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Abstract. In the present paper, we study some probabilistic and statistical properties of the Markov-
switching asymmetric log GARCH processes, where the log−volatility follows a standard asymmetric
log GARCH process for each regime. In these models, the coefficients of log−volatility depend on the state
of a non-observed Markov chain. The main motivations of this new model can capture the asymmetries
and hence leverage effect. Additionally, The volatility coefficients are not subject to positivity constraints.
Therefore, some probabilistic properties of Markov-switching asymmetric log GARCH models have been
obtained, especially, sufficient conditions ensuring the existence of stationary, causal, ergodic solution
and moments properties are given. Furthermore, we show the strong consistency of the quasi-maximum
likelihood estimator (QMLE) under mild assumptions. Finally, we provide a simulation study of the
performance of the proposed estimation method and the MS− log GARCH is applied to model the exchange
rate of the Algerian Dinar against the US-dollar.

1. Introduction

Autoregressive conditional heteroscedastic (ARCH) models introduced by Engle [14] and their various
generalizations, especially the generalized ARCH (GARCH) models introduced by Bollerslev [8] have
attracted considerable attention and have been widely investigated in the literature. These models belong
to symmetric models, such that the volatility is formulated as a linear combination of its past values and
past values of the innovations. There are many models that the (log−)volatility depends on the past values
and past values of the positive and negative parts of the innovations, but an important among them is the
Exponential GARCH (EGARCH) introduced and studied by Nelson [38]. The success of these models is due
to the fact that they allow asymmetric in volatility. Another important reason for the growing interest is
that it does not impose any positivity restrictions on the volatility coefficients. For this, we wish to address
another class of GARCH−type models that share the same precedent characteristics. The log GARCH model
was independently proposed by Geweke [23], Pantula [39] and Milhϕj [37] (see also Sucarrat and Escribano
[40], Francq et al. [20]-[21] and Ghezal [26] for more recent works). This interest is due to the absence of
positivity constraints, and asymmetric, in addition, there is no minimum value for the volatility contrary
to GARCH models and the majority of their extensions, and it also provides persistence of large and small
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values. It appears that feature such as regime changes remain uncaptured by this class of models. This
feature is best represented by regime switching models. Since the seminal paper by Hamilton [29], the use
of Markov-switching (in short, MS) models has become a powerful tool for modeling financial time series
and changes in regime into the classical time series models substantially increases their flexibility. Recently,
considerable effort has been dedicated to the analysis of various aspects of Markov-switching linear and
nonlinear models, including [1]-[7], [11], [13], [18], [24]-[27], [30], [35]-[36], [43] and many others. Due to
the importance of both MS and log GARCH models, we can combine these two approaches to form a new
model that can be defined as a bivariate process (εt, δt), where the process (δt) is a Markov chain defined on
a finite state space, and (εt) is a log GARCH process.
The paper is organized as follows. In section 2, we introduce the class of Markov-switching asymmetric
log GARCH models and give some related notations and assumptions. In this section, we also introduce the
formulation of the state-space representation of the given process. Section 3 studies the existence of a strictly
stationary solution to the MS − A log GARCH equation. Conditions for the existence of log−moments are
established. In Section 4, the strong consistency of the QMLE is established under mild regularity conditions.
Simulation results are reported in Section 5. Section 6 applies the MS−A log GARCH specification to model
the daily series of the exchange rates of the Algerian Dinar against the US-dollar. Section 7 concludes the
paper.

2. Markov-switching asymmetric log GARCH model

Let (et, t ∈ Z) be a sequence of independent and identically distributed (i.i.d.) random variables with zero
mean and unit variance and let ω, αi, βi and γ j, for 1 ≤ i ≤ q and 1 ≤ j ≤ p, be real coefficients. Recall that a
standard asymmetric log GARCH process (εt, t ∈ Z),Z = {0,±1,±2, ...}with standard log−volatility process(
log σ2

t , t ∈ Z
)

is a solution to the equations

εt = σtet, t ∈ Z, (2.1)

where σt > 0 and,

log σ2
t = ω +

∑q

i=1

(
αiI{εt−i>0} + βiI{εt−i<0}

)
log ε2

t−i +
∑p

j=1
γ j log σ2

t− j, (2.2)

which has also been previously suggested by Francq et al. [19], so, in this paper, we generate a new
and broader class of asymmetric log GARCH models, in which the parameters are allowed to depend on
the state of a non-observed Markov chain, as a result, we will provide a Markov-switching asymmetric
log GARCH(p, q) model (MS − A log GARCHd) defined by Eq. (2.1) and the log−volatility process, i.e.,

log σ2
t = ω (δt) +

∑q

i=1

(
αi (δt) I{εt−i>0} + βi (δt) I{εt−i<0}

)
log ε2

t−i +
∑p

j=1
γ j (δt) log σ2

t− j, (2.3)

where IA denotes the indicator function of the set A, and (δt)t∈Z is a Markov chain with finite state space
S = {1, ..., d}, which is subject to the following assumption

Assumption 1. (δt)t∈Z is a homogeneous, stationary, irreducible and aperiodic Markov chain. The stationary
probabilities of (δt)t∈Z are denoted by π(k) = P (δ0 = k) > 0, k ∈ S, the transition probability matrix is denoted by P
and written in the following way P =

(
pi j

)
(i, j)∈S×S

where pi j = P
(
δt = j|δt−1 = i

)
for i, j ∈ S. In addition, we shall

assume that et and {(εu−1, δt) ,u ≤ t} are independent.

Considering the assumptions made on the Markov chain we have π(k) , 0, k ∈ S. In Eq. (2.3), for given
δt = k, εt satisfies a standard asymmetric log GARCH equation with coefficientsω (k),

(
αi (k) , βi (k) , 1 ≤ i ≤ q

)
and

(
γ j (k) , 1 ≤ j ≤ p

)
for all k ∈ S. The MS − A log GARCHd is a general model including as special cases,

various models such as:

• Standard asymmetric log GARCH models (i.e., d = 1) (see., Francq and Zakoı̈an [19]),
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• Independent-switching log GARCHd models: This specialization, analyzed by Wong and Li [42] in
the ARCH case, (δt) is an independent process,

• The usual symmetric MS − log GARCHd models (i.e., αi (.) = βi (.) for all i) (see., Francq and Zakoı̈an
[20]; d = 1),

• If p = 0, we have

εt = σtet, log σ2
t = ω (δt) +

∑q

i=1

(
αi (δt) I{εt−i>0} + βi (δt) I{εt−i<0}

)
log ε2

t−i, t ∈ Z,

and the process is called a Markov-switching asymmetric log ARCHd (in short, MS − A log ARCHd).

Now, we can rewrite (2.1) and (2.3) in an equivalent state-space representation in order to further simplify
the study, in the following we need some notations. Define the q−vectors
ε(1)′

t :=
(
I{εt>0} log ε2

t , . . . , I{εt−q+1>0} log ε2
t−q+1

)
, ε(2)′

t :=
(
I{εt<0} log ε2

t , . . . , I{εt−q+1<0} log ε2
t−q+1

)
and the

(
2q + p

)
−vectors ε′t :=

(
ε(1)′

t , ε
(2)′
t , log σ2

t , . . . , log σ2
t−p+1

)
, F′0 :=

(
1,O′(q−1), 1,O

′

(q+p−1)

)
,

F′1 :=
(
O′(2q), 1,O

′

(p−1)

)
, F′2 :=

(
1,O′(2q+p−1)

)
and

∆δt
(et) :=

(
ω1 (δt) + F2 log e2

t

)
I{et>0} +

(
ωq+1 (δt) +

(
F0 − F2

)
log e2

t

)
I{et<0} +ω2q+1 (δt) in which the j− th entry of

ω j (δt) is ω (δt) and all other elements are 0.Here, O(k,l) is the matrix of order k× l whose entries are zeros, for
simplicity, we set O(k) := O(k,k) and O(k) := O(k,1). With these notations, we obtain the following state-space
representation log σ2

t = F′1εt or log ε2
t = F′0εt and

εt = Γδt (et) εt−1 + ∆δt
(et) , t ∈ Z (2.4)

with Γδt (et) := Γ1 (δt) I{et>0} + Γ2 (δt) I{et<0} + Γ3 (δt) where

Γ1 (δt) =
(
α1 (δt) · · · αq (δt) β1 (δt) · · · βq (δt) γ1 (δt) · · · γp (δt)

O(2q+p−1,2q+p)

)
,

Γ2 (δt) =


O(q,2q+p)

α1 (δt) · · · αq (δt) β1 (δt) · · · βq (δt) γ1 (δt) · · · γp (δt)
O(q+p−1,2q+p)

 ,

Γ3 (δt) =



0 · · · 0 0 · · · 0 0 · · · 0
I(q−1) O(q−1) O(q−1) O(q−1) O(q−1,p−1) O(p−1)
0 · · · 0 0 · · · 0 0 · · · 0
O(q−1) O(q−1) I(q−1) O(q−1) O(q−1,p−1) O(p−1)
α1 (δt) · · · αq (δt) β1 (δt) · · · βq (δt) γ1 (δt) · · · γp (δt)
O(p−1,q) O(p−1,q) I(p−1) O(p−1)


.

