζ) − X̃

1
ϑ (ζ)

∣∣∣∣∣∆ζ]∆s. (23)

Apparently, V(0) < +∞ and V(τ) ≥ V1(τ). By (21), we calculate the ∆-derivation along (20) to obtain

D+(| ln X(τ) − ln X̃(τ)|)∆ ≤ −ϑρ
ϑ1
ϑ a11

∣∣∣X(τ) − X̃(τ)
∣∣∣ + ϑρ −1

ϑ φ1

∣∣∣∣∣X −1
ϑ (τ) − X̃

−1
ϑ (τ)

∣∣∣∣∣
= − ϑρ

ϑ1
ϑ a11

∣∣∣X(τ) − X̃(τ)
∣∣∣ + ϑρ −1

ϑ φ1

∣∣∣∣∣X 1
ϑ (τ) − X̃

1
ϑ (τ)

∣∣∣∣∣X −1
ϑ (τ)X̃

−1
ϑ (τ)

≤ − ϑρ
ϑ1
ϑ a11

∣∣∣X(τ) − X̃(τ)
∣∣∣ + ϑρ −1

ϑ φ1

∣∣∣∣∣X 1
ϑ (τ) − X̃

1
ϑ (τ)

∣∣∣∣∣, (24)

D+(| ln Y(τ) − ln Ỹ(τ)|)∆ ≤ −ϑρ
ϑ2
ϑ a22

∣∣∣Y(τ) − Ỹ(τ)
∣∣∣

+ ϑρ
1
ϑ a21

∫ 0

−ξ
k(s)

∣∣∣∣∣X 1
ϑ (τ + s) − X̃

1
ϑ (τ + s)

∣∣∣∣∣∆s + ϑρ
−1
ϑ φ2

∣∣∣∣∣Y −1
ϑ (τ) − Ỹ

−1
ϑ (τ)

∣∣∣∣∣
= − ϑρ

ϑ2
ϑ a22

∣∣∣Y(τ) − Ỹ(τ)
∣∣∣ + ϑρ 1

ϑ a21

∫ 0

−ξ
k(s)

∣∣∣∣∣X 1
ϑ (τ + s) − X̃

1
ϑ (τ + s)

∣∣∣∣∣∆s

+ ϑρ
−1
ϑ φ2

∣∣∣∣∣Y 1
ϑ (τ) − Ỹ

1
ϑ (τ)

∣∣∣∣∣Y −1
ϑ (τ)Ỹ

−1
ϑ (τ)

≤ − ϑρ
ϑ2
ϑ a22

∣∣∣Y(τ) − Ỹ(τ)
∣∣∣ + ϑρ 1

ϑ a21

∫ 0

−ξ
k(s)

∣∣∣∣∣X 1
ϑ (τ + s) − X̃

1
ϑ (τ + s)

∣∣∣∣∣∆s

+ ϑρ
−1
ϑ φ2

∣∣∣∣∣Y 1
ϑ (τ) − Ỹ

1
ϑ (τ)

∣∣∣∣∣, (25)

and

D+
(∫ 0

−ξ
k(s)

[ ∫ τ

τ+s

∣∣∣∣∣X 1
ϑ (ζ) − X̃

1
ϑ (ζ)

∣∣∣∣∣∆ζ]∆s
)∆
=

∫ 0

−ξ
k(s)∆s ·

∣∣∣∣X 1
ϑ (τ) − X̃

1
ϑ (τ)

∣∣∣∣
−

∫ 0

−ξ
k(s)

∣∣∣∣X 1
ϑ (τ + s) − X̃

1
ϑ (τ + s)

∣∣∣∣∆s. (26)
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Noticing that, for constants a, b > 0 and s ≥ 1, q(s) = |as
−bs
| is monotonically increasing, and 0 < ϑ1

ϑ ,
ϑ2
ϑ ,

1
ϑ ≤ 1,

it follows from (21), (24)-(26) and (H3) that

D+V∆(τ) ≤ −ϑρ
ϑ1
ϑ a11

∣∣∣X(τ) − X̃(τ)
∣∣∣ + ϑρ −1

ϑ φ1

∣∣∣∣∣X 1
ϑ (τ) − X̃

1
ϑ (τ)