We are now in a position to present the first major finding of this paper

3. Stationarity and log−moments of the MS − A log GARCHd
(
p, q
)

In this section, we begin by studying the existence of solutions to model (2.1) and (2.3). Note that (Γk (et) , k)
is a sequence of i.i.d. random matrices independent of

{
εu,u < t

}
and

(
∆k

(
et

)
, k

)
is a sequence of i.i.d. random

vectors, for all k ∈ S.
So, the existence of the strict stationary and ergodic solution to (2.1) and (2.3) is equivalent to the existence
of the strict stationary solution to (2.4). Processes similar to εt of (2.4) has been examined by many authors.,
e.g., Bibi and Ghezal [7] (see also Bougerol and Picard [9]) who established that the series

εt =
∑

l≥1

{∏l−1

j=0
Γδt− j

(
et− j

)}
∆δt−l

(et−l) + ∆δt
(et) , (3.1)
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constitute the unique, strictly stationary and ergodic solution of Eq. (2.4) if, the top-Lyapunov exponent
γ (Γ) associated with the strictly stationary and ergodic sequence of random matrices Γ =

(
Γδt (et) , t ∈ Z

)
defined by

γ (Γ) = inf
t>0

{1
t

E
{
log

∥∥∥∥∥∏t−1

j=0
Γδt− j

(
et− j

)∥∥∥∥∥}} a.s.
= lim

t→+∞

{1
t

log
∥∥∥∥∥∏t−1

j=0
Γδt− j

(
et− j

)∥∥∥∥∥} (3.2)

is such that γ (Γ) < 0, where, as usual, empty products are set to be equal to I(2q+p). The choice of the
norm is unimportant for the value of the top Lyapunov exponent. However, in the sequel, the matrix
norm will be assumed to be multiplicative. Moreover, the existence of γ (Γ) is guaranteed by the fact that
E
{
log+

∥∥∥Γδt (et)
∥∥∥} ≤ E

{∥∥∥Γδt (et)
∥∥∥} < ∞ and E

{
log+

∥∥∥∆δt
(et)

∥∥∥} ≤ E
{∥∥∥∆δt

(et)
∥∥∥} < ∞where log+ (x) = max

(
log x, 0

)
and the right-hand member in (3.2) can be justified using Kingman’s subadditive ergodic theorem. Francq
et al. [16] showed that if an equation in the form of (2.4) with positive coefficients, (δt, et) is a strictly
stationary ergodic process and if E

{
log+

∥∥∥Γδt (et)
∥∥∥} and E

{
log+

∥∥∥∆δt
(et)

∥∥∥} are finite, γ (Γ) < 0 is the necessary
and sufficient condition for the existence of a stationary solution to (2.4). Bibi and Ghezal [4] showed
that, for the Markov-Switching BiLinear (MS − BL) model, there exists a representation of the form (2.4),
and for which the necessary and sufficient condition for the existence of a stationary MS − BL model is
γ (Γ) < 0. The result can be extended to more general classes of MS − BLGARCH models (see., e.g. Bibi
and Ghezal [7]). The problem is more delicate with the MS −A log GARCH because the coefficients of (2.4)
are not constrained to be positive. The following theorem gives us the main result for stochastic difference
Equation (2.4).

Theorem 3.1. Suppose that E
{
log+

∣∣∣log e2
0

∣∣∣} < ∞ and if γ (Γ) corresponding to a MS−A log GARCHd
(
p, q

)
models

is strictly negative, then

1. Eq. (2.4) has a unique, strictly stationary, causal and ergodic solution given by the series (3.1) which converges
absolutely almost surely.

2. Eq. (2.3) and hence (2.1) admits a unique, strictly stationary, causal and ergodic solution given by εt =

exp
{

1
2 F′0εt

}
or εt = et exp

{
1
2 F′1εt

}
where εt is given by the series (3.1).

Proof. Through the E
{
log+

∥∥∥∆δt
(et)

∥∥∥} < ∞ and E
{
log+

∥∥∥Γδt (et)
∥∥∥} < ∞ and by the subadditive ergodic theorem

(see., Kingman [33]), almost surely,

lim sup
n→+∞

∥∥∥∥∥{∏n−1

j=0
Γδt− j

(
et− j

)}
∆δt−n

(et−n)
∥∥∥∥∥1/n

≤ exp
{
γ (Γ)

}
,

when γ (Γ) < 0, Cauchy’s root test shows that, the series (3.1) converges absolutely almost surely. The rest
of the proof follows essentially the same arguments as in Bibi and Ghezal [4] or Bougerol and Picard [9]
(see., Theorem 1.1) and Brandt [10] (see., Theorem 1).

Remark 3.2. Under the first assumption of Theorem 3.1 (i.e., E
{
log+

∣∣∣log e2
0

∣∣∣} < ∞), P(e0 = 0) = 0 for all t. Thus,
the observed process satisfies ε2

t , 0 a.s.

Remark 3.3. The top-Lyapunov exponent γ (Γ) is independent of the intercepts coefficients (ω (k) , k ∈ S) .

Though the condition γ (Γ) < 0 could be used as a test for the strict stationarity, it is of little use in practice
since this condition involves the limit of products of infinitely many random matrices. On the other hand,
some simple sufficient conditions ensuring the negativity of γ (Γ) can be given

Theorem 3.4. Consider the MS − A log GARCHd
(
p, q

)
model (2.1) and (2.3) with state-space representation (2.4).

Then γ (Γ) < 0, if one of the following conditions holds true.
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1. E
{
log

∥∥∥∥∏t−1
j=0 Γδt− j

(
et− j

)∥∥∥∥} < 0 or E
{∥∥∥∥∏t−1

j=0 Γδt− j

(
et− j

)∥∥∥∥} < 1 for some t ≥ 1,

2. ρ (|Γ|) < 1, where ρ (M) is the spectral radius of squared matrix M and |Γ| := E
{∣∣∣Γδt (et)

∣∣∣} ,
3. ρ (P (|Γν|)) < 1, for some ν ∈ ]0, 1] with E

{
|e1|

2ν
}
< ∞, where |Γν| :=

(
E
{
|Γk (e1)|ν

}
, k ∈ S

)
for some ν ∈ ]0, 1],

and let |M|ν := (
∣∣∣mi j

∣∣∣ν), then it is easy to see that the operator |.|ν is submultiplicative, i.e., |M1M2|
ν
≤ |M1|

ν
|M2|

ν,∣∣∣Mx
∣∣∣ν ≤ |M|ν ∣∣∣x∣∣∣ν for any appropriate vector x and for any function M : S→M (n × n) , we shall note

P(M) =


p11M(1) . . . pd1M(1)
... . . .

...
p1dM(d) . . . pddM(d)

 .

Proof. Because the top−Lyapunov exponent is independent of the norm, by choosing an absolute norm,
i.e., a norm ∥.∥ such that ∥.∥υ ≤ ∥|.|∥ν (e.g. ∥M∥ =

∑
i, j

∣∣∣mi j

∣∣∣), then from the definition of γ (Γ) and according to

Kesten and Spitzer [32], we have almost surely lim
t→∞

1
t log

∥∥∥∥∏t−1
j=0 Γδt− j

(
et− j

)∥∥∥∥ ≤ logρ (|Γ|). On the other hand, by

Jensen’s inequality we get almost surely γ (Γ) ≤
1
t

E
{
log

∥∥∥∥∏t−1
j=0 Γδt− j

(
et− j

)∥∥∥∥} ≤ 1
t

log E
{∥∥∥∥∏t−1

j=0 Γδt− j

(
et− j

)∥∥∥∥} ≤
1
t

log E
{∥∥∥∥∏t−1

j=0

∣∣∣∣Γδt− j

(
et− j

)∣∣∣∣∥∥∥∥} ≤ logρ (|Γ|) , so the result follows. Moreover, since ρ (P (|Γν|)) < 1, there exists

µ ∈ ]0, 1[ such that lim supt

∥∥∥Pt (|Γν|)
∥∥∥1/t
< µ. By Jensen inequality and submultiplicativity of the operator

|.|ν we obtain

γ (Γ) ν = lim
t

1
t

E
{

log
∥∥∥∥∥∏t−1

j=0
Γδt− j

(
et− j

)∥∥∥∥∥ν}
≤ lim

t

1
t

log E
{∥∥∥∥∥∏t−1

j=0
Γδt− j

(
et− j

)∥∥∥∥∥ν}
≤ lim

t

1
t

log E
{∥∥∥∥∥∏t−1

j=0

∣∣∣∣Γδt− j

(
et− j

)∣∣∣∣ν∥∥∥∥∥}
≤ lim sup

t
log

∥∥∥Pt (|Γν|)
∥∥∥1/t
< 0.

Example 3.5. In the following table, we summarize the condition γ (Γ) < 0 for some particular cases

Specification Condition γ (Γ) < 0

Standard A log GARCH1 (1, 1)(a) s log
∣∣∣α1 (1) + γ1 (1)

∣∣∣ < (s − 1) log
∣∣∣β1 (1) + γ1 (1)

∣∣∣
Symmetric MS − log GARCHd (1, 1)

∑d
k=1 π (k) log

∣∣∣α1 (k) + γ1 (k)
∣∣∣ < 0

MS − A log GARCHd (1, 1)
∑d

k=1 π (k) s log
∣∣∣α1 (k) + γ1 (k)

∣∣∣ < ∑d
k=1 π (k) (s − 1) log

∣∣∣β1 (k) + γ1 (k)
∣∣∣

MS − A log ARCHd (1)
∏d

k=1 |α1 (k)|sπ(k)
∣∣∣β1 (k)

∣∣∣(1−s)π(k)
< 1

(a) s = P (e0 > 0) > 0

Table 1. Condition γ (Γ) < 0 for some specifications.

For the model MS − A log GARCHd (1, 1) , the existence of explosive regimes, (i.e., for some k ∈ S, such that,∣∣∣α1 (k) + γ1 (k)
∣∣∣π(k)s ∣∣∣β1 (k) + γ1 (k)

∣∣∣π(k)(1−s)
> 1) does not preclude the existence of strictly stationary solution. So, local

stationarity is not necessary for global stationarity and global stationarity is not sufficiently for local stationarity. For
d = 2 and γ1 (.) = 0, α1 (1) = 2β1 (2) = a, β1(1) = α1(2) = b, π (2) = 0.25 and with et ∼ N(0, 1), the regions of
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strictly stationary are shown in Fi11. below

Asymmetric and standard models

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

a

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

b

doshdot stand-AlogARCH(1)

solid Asym-MS-logARCH(1)

Fig1.Region of stationarity for Example 3.5.

Remark 3.6. The process (2.4) is not a Markov process in general. But the extended process
(̃
εt =

(
ε′t, δt

)′
, t ∈ Z

)
is a Markov chain with a state space R2q+p

× S whose n−step transition probability is given by P(n)
(
z,A

)
=

P
(̃
εn ∈ A

∣∣∣̃ε0 = z
)

for any Borel set A ∈ BR2q+p×S, where ε̃0 be an arbitrarily specified random vector in R2q+p+1 and

independent of
(
Γk (et) ,∆k (et) , t ∈ Z

)
, for all k ∈ S.

Remark 3.7.
[
Non-necessity conditions of Theorem 3.1

]
Assume for instance that p = q = 1 and α1 (.) = β1 (.) . In

that case γ (Γ) < 0 is equivalent to
∏d

k=1

∣∣∣α1 (k) + γ1 (k)
∣∣∣π(k)
< 1. In addition, assume that e2

t = 1 a.s. Then, when∏d
k=1

∣∣∣α1 (k) + γ1 (k)
∣∣∣π(k)
, 1 with

∣∣∣α1 (k) + γ1 (k)
∣∣∣π(k)
, 1 ∀k ∈ S, there exists a stationary solution to (2.1) and (2.3)

for each regime k ∈ S defined by εt = et exp
(

1
2λ (k)

)
, with λ (k) = α0 (k)

(
1 − α1 (k) − γ1 (k)

)−1 , k ∈ S.

For the GARCH model, in a general, and the MS − BL model, in particular, the strict stationarity condition
requires the existence of a moment of certain order ν for |εt|. Therefore, we will reinforce this important
consequence of the proposed MS − A log GARCH models. The following theorem gives us the existence of
fractional log−moments

Theorem 3.8. Consider the MS − A log GARCHd
(
p, q

)
model with associated state-space representation (2.4) and

assume that γ (Γ) < 0 and that E
{∣∣∣log e2

t

∣∣∣τ} < ∞ for some τ > 0. Then there exists ν > 0 such that E
{∣∣∣log σ2

t

∣∣∣ν} < ∞
and E

{∣∣∣log ε2
t

∣∣∣ν} < ∞.
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Proof. Since γ (Γ) < 0, there is a positive integer t such that E
{
log

∥∥∥∏t−1
i=0 Γδt−i (et−i)

∥∥∥} < 0 and we get

E
{∥∥∥∥∥∏t−1

i=0
Γδt−i (et−i)

∥∥∥∥∥ν} ≤ ∥∥∥∥∥I′(d(p+2q))P
t (|Γν|)Π

(
I(p+2q)

)∥∥∥∥∥ < ∞,
for all t, where I′(mn) means the m−block matrix

(
I(n)
......
...I(n)

)
, I(n) is the n × n identity matrix and Π′(I(n)) =(

π(1)I(n), · · · , π(d)I(n)

)
.Otherwise, we use Lemma 4.2 of Bibi and Ghezal [4], to get E

{∥∥∥∏t0−1
i=0 Γδt0−i

(
et0−i

)∥∥∥ν} < 1
for some (ν, t0). The rest of the proof is the same as the proof of Lemma 4.2 in Bibi and Ghezal [4].

Remark 3.9. Many references assumed independent and identically distributed standardized innovations (i.e., the
strong case). Theorem 3.8 is no longer valid when the i.i.d. assumption on (et, t ∈ Z) is breached (Hamadeh and
Zakoı̈an [28] for further discussions). While Escanciano ([15], 2009), and Francq and Thieu ([22], 2019) established
statistical inference of QMLE for semi-strong standard GARCH and semi-strong standard APARCH − X models
respectively, i.e., when (et, t ∈ Z) is a quasi-strong assumption of type E

{
e2

t |Ft−1

}
= 1 for each t, thus, it would be

beneficial to generalize the current results of MS − Alo1GARCH when (et, t ∈ Z) is semi-strong.

By the previous theorem, it will be important to know if the strictly stationary solution has log−moments
of higher-order. For this, we shall be interested in conditions ensuring the existence of higher-order
log−moments for strictly stationary

(∣∣∣log ε2
t

∣∣∣) in the MS−A log GARCH model having state-space represen-
tation (2.4).

Theorem 3.10. Consider the MS − A log GARCHd
(
p, q

)
model with associated state-space representation (2.4)

and assume that γ (Γ) < 0 and that E
{∣∣∣log e2

t

∣∣∣m}
< ∞ for any integer m ≥ 1. If ρ

(
P

(∣∣∣Γ(m)
∣∣∣)) < 1, where∣∣∣Γ(m)

∣∣∣ = (
E
{∣∣∣∣Γ⊗m
δt=k (e1)

∣∣∣∣} , k ∈ S) with ⊗ is the usual Kronecker product of matrices and Γ⊗r = Γ ⊗ Γ ⊗ ... ⊗ Γ,

r−times. Then E
{∣∣∣log σ2

t

∣∣∣m}
< ∞ and E

{∣∣∣log ε2
t

∣∣∣m}
< ∞.