∣∣∣∣∣ − ϑρ ϑ2
ϑ a22

∣∣∣Y(τ) − Ỹ(τ)
∣∣∣

+ ϑρ
1
ϑ a21

∫ 0

−ξ
k(s)

∣∣∣∣∣X 1
ϑ (τ + s) − X̃

1
ϑ (τ + s)

∣∣∣∣∣∆s + ϑρ
−1
ϑ φ2

∣∣∣∣∣Y 1
ϑ (τ) − Ỹ

1
ϑ (τ)

∣∣∣∣∣
+ ϑρ

1
ϑ a21

∫ 0

−ξ
k(s)∆s ·

∣∣∣∣X 1
ϑ (τ) − X̃

1
ϑ (τ)

∣∣∣∣ − ϑρ 1
ϑ a21

∫ 0

−ξ
k(s)

∣∣∣∣X 1
ϑ (τ + s) − X̃

1
ϑ (τ + s)

∣∣∣∣∆s

= − ϑρ
ϑ1
ϑ a11

∣∣∣X(τ) − X̃(τ)
∣∣∣ + ϑρ −1

ϑ φ1

∣∣∣∣∣X 1
ϑ (τ) − X̃

1
ϑ (τ)

∣∣∣∣∣ − ϑρ ϑ2
ϑ a22

∣∣∣Y(τ) − Ỹ(τ)
∣∣∣

+ ϑρ
−1
ϑ φ2

∣∣∣∣∣Y 1
ϑ (τ) − Ỹ

1
ϑ (τ)

∣∣∣∣∣ + ϑρ 1
ϑ a21

∫ 0

−ξ
k(s)∆s ·

∣∣∣∣X 1
ϑ (τ) − X̃

1
ϑ (τ)

∣∣∣∣
≤ − ϑρ

ϑ1
ϑ a11

∣∣∣X(τ) − X̃(τ)
∣∣∣ + ϑρ −1

ϑ φ1

∣∣∣X(τ) − X̃(τ)
∣∣∣ − ϑρ ϑ2

ϑ a22

∣∣∣Y(τ) − Ỹ(τ)
∣∣∣

+ ϑρ
−1
ϑ φ2

∣∣∣Y(τ) − Ỹ(τ)
∣∣∣ + ϑρ 1

ϑ a21

∫ 0

−ξ
k(s)∆s ·

∣∣∣X(τ) − X̃(τ)
∣∣∣

=ϑ
[
− ρ

ϑ1
ϑ a11 + ρ

−
1
ϑφ1 + ρ

1
ϑ a21

∫ 0

−ξ
k(s)∆s

] ∣∣∣X(τ) − X̃(τ)
∣∣∣

+ ϑ
[
− ρ

ϑ2
ϑ a22 + ρ

−
1
ϑφ2

] ∣∣∣∣Y(τ) − Ỹ(τ)
∣∣∣∣ < 0. (27)

Thus, from (22), (23) and (27), we know that V(τ) is positive definite and D+V∆(τ) < 0, for all τ ≥ 0.
Therefore, according to Lyapunov stability theory, we conclude that the ω-periodic solution (X̃(τ), Ỹ(τ))T of
(20) is globally asymptotically stable. The proof is completed.

5. An example and its simulation

In this section, we consider a nonlinear commensalism Ayala-Gilpin ecosystem with distributed lags on
time scale T = R

dX(τ)
dτ = X(τ)

[
r1(τ) − a11(τ)Xϑ1 (τ)

]
− φ1(τ),

dY(τ)
dτ = Y(τ)

[
r2(τ) − a22(τ)Yϑ2 (τ) + a21(τ)

∫ 0

−ξ(τ) k(s)X(τ + s)ds
]
− φ2(τ),

(28)

where r1(τ) = 8 + 2 cos(3τ), r2(τ) = 6 + sin(2τ), a11(τ) = 5 + 2 sin(τ), a22(τ) = 3 + cos(2τ), a21(τ) = 3+cos(3τ)
10 ,

ξ(t) = k(τ) = 2+cos(τ)
4 , φ1(τ) = 3+cos(2τ)

7 , φ2(τ) = 4+sin(τ)
7 , ϑ1 =

1
2 , ϑ2 =

1
√

2
. Take the initial functions

X(τ) = 7 + sin(t),Y(τ) = 2+cos(τ)
7 , τ ∈ [−ξ, 0].