Proof. It is easily seen that E
{∣∣∣ε⊗m

t (n)
∣∣∣} ≤ I′((p+2q)d)P

k
(∣∣∣Γ(m)

∣∣∣)Π (∣∣∣∆(m)
∣∣∣) , where εt(n) :=

{∏n−1
j=0 Γδt− j

(
et− j

)}
∆δt−n

(
et−n

)
and

∣∣∣∆(m)
∣∣∣ :=

(
E
{∣∣∣∆⊗m
δt=k (e1)

∣∣∣}′ , k ∈ S)′. Hence
∥∥∥εt(k)

∥∥∥
m ≤

∥∥∥∥∣∣∣Γ(m)
∣∣∣k∥∥∥∥1/m ∥∥∥∣∣∣∆(m)

∣∣∣∥∥∥1/m
. So, by Jordan

decomposition,
∥∥∥∥∣∣∣Γ(m)

∣∣∣k∥∥∥∥ converge to zero at an exponential rate as k → ∞, the rest of statements are
immediate.

Next, we present the log−moment conditions around a smaller size of another sequence of matrices. For

this, we introduce the p ∨ q−vectors σ′t :=
(
log σ2

t , . . . , log σ2
t−p∨q+1

)
and F′3 :=

(
1,O′(p∨q−1)

)
. Now, it is shown

how these notations lead to obtain the following state-space representation logσ2
t = F′3σt and

σt = Λδt (et) σt−1 + ηδt (et) F3, t ∈ Z, (3.3)

where

Λδt (et) :=
(
λ1,δt (Let) ... λp∨q,δt (Lp∨qet)
I(p∨q−1) O(p∨q−1)

)
is an

(
p ∨ q

)
×

(
p ∨ q

)
matrix, L denotes the lag operator, λi,δt (x) = αi (δt) I{x>0} + βi (δt) I{x<0} + γi (δt) , i =

1, ..., p ∨ q with the convention γi (.) = 0 for i > q, αi (.) = βi (.) = 0 for i > p and ηδt (et) = ω (δt) +∑q
i=1

(
αi (δt) I{Liet>0} + βi (δt) I{Liet<0}

)
Li log e2

t . Note here that
(
Λδt=k (et)

)
is a sequence of dependent random

matrices and
(
ηδt=k (et) F3

)
is a sequence of dependent vectors for all k ∈ S.
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Theorem 3.11. Let (εt, t ∈ Z) be a strict stationary solution of Eq. (2.1) and (2.3), with associated state-space
representation (3.3) and assume that E

{∣∣∣log e2
t

∣∣∣} < ∞. If ρ (P (|Λ|)) < 1, where |Λ| := (|Λ (δt = k)| , k ∈ S), then

E
{∣∣∣log σ2

t

∣∣∣} < ∞ and E
{∣∣∣log ε2

t

∣∣∣} < ∞.
Proof. From (3.3), we then have∣∣∣σt

∣∣∣ ≤∑
i≥0

{∏i−1

j=0

∣∣∣∣Λδt− j

(
et− j

)∣∣∣∣} ∣∣∣ηδt−i (et−i)
∣∣∣ F3,

in order to give a full-scale overview, consider for instance the case i = 2, we then have

{∏2−1

j=0

∣∣∣∣Λδt− j

(
et− j

)∣∣∣∣} ∣∣∣ηδt−2 (et−2)
∣∣∣ F3 = λ1,δt−1 (et−2)

∣∣∣ηδt−2 (et−2)
∣∣∣

λ1,δt (et−1)
1
O(p∨q−2)

 + ∣∣∣ηδt−2 (et−2)
∣∣∣

λ2,δt (et−2)
0
1
O(p∨q−3)

 ,
and we get

E
{{∏2−1

j=0

∣∣∣∣Λδt− j

(
et− j

)∣∣∣∣} ∣∣∣ηδt−2 (et−2)
∣∣∣ F3

}
= E

{{∏2−1

j=0

∣∣∣∣Λ (
δt− j

)∣∣∣∣} ∣∣∣η (δt−2)
∣∣∣ F3

}
= I′((p∨q)d)P

2 (|Λ|)Π
(∣∣∣η∣∣∣ F3

)
,

because ηδt−2=k (et−2) is a function of et−3 and its past values for all k ∈ S, where

Λ (δt) :=
(
λ1 (δt) ... λp∨q (δt)
I(p∨q−1) O(p∨q−1)

)
,

λi (δt = k) = E
{
λi,δt=k (et)

}
, 1 ≤ i ≤ p ∨ q , η (δt = k) = E

{
ηst=k (et)

}
for all k ∈ S and

∣∣∣η∣∣∣ :=
(∣∣∣η (δt = k)

∣∣∣ , k ∈ S) .
Thus, in general, we can be easily obtained

E
{{∏i−1

j=0

∣∣∣∣Λδt− j

(
et− j

)∣∣∣∣} ∣∣∣ηδt−i (et−i)
∣∣∣ F3

}
= E

{{∏i−1

j=0

∣∣∣∣Λ (
δt− j

)∣∣∣∣} ∣∣∣η (δt−i)
∣∣∣ F3

}
= I′((p∨q)d)P

i (|Λ|)Π
(∣∣∣η∣∣∣ F3

)
,

the condition ρ (P (|Λ|)) < 1 entails that E
{∣∣∣σt

∣∣∣} is finite.

Remark 3.12. In Theorem 3.11 we have got the log−moment conditions around a smaller size of sequence (Λδt (et))
of matrices (i.e., q ∨ p size) but dependent, while Theorem 3.10 gives the log−moment conditions with

(
Γδt (et)

)
is a

sequence of i.i.d. and the (2q + p) size.

Corollary 3.13. Consider the MS − A log GARCHd (1, 1) model and under the conditions of Theorem 3.10, if

ρ
(
P

(
φ(m)

))
< 1, where φ(m) :=

(
φ(m) (k) = s

∣∣∣α1 (k) + γ1 (k)
∣∣∣m + (1 − s)

∣∣∣β1 (k) + γ1 (k)
∣∣∣m , k ∈ S) , (3.4)

then E
{∣∣∣log σ2

t

∣∣∣m}
< ∞ and E

{∣∣∣log ε2
t

∣∣∣m}
< ∞. In particular, noting here that when d = 2, with p11 = p22 = 1−q = 4

5 ,
then the condition (3.4) is equivalent to the following two conditions

(
2q − 1

)
φ(m)(1)φ(m)(2) + (1 − q)

(
φ(m)(1) + φ(m)(2)

)
< 1

(1 − q)
(
φ(m)(1) + φ(m)(2)

)
≤ 2

.

For MS − A log ARCH2 (1) model with α1 (1) = 0, α1 (2) = β1 (1) = a, β1 (2) = b and et ∼ N (0, 1) , the regions are
shown in Fig 2. below
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Fig 2. Plots of the boundary curves for MS − A log ARCH2(1) model.

4. Estimation of the MS − A log GARCH model using QML method

The statistical inference for MS − A log GARCH model is rather difficult, and one of the key issues because
that observations at any time are then dependent on the whole regime path, whereas the likelihood becomes
quickly intractable as the total length of observations increases. But by transforming it into an infinite order
MS − A log ARCH model, we get the possibility of writing a likelihood that can be handled directly. Some
specific models were considered in the literature (see., for instance, Francq and Zakoı̈an [18], Xie [43],
Ghezal et al. [5] − [7], [24], for further discussions). In this section, we consider the quasi-maximum
likelihood estimator (QMLE) for estimating the parameters of MS−A log GARCH model gathered in vector

θ′ :=
(
α′, β′, γ′, p′

)
∈ Θ ⊂ Rd(d+2q+p) where α′ :=

(
ω′, α′1, ..., α

′

q

)
, β′ :=

(
β′

1
, ..., β′

q

)
, γ′ :=

(
γ′

1
, ..., γ′

p

)
and p′ :=(

p′
1
, ..., p′

d

)
with ω′ := (ω (1) , ..., ω (d)) , α′i := (αi (1) , ..., αi (d)) , β′

i
:=

(
βi (1) , ..., βi (d)

)
, γ′

j
:=

(
γ j (1) , ..., γ j (d)

)
and p′

l
:=

(
plk, 1 ≤ k ≤ d, l , k

)
for all 1 ≤ i ≤ q, 1 ≤ j ≤ p and 1 ≤ l ≤ d. The true parameter value denoted

by θ0 ∈ Θ is unknown and should be estimated. For this purpose, let {ε1, ..., εn} be a realization from the
unique, causal and strictly stationary solution of (2.1) and (2.3) and assume that the orders p, q and the
number of regime d are assumed to be known and fixed and (et) is standard Gaussian with mean zero and
variance one. A QMLE of θ is defined as any measurable solution θ̂n of

θ̂n = arg max
θ∈Θ

Ln

(
θ
)
, (4.1)

where Ln

(
θ
)

is the Gaussian likelihood function, given by summing, over all the possible paths of the
Markov chain,

Ln

(
θ
)
=

∑
s1,...,sn∈S

π (s1)

 n∏
i=2

psi−1,si


 n∏

l=1

1sl (ε1, ..., εl)

 , (4.2)
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where

1sl (ε1, ..., εl) =
1

(2π)1/2 σsl (ε1, ..., εl−1)
exp

− ε2
l

2σ2
sl

(ε1, ..., εl−1)

 ,
with the conditional log−variance process satisfy

log σ2
sl

(ε1, ..., εl−1) = ω̃ (sl) +
l−1∑
j=1

(
α̃ j (sl) I{εl− j>0} + β̃ j (sl) I{εl− j<0}

)
log ε2

l− j,

with log σ2
s1
= ω̃ (s1) if l = 1, where ω̃ (sl) =

(
1 −

∑p
i=1 γi (sl)

)−1
ω (sl) , α̃ j (sl) =

d j

dz j

 ∑q
i=1 αi (sl) zi

1 −
∑p

i=1 γi (sl) zi


z=0

I
{ j>0}

and β̃ j (sl) =
d j

dz j

 ∑q
i=1 βi (sl) zi

1 −
∑p

i=1 γi (sl) zi


z=0

I
{ j>0}. We can write the likelihood function (4.2) as a product of

matrices, as follows

Ln

(
θ
)
= 1′(d)

 n∏
l=2

Pθ
(
1(ε1, ..., εl)

)Π(1 (ε1)), (4.3)

where 1(d) denotes the vector of order d whose entries are all ones. Now, we define here 1st

(
εt| ε t−1|∞

)
(resp. 1st

(
εt| ε t−1|1

)
) as the density of εt given the all previous observations until infinite past (resp. previous

observations until ε1) and let hθ
(
εt| ε t−1|∞

)
(resp. hθ

(
εt| ε t−1|1

)
) be the corresponding logarithms. For this

purpose, we define the conditional likelihood function based on all observations from infinite past noted
L̃n

(
θ
)

defined as similar to equation (4.2) except replacing the density 1sl (ε1, ..., εl) by 1sl

(
εt| ε t−1|∞

)
, we have

L̃n

(
θ
)
= 1′(d)

 n∏
l=2

Pθ
(
1
(
εl| ε l−1|∞

))Π(1
(
ε1| ε 0|∞

)
), (4.4)

where Pθ
(
1
(
εl| ε l−1|∞

))
and Π(1

(
ε1| ε 0|∞

)
) replace 1sl (ε1, ..., εl) by 1sl

(
εl| ε l−1|∞

)
, sl = 1, .., d and l = 1, ..,n in

matrix Pθ
(
1(ε1, ..., εl)

)
and vector Π(1 (ε1)).

Remark 4.1. It should be noted that asymptotically, the stationary distribution π (k), k ∈ S will not affect the
estimation (see., Leroux [34] for more details).

Remark 4.2. Francq et al. [19] proved the inference for stationary standard asymmetric log GARCH1
(
p, q

)
models

(i.e., d = 1) based likelihood. So, it would be interesting to study the strong consistency of the QMLE for the
MS − A log GARCHd(p, q) model while some parameters are locally outside the stationarity domain, thus we can
generalize those results.

Remark 4.3. Numerous authors have pointed out the choice of the initial values is unimportant for the asymptotic
behavior of the QMLE. However, it may be significant from a practical point of view.

The next results in this paper establish the strong consistency of θ̂n.

4.1. Strong consistency of QMLE
The following assumptions will be used to establish the strong consistency of the QMLE estimator.

A1. θ0 ∈ Θ and Θ is a compact.

A2. γ
(
Γ0

)
< 0 for all θ ∈ Θ where Γ0 denotes the sequence

(
Γδt (et) , t ∈ Z

)
when the parameters θ are

replaced by their true values θ0.
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A3. For any θ, θ∗ ∈ Θ, if almost surely hθ
(
εt| ε t−1|∞

)
= hθ∗

(
εt| ε t−1|∞

)
then θ = θ∗.

A4. The observed process satisfies E
{∣∣∣log ε2

0

∣∣∣} < ∞.
A5. The support of e0 contains at least two positive values and two negative values and E

{∣∣∣log e2
0

∣∣∣ν} < ∞
for some ν > 0.

Assumption A1. the compactness ofΘ is assumed in order that several results from the real analysis may be
used. As seen in Theorem 3.1 Assumption A2., ensure that the process (εt, t ∈ Z) admits a strictly stationary
and ergodic solution. Assumption A3., is made to guarantee the identifiability of parameter θ. Assumption
A4. can be replaced by the sufficient conditions given in Theorem 3.8. Assumption A5. eliminates a mass
at zero for the innovation, and, for identifiability reasons, imposes non-degeneracy of the positive and
negative parts of e0.
Now, we will appear the consistency of QMLE for the MS− log GARCH model (Theorem 4.7). Our method
has availed from the work of Ghezal [24], which depends on Lemmas 4.4 − 4.6, below. First, the following
Lemma 4.4 presents that the uniform asymptotic forgetting of initial values

Lemma 4.4. Under the assumptions A1-A5, almost surely, uniformly with respect to θ ∈ Θ

lim
n−→∞

1
n

log Ln

(
θ
)
= lim

n−→∞

1
n

log L̃n

(
θ
)
= Eθ0

{
hθ

(
εt| ε t−1|∞

)}
.

Proof. Note that log L̃n

(
θ
)
=

n∑
t=1

hθ
(
εt| ε t−1|∞

)
and log Ln

(
θ
)
=

n∑
t=1

hθ
(
εt| ε t−1|1

)
, so,

1
n

n∑
t=1

hθ
(
εt| ε t−1|1

)
=

1
n

n∑
t=1

hθ
(
εt| ε t−1|∞

)
+

1
n

n∑
t=1

(
hθ

(
εt| ε t−1|1

)
− hθ

(
εt| ε t−1|∞

))
.

Now for any l ≥ 0, define the process Ht (m) = sup
l≥m

∣∣∣hθ (εt| ε t−1|t−l
)
− hθ

(
εt| ε t−1|∞

)∣∣∣, then for each fixed m, the

process (Ht (m) , t ∈ Z) is stationary, ergodic and Eθ0
{Ht (m)} < +∞. We have

lim sup
n−→∞

∣∣∣∣∣∣∣1n
n∑

t=1

(
hθ

(
εt| ε t−1|1

)
− hθ

(
εt| ε t−1|∞

))∣∣∣∣∣∣∣
≤ lim sup

n−→∞

1
n

n∑
t=1

∣∣∣hθ (εt| ε t−1|1
)
− hθ

(
εt| ε t−1|∞

)∣∣∣
≤ lim sup

n−→∞

1
n

n∑
t=m+1

Ht (m) = Eθ0
{H0 (m)} .

Since, lim
m−→∞

Eθ0
{H0 (m)} = 0, then the result of the first assertion follows.

We will next compare the likelihood Ln

(
θ
)

(resp. L̃n

(
θ
)
) with the one evaluated at the true parameter θ0.

Write In

(
θ
)
=

1
n

log

 Ln

(
θ
)

Ln

(
θ0

)  , and the following lemma follows from Lemma 4.4, Jensen’s inequality and

identifiability assumption.

Lemma 4.5. Under the assumptions A1-A5, lim
n→∞

1
n

log

 L̃n

(
θ
)

L̃n

(
θ0

)  = lim
n−→∞

In

(
θ
)
≤ 0 with equality iff θ = θ0 for all

θ ∈ Θ.
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Proof. Under conditions A1-A5 almost surely In

(
θ
)

is well defined. Moreover, by Lemma 4.4 and Jensen’s
inequality, we have

lim
n−→∞

In

(
θ
)
= Eθ0

{
log

hθ
(
εt| ε t−1|∞

)
hθ0

(
εt| ε t−1|∞

)} ≤ log Eθ0

{
hθ

(
εt| ε t−1|∞

)
hθ0

(
εt| ε t−1|∞

)} ≤ log 1 = 0.

By the condition A3, In

(
θ
)

converge to Kullback-Leibler information which equals to zero iff θ = θ0.