Obviously, r1(τ), r2(τ), a11(τ), a22(τ), a21(τ), ξ(τ), k(τ), φ1(τ) and φ2(τ) are all positive periodic functions
with period ω = 2π. That is, the conditions (H1) holds. A direct calculation leads r1 = 10, r1 = 6, r2 = 7,

r2 = 5, a11 = 7, a11 = 3, a22 = 4, a22 = 2, a21 =
2
5 , a21 =

1
5 , φ1 =

4
7 , φ1 =

2
7 , φ2 =

5
7 , φ2 =

3
7 , ξ = 3

4 ,∫ 0

−ξ
k(s)ds ≈ 0.5454. Solving the following equation

f (Z) = (a11e−ωϑ1r1 )e(1+ϑ1)Z
− r1eZ + φ1 = 0,

we obtain the only two roots L− ≈ −3.5553, L+ ≈ 65.2398. From the equation below

1(Z) = (a22e−ωϑ2r2 )e(1+ϑ2)Z
−

[
r2 + a21eL+

∫ 0

−ξ
k(s)ds

]
eZ + φ2 = 0,
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we similarly get its only two roots M−
≈ −64.5646, M+

≈ 133.1119. Consequently, we obtain an open
bounded subsets Ω ⊂ R2 defined by

Ω =
{
(X(τ),Y(τ))T : 1.4737 × 10−29 < X(τ) < 2.1542 × 1028, 7.2224 × 10−48 < Y(τ) < 6.4530 × 1057

}
.

So much for that, we verify that the condition (H2) holds as follows:

ϑ1(a11e−ωϑ1r1 )−
1
ϑ1

(
r1

1 + ϑ1

) 1+ϑ1
ϑ1

≈ 3.1914 × 1028 > φ1 =
2
7
,

ϑ2(a22e−ωϑ2r2 )−
1
ϑ2

 r2 + a21eL+
∫ 0

−ξ
k(s)ds

1 + ϑ2


1+ϑ2
ϑ2

≈ 2.5538 × 1084 > φ2 =
3
7
.

So far as, we have verified the conditions (H1) and (H2) are all true. It follows from Theorem 3.5 that (28)
has at least an 2π-periodic positive solutions (X̃(τ), Ỹ(τ))T

∈ Ω.
Next, we demonstrate that the periodic positive solution (X̃(τ), Ỹ(τ))T is globally asymptotically stable.

In fact, choose ρ = 1.5 × 10−29, ϑ = 120, we yield

−ρ
ϑ1
ϑ a11 + ρ

−
1
ϑφ1 + ρ

1
ϑ a21

∫ 0

−ξ
k(s)ds ≈ −1.1551 < 0, −ρ

ϑ2
ϑ a22 + ρ

−
1
ϑφ2 ≈ −0.1108 < 0.

Hence the condition (H3) holds. By Theorem 4.2, we conclude that the periodic solution (X̃(τ), Ỹ(τ))T is
globally asymptotically stable. In addition, By ddesd toolbox in MATLAB, the simulations of solution to
example (28) is given as shown in Figure 1.

0 5 10 15 20 25 30 35 40

time

0

1

2

3

4

5

6

7

8

9

va
lu

e

X(t)

Y(t)

Figure 1: Existence and global asymptotic stability of solution (X̃(τ), Ỹ(τ))T to (28).

6. Conclusions

The Ayala-Gilpin ecosystem model is an important and well-known differential equation. The study of
the dynamic behavior and properties of this ecosystem can provide a theoretical basis for the governance
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and protection. This work deals with a classical nonlinear periodic commensalism Ayala-Gilpin ecosystem
(1) with distributed lags and control terms on time scales. By employing some inequality techniques, we
first build a priori estimates of the existence region of solutions. Based on the theory coincidence degree
in nonlinear analysis, we obtain some sufficient criteria to ensure the existence of periodic solutions to (1).
Secondly, we also establish the global asymptotical stability by constructing some Lyapunov functionals,
Finally, a numerical example and its simulation is provided to verify the correctness and availability of
our main results. In recent years, some scholars have begun to apply fractional order differential equation
models and diffusion partial differential equation models to study the dynamic behavior of ecosystems.
Aroused by the latest published articles [10, 29–38], we determined to use fractional calculus and reaction-
diffusion differential equation theory to explore the dynamics of some ecosystems in the future.
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