Theorem 4.7 below follows easily from the following lemma together with the identifiability assumption.

Lemma 4.6. Under the assumptions A1-A5. For all θ∗ , θ0, there exists a neighborhood V
(
θ∗

)
of θ∗such that,

almost surely

lim sup
n→+∞

sup
θ∈V(θ∗)

In

(
θ
)
< 0.

Proof. In view of equation (4.4), we have

min
k
π(k)1k

(
ε1| ε 0|∞

) ∥∥∥∥∥∥∥
 n∏

t=2

Pθ
(
1
(
εt| ε t−1|∞

))
∥∥∥∥∥∥∥ ≤ L̃n

(
θ
)
≤ max

k
π(k)1k

(
ε1| ε 0|∞

) ∥∥∥∥∥∥∥
 n∏

t=2

Pθ
(
1
(
εt| ε t−1|∞

))
∥∥∥∥∥∥∥ .

So, we obtain lim
n→∞

1
n log L̃n

(
θ
)
= lim

n→∞
1
n log

∥∥∥∥∥∥
{

n∏
t=2
Pθ

(
1
(
εt| ε t−1|∞

))}∥∥∥∥∥∥ = Eθ0

{
hθ

(
εt| ε t−1|∞

)}
.

Let Vm

(
θ̃
)
=

{
θ :

∥∥∥∥θ − θ̃∥∥∥∥ ≤ 1
m

}
and set Σm

2:n = sup
θ∈Vm

(
θ̃
)
∥∥∥∥∥∥∥

n∏
t=2

Pθ
(
1
(
εt| ε t−1|∞

))∥∥∥∥∥∥∥ . Because the matrix norm is

multiplicative, we obtain onVm

(
θ̃
)

sup
θ

∥∥∥∥∥∥∥
n+k∏
t=2

Pθ
(
1
(
εt| ε t−1|∞

))∥∥∥∥∥∥∥ ≤ sup
θ

∥∥∥∥∥∥∥
n∏

t=2

Pθ
(
1
(
εt| ε t−1|∞

))∥∥∥∥∥∥∥ sup
θ

∥∥∥∥∥∥∥
n+k∏

t=n+1

Pθ
(
1
(
εt| ε t−1|∞

))∥∥∥∥∥∥∥ ,

that implies logΣm
2:n+k ≤ logΣm

2:n + logΣm
n+1:n+k for any positive integers n and k. Hence

(
logΣm

2:n

)
is

subadditive, stationary, ergodic process and Eθ0

{
logΣm

2:n

}
is finite. From the subadditive ergodic theorem

we can get ϕm

(
θ∗

)
= lim

n−→∞

1
n

logΣm
2:n = inf

n>1

1
n

Eθ0

{
logΣm

2:n

}
a.s. Note that if ϕ

(
θ
)

denotes the Lyapunov

exponent associated with the sequence of random matrices
(
Pθ

(
1
(
εt| ε t−1|∞

))
, t ∈ Z

)
i,e.,

ϕ
(
θ
)
= inf

n>1

1
n

Eθ0

log

∥∥∥∥∥∥∥
n∏

t=2

Pθ
(
1
(
εt| ε t−1|∞

))∥∥∥∥∥∥∥
 a.s.
= lim

n−→∞

1
n

log

∥∥∥∥∥∥∥
n∏

t=2

Pθ
(
1
(
εt| ε t−1|∞

))∥∥∥∥∥∥∥ ,

then, from Lemma 4.5, there exist ϵ > 0 and nϵ ∈N such that
1
nϵ

Eθ0

log

∥∥∥∥∥∥∥
nϵ∏

t=2

Pθ0

(
1
(
εt| ε t−1|∞

))∥∥∥∥∥∥∥
 < ϕ (

θ0

)
−ε.

By dominated convergence theorem, it follows that for m large enough, we obtain

ϕm

(
θ∗

)
≤

1
nϵ

Eθ0

log

∥∥∥∥∥∥∥
nϵ∏

t=1

Pθ∗
(
1
(
εt| ε t−1|∞

))∥∥∥∥∥∥∥
 < ϕ (

θ0

)
−
ε
2
,

and the rest follows by Lemma 4.4.
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Second, we are now in a position to state the following consistency theorem

Theorem 4.7.
[
Strong consistency

]
Let

(
θ̂n

)
n

be a sequence of QML estimators satisfying (4.1). Then under as-

sumptions A1-A5, θ̂n is strongly consistent in the sense that θ̂n → θ0 a.s. when n→ +∞.

Proof. The proof of Theorem 4.7 is similar in Bibi and Ghezal [5] for the MS − BL model. For this purpose,
suppose (θ̂n) does not converge to θ0 a.s. So, ∃ϵ > 0 such that for each integer n0 there is an integer
n = n(n0) ≥ n0 with

∥∥∥θ̂n − θ0

∥∥∥ ≥ ϵ. Using Lemma 4.6, it follows that Ln

(
θ̂n

)
< Ln

(
θ0

)
. Moreover, we use the

definition of QMLE given by (4.1), we have Ln

(
θ̂n

)
= sup
θ∈Θ∗

Ln

(
θ
)
≥ Ln

(
θ0

)
for any compact subset Θ∗ of Θ

containing θ0 and this contradiction completes the proof.

Remark 4.8. Chan [12] and Jensen and Rahbek [31] established statistical inference of QMLE for nonstationary
standard GARCH models i.e., when γ

(
Γ0

)
≥ 0. Consequently, it would be profitable for MS − A log GARCH to

generalize the strong consistency of QMLE in which all regimes are explosive.

Remark 4.9. Francq and Zakoı̈an [17] established asymptotic distribution of the quasi-maximum likelihood QMLE
when some coefficients are equal to zero, thus, it would be beneficial to generalize the strong consistency of QMLE for
MS − A log GARCH when θ0 is on the boundary.

Remark 4.10. It is worth noting that the MS − EGARCH model, i.e.,{
εt = σtet

log σ2
t = ω (δt) +

∑q
i=1

(
αi (δt) et−i + βi (δt) |et−i|

)
+

∑p
j=1 γ j (δt) log σ2

t− j.
, t ∈ Z, (4.5)

has similarities with the MS − A log GARCH, but no similar results, proving the asymptotic properties (see.,
Wintenberger [41] for further details).

5. Simulation studies

To evaluate the performance of the QML method for parameters estimation, we carried out a simulation
study based on two stationary MS−A log GARCHd(1, 1) models (d = 1 and d = 2), for innovation errors, we
use Gaussian N(0, 1) and Student’s t5 innovations. We simulated 500 data samples with different lengths.
The sample sizes to be examined in this simulation study are n = 1000, n = 3000 and n = 10000. The
corresponding parameter values are chosen to be satisfied the stationary condition (3.2) . For each trajectory
the vector θ of parameters of interest has been estimated with QMLE noted as θ̂. The QMLE algorithm has
been executed for these series under MATLAB8 using ” f minsearch.m” as a minimizer function. In the tables
below, the roots mean square errors (RMSE) of θ̂ (i), i = 1, .., d (d + 3), are displayed in parenthesis in each
table, the true values (TV) of the parameters of each of the considered data-generating process are reported.

5.1. Standard asymmetric log GARCH model

First, we present an example illustrating our theoretical analysis, which is the standard A log GARCH1 (1, 1)
model, the vector of parameter θ′ =

(
ω, α1, β1, γ1

)
is chosen to subject the following condition∣∣∣α1 (1) + γ1 (1)

∣∣∣s ∣∣∣β1 (1) + γ1 (1)
∣∣∣1−s
< 1.

The results of the simulation are shown in Table 2,
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n = 1000
Tv N(0, 1) t5

ω̂ 0.40 0.4084 (0.0269) 0.4035 (0.0403)
α̂1 0.05 0.0528 (0.0173) 0.0522 (0.0297)
β̂1 0.35 0.3535 (0.0176) 0.3526 (0.0291)
γ̂1 0.70 0.6928 (0.0195) 0.6939 (0.0329)

n = 3000
ω̂ 0.40 0.4036 (0.0245) 0.4033 (0.0275)
α̂1 0.05 0.0510 (0.0113) 0.0521 (0.0163)
β̂1 0.35 0.3517 (0.0130) 0.3519 (0.0183)
γ̂1 0.70 0.6973 (0.0167) 0.6972 (0.0214)

n = 10000
ω̂ 0.40 0.4019 (0.0103) 0.4007 (0.0156)
α̂1 0.05 0.0506 (0.0064) 0.0506 (0.0104)
β̂1 0.35 0.3508 (0.0063) 0.3507 (0.0103)
γ̂1 0.70 0.6987 (0.0072) 0.6989 (0.0119)

Table 2. Average and RMSE of QMLE for standard A log GARCH1 (1, 1) model.

5.2. MS − A log GARCH model

Second, we will present an example illustrating our theoretical analysis to estimate MS−A log GARCHd(1, 1).
Therefore, we consider the most widely used two-regime switching model (i.e., d = 2). The vector of

interest parameters to be estimated is θ′ =
(
ω′, α′1, β

′

1
, γ′

1
, p′

)
where ω′ = (ω (1) , ω (2)) , α′1 = (α1 (1) , α1 (2)) ,

β′
1
=

(
β1 (1) , β1 (2)

)
, γ′

1
=

(
γ1 (1) , γ1 (2)

)
and p′ =

(
p12, p21

)
is chosen to ensure the stationary condition, i.e.,

2∏
k=1

∣∣∣α1(k) + γ1(k)
∣∣∣π(k) ∣∣∣β1(k) + γ1(k)

∣∣∣−(1−s)π(k)
< 1.

The results of the simulation are gathered in Table 3,

n 1000 3000 10000
Tv N (0, 1) t5 N (0, 1) t5 N (0, 1) t5

ω 0.35 0.3478 (0.1248) 0.3428 (0.2345) 0.3515 (0.0628) 0.3578 (0.1299) 0.3513 (0.0322) 0.3516 (0.0680)
0.10 0.0961 (0.1286) 0.1072 (0.2577) 0.0982 (0.0623) 0.0985 (0.1426) 0.0992 (0.0333) 0.0978 (0.0719)

α1 0.05 0.0499 (0.0272) 0.0536 (0.0400) 0.0498 (0.0146) 0.0521 (0.0219) 0.0503 (0.0079) 0.0504 (0.0123)
0.60 0.6007 (0.0234) 0.6024 (0.0398) 0.6001 (0.0180) 0.6014 (0.0259) 0.6003 (0.0090) 0.6007 (0.0154)

β
1

0.30 0.2995 (0.0237) 0.3012 (0.0349) 0.3009 (0.0148) 0.3022 (0.0227) 0.3008 (0.0078) 0.3012 (0.0116)
0.40 0.4024 (0.0227) 0.4040 (0.0364) 0.4005 (0.0163) 0.4023 (0.0210) 0.4002 (0.0081) 0.4004 (0.0140)

γ
1

0.50 0.4982 (0.0318) 0.4952 (0.0485) 0.4993 (0.0223) 0.4980 (0.0327) 0.4994 (0.0100) 0.4994 (0.0150)
0.75 0.7497 (0.0418) 0.7520 (0.0692) 0.7498 (0.0279) 0.7493 (0.0429) 0.7494 (0.0124) 0.7491 (0.0208)

p 0.80 0.7987 (0.0356) 0.7973 (0.0449) 0.7991 (0.0192) 0.7985 (0.0295) 0.7993 (0.0120) 0.7990 (0.0176)
0.25 0.2529 (0.0387) 0.2538 (0.0598) 0.2511 (0.0268) 0.2526 (0.0364) 0.2503 (0.0116) 0.2508 (0.0205)

Table 3. Average and RMSE of QMLE for MS − A log GARCH2 (1, 1) model.

Now let us devote a few comments in order, Table 2 shows that the strong consistency of QMLE of standard
models is fairly satisfying and the associated RMSE decreases closely as the sample size increases. Regarding
outcomes associated with MS−Models reported in Table 3, it is obvious that the strong consistency is fully
approved.
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6. Empirical application

In this section, we apply our model for modeling the foreign exchange rate series (εt)t≥1 of the Algerian
Dinar against the U.S. Dollar (USD/DZD) from January 3, 2000, to September 22, 2011 (3050 observations)
and et ∼ N (0, 1). We then removed all dates when the market was closed (i.e., holidays and weekends).
The graphics of prices, the daily returns series of prices (rt = 100 log (εt/εt−1))t≥1 , squared, absolute and
log−absolute returns are plotted in Fig3.
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Fig3. The plots of the price series (εt) , (rt) , (|rt|) ,
(
r2

t

)
and log (|rt|).

In Table 4 below, we present some elementary descriptive statistics of the series (εt)t≥1, (rt)t≥1, (|rt|)t≥1 and(
r2

t

)
t≥1
,

Series mean Std. Dev Median Skewness Kurtosis Min Max Arch(300) J. Bera LBtest
(εt) 73.451 4.2424 73.126 −0.6005 3.7642 60.345 81.281 100% 2.58 × 102 100%
(rt) 0.0000 3.0000 0.0000 1.0000 13.000 −19.000 33.000 100% 1.3 × 104 100%
(|rt|) 0.0000 2.0000 1.0000 3.0000 21.000 0.0000 32.000 90, 3% 4.49 × 104 100%(
r2

t

)
0.0000 0.0000 0.0000 0.0000 1000.0 0.0000 1000.0 00% 3.57 × 107 00%

Table 4: Summary statistics for daily crude oil prices series (εt)t≥1, their returns, (rt)t≥1 , (|rt|)t≥1 and
(
r2

t

)
t≥1
.

The result shown in Table 4 for the kurtosis of the log−return series is 13, which indicates that models based
on the Gaussian assumption may not well describe the data. Thus could not reject the null hypothesis H0:
”The residuals of (rt)t≥1 are not correlated” contrary to the series

(
r2

t

)
t≥1

which presents a significant ARCH
effect in its residuals because there is not enough evidence, while by Arch(300) column, reported in Table
4 for testing R0 : ”No residuals heteroscedasticity of (rt)t≥1” shows that through the first three hundred
lags, R0 should be rejected. Furthermore, by looking over at the graphics shown in Fig4 of the sample
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autocorrelations functions of the series (|rt|)t≥1,
(
r2

t

)
t≥1

and (rt)t≥1
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Fig4. The sample autocorrelations functions of the series (rt)t, (|rt|)t and
(
r2

t

)
t
.

one can observe that (rt)t≥1 presents a Taylor-effect (characterized by ρ̂r2
t
(k) < ρ̂|rt |(k) for some k ≥ 1), and

hence you must reject the modeling of the series (rt)t≥1 by standard GARCH models in favor of certain
asymmetric models, such as rt = htet where ht is the corresponding asymmetric volatility process which is a
measurable function of {rm−1,m ≤ t} and the innovation term (et) is subject to some theoretical distribution.
Now, we assume that the volatility associated with (rt)t≥1 satisfies MS−A log GARCH(1, 1) with two regimes,
i.e., δt = 1 corresponds to Monday with probability π (1) and δt = 2 for the other days with equiprobabilities
π(2). The estimated parameters of the 2−regimes MS − A log GARCH(1, 1) model and their RMSE are
reported in Table 5.

Days ω̂ α̂1 β
1

γ
1

P′

Monday 0.3392 0.0581 0.3242 0.7606 0.7439 0.2561
(0.0081) (0.0041) (0.0015) (0.0009) (0.017) (0.023)

Other days 0.0643 0.5808 0.7693 0.8870 0.2851 0.7149
(0.0128) (0.0018) (0.0009) (0.0008) (0.044) (0.039)

Table 5. QMLE estimate and their RMSE.
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The plot of the corresponding volatility is shown in Fig. 5.
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Fig5. The estimated volatility from MS − A log GARCH(1, 1) model.

The diagnostic of residual associated is shown in Fig. 6.
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Table 5 displays the estimated MS−A log GARCH(1, 1) models. This table shows that the MS−A log GARCH
(1,1) has been accurately estimated. Note that the parameters mentioned in this table satisfy the strictly
stationary condition and the estimated models also satisfy the assumptions A1-A5 used to show the
consistency.

7. Conclusion

This paper proposes a new Markov-switching asymmetric log GARCH model with constant transition
probabilities by integrating the standard A log GARCH model with a hidden Markov chain, within each
regime, there is a different A log GARCH−type model. Therefore, this new model is an extension of the
standard model with constant coefficients, where the positive coefficients are dropped and the volatility is
not bounded below which needs an additional log−moment assumption, compared to the MS − GARCH
model. Furthermore, this model can be used to capture three important dynamic characteristics of time
series, regimes, asymmetric, and conditional heteroskedasticity. So, we provide some explicit results for
the structural and asymptotic properties of the MS − A log GARCH process. First, we found sufficient
conditions for the existence of moments and log−moments of the strictly stationary solutions. Second, we
showed the strong consistency of the QMLE under mild assumptions. Lastly, the proposed methodology is
illustrated through a simulation study helps to clarify the consistency of the estimators (for both Gaussian
and Student’s innovations) and an empirical application to the exchange rate of the Algerian Dinar against
the U.S. Dollar.
Acknowledgments
We should like to thank the Editor in Chief of the journal, an Associate Editor and the anonymous referees
for their constructive comments and very useful suggestions and remarks which were most valuable for
improvement in the final version of the paper. We would also like to thank our colleague Prof. Soheir
Belaloui at Freres Mentouri University, Constantine, Algeria, who encouraged us a lot.

References

[1] A. Abramson and I. Cohen, On the stationarity of Markov-switching GARCH processes, Econometric Theory 23(3) (2007), 485−500.
[2] M. Augustyniak, Maximum likelihood estimation of the Markov-switching GARCH model, Computational Statistics & Data

Analysis 76 (2014), 61 − 75.
[3] L. Bauwens, A. Preminger and V. K. Rombouts, Theory and inference for a Markov-switching GARCH model, The Econometrics

Journal 13(2) (2010), 218 − 244.
[4] A. Bibi and A. Ghezal, On the Markov-switching bilinear processes: stationarity, higher-order moments and β−mixing, Stochastics:

An International Journal of Probability & Stochastic Processes 87(6) (2015), 1 − 27.
[5] A. Bibi and A. Ghezal, Consistency of quasi-maximum likelihood estimator for Markov-switching bilinear time series models,

Statistics and Probability Letters 100 (2015), 192 − 202.
[6] A. Bibi and A. Ghezal, Minimum distance estimation of Markov-switching bilinear processes, Statistics 50(6) (2016), 1290− 1309.
[7] A. Bibi and A. Ghezal, Markov-switching BILINEAR −GARCH processes: Structure and estimation, Communications in Statistics

- Theory & Methods 47(2) (2018), 307 − 323.
[8] T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 31 (3) (1986), 307 − 327.
[9] P. Bougerol and N. Picard, Strict stationarity of generalized autoregressive processes, The Annals of Probability 20(4) (1992),

1714 − 1730.
[10] A. Brandt, The stochastic equation YN+1 = ANYN + BN with stationary coefficients, Advances in Applied Probability 18(1) (1986),

211 − 220.
[11] M. Cavicchioli, Markov switching GARCH models: higher order moments, kurtosis measures and volatility evaluation in

recessions and pandemic, Journal of Business & Economic Statistics 40(4) (2022), 1772 − 1783.
[12] N. H. Chan and C. T. Ng, Statistical inference for non-stationary GARCH(p, q) models, Electronic Journal of Statistics 3 (2009),

956 − 992.
[13] C.C. Chen and W. J. Tsay, A Markov regime-switching ARMA approach for hedging stock indices, Journal of Futures Markets 31 (2)

(2011), 165 − 191.
[14] R.F. Engle, Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation, Econometrica 50 (4)

(1982), 987 − 1007.
[15] J. C. Escanciano, Quasi-maximum likelihood estimation of semi-strong GARCH models, Econometric Theory 25 (2009), 561 − 570.
[16] C. Francq, M. Roussignol and J. M. Zakoı̈an, Conditional heteroskedasticity driven by hidden Markov chains, Journal of Time

Series Analysis 22(2) (2001), 197 − 200.
[17] C. Francq and J. M. Zakoı̈an, Quasi-maximum likelihood estimation in GARCH processes when some coefficients are equal to

zero, Stochastic Processes & their Applications 117(9) (2004), 1265 − 1284.



A. Ghezal, I. Zemmouri / Filomat 37:29 (2023), 9879–9897 9897

[18] C. Francq and J. M. Zakoı̈an, Deriving the autocovariances of powers of Markov-switching GARCH models, with applications
to statistical inference, Computational Statistics & Data Analysis 52(6) (2008), 3027 − 3046.

[19] C. Francq, O. Wintenberger and J. M. Zakoı̈an, GARCH models without positivity constraints: exponential or log GARCH ?,
Journal of Econometrics 177 (2013), 34 − 46.

[20] C. Francq and G. Sucarrat, An exponential chi-squared QMLE for log GARCH models via the ARMA representation, Journal of
Financial Econometrics 16(1) (2018), 129 − 154.

[21] C. Francq, O. Wintenberger and J. M. Zakoı̈an, Goodness-of-fit tests for log GARCH and EGARCH models, Test 27 (2018), 27− 51.
[22] C. Francq and L. Q. Thieu, QML inference for volatility models with covariates, Econometric Theory 35 (2019), 37 − 72.
[23] J. Geweke, Modeling the persistence of conditional variances: a comment, Econometric Review 5 (1) (1986), 57 − 61.
[24] A. Ghezal, A doubly Markov switching AR model: Some probabilistic properties and strong consistency, J. Math. Sci. (2023),

https://doi.org/10.1007/s10958-023-06262-y.
[25] A. Ghezal and I. Zemmouri, On the Markov-switching autoregressive stochastic volatility processes. SeMA (2023),

https://doi.org/10.1007/s40324-023-00329-1.
[26] A. Ghezal, QMLE for periodic time-varying asymmetric log GARCH models, Communications in Mathematics and Statistics 9(3)

(2021), 273 − 297.
[27] M. Haas, J. Mittnik and M.S. Paolella, A new approach to Markov-switching GARCH models, Journal of Financial Econometrics

2(4) (2004), 493 − 530.
[28] T. Hamadeh and J. M. Zakoı̈an, Asymptotic properties of LS and QML estimators for a class of nonlinear GARCH processes,

Journal of Statistical Planning and Inference 141(1) (2011), 488 − 507.
[29] J. D. Hamilton, A new approach to the economie analysis of nonstationary time series and the business cycle, Econometrica 57 (2)

(1989), 357 − 384.
[30] J. D. Hamilton and R. Susmel, Autoregressive conditional heteroskedasticity and changes in regime, Journal of econometrics

64(1 − 2) (1994), 307 − 333.
[31] S. T. Jensen and A. Rahbek, Asymptotic normality of the QML estimator of ARCH in the non-stationary case, Econometrica 72(2)

(2004), 641 − 646.
[32] H. Kesten and F. Spitzer, Convergence in distribution of products of random matrices, Zeitschrift für Wahrscheinlichkeitstheorie und

Verwandte Gebiete 67(4) (1984), 363 − 386.
[33] J.F.C. Kingman, The ergodic theory of subadditive stochastic processes, J. Roy. Statist. Soc. Ser. B 30(1968), 499 − 510.
[34] B.G. Leroux, Maximum-likelihood estimation for hidden Markov models, Stochastic Processes and their Applications 40(1) (1992),

127 − 143.
[35] J.-C. Liu, Stationarity of a Markov–switching GARCH model, Journal of Financial Econometrics 4(4) (2006), 573 − 593.
[36] J.-C. Liu, Stationarity for a Markov–switching Box–Cox transformed threshold GARCH process, Statistics & Probability Letters

77(13) (2007), 1428 − 1438.
[37] A. Milhϕj, A multiplicative parameterization of ARCH models, Working paper, Department of Statistics, University of Copenhagen

(1987).
[38] D.B. Nelson, Conditional heteroskedasticity in asset returns: a new approach, Econometrica 59 (2) (1991), 347 − 370.
[39] S.G. Pantula, Modeling the persistence of conditional variances: a comment, Econometric Review 5 (1) (1986), 71 − 74.
[40] G. Sucarrat and A., Escribano, Estimation of log GARCH models in the presence of zero returns, The European Journal of Finance

24 (10) (2017), 809 − 827.
[41] O. Wintenberger, Continuous invertibility and stable QML estimation of the EGARCH(1, 1) model, Scandinavian Journal of Statistics

40 (4) (2013), 846 − 867.
[42] C. S. Wong and W. K.. Li, On a mixture autoregressive conditional heteroskedastic model, Journal of the American Statistical

Association 96(455) (2001), 982 − 995.
[43] Y. Xie, Consistency of maximum likelihood estimators for the regimes witching GARCH model, Statistics: A Journal of Theoretical

& Applied Statistics 43(2) (2009), 153 − 165.


