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Abstract. This study investigates the irrational behavior of American put options holders that results in
exercising options at non-optimal times. Investors usually react to market information and consequently
market movements. These emotional reactions lead to exercising options strategy at a time that might not
be optimal. In this situation, we consider irrational behavior in the option pricing problem. For this, we
used the proposed intensity-based models with stochastic intensity parameters. Under these models, the
option pricing problem leads to a nonlinear parabolic partial differential equation (PDE) with an additional
term to the PDE of the American option under rational strategy (classical American option with optimal
exercise strategy) due to the intensity functions of models. In this paper, we are interested in finding a stable
solution for the resulting PDE using a finite element method. For this, we show the stability of the proposed
finite element method by proving some theoretical results. Our numerical experiments demonstrate the
accuracy and efficiency of the proposed method to obtain fast solutions for the pricing problem of American
put options under irrational behavior.

1. Introduction

During the last three decades, financial products have been used as a significant tool for hedging and
risk management in modern financial markets. Among these products, financial derivatives, particularly
American-style options, are more attractive due to the option holder’s right to exercise the option based
on his (or her) choice at any time until its expiration date and get the payoff. Thus, the pricing problem
of an American option is formulated as an optimal stopping time problem [7] where the stopping time
is optimal for the option holder to exercise and receive the maximum exercise value. However, in real
financial markets, experimental data show that a large number of irrational behaviors lead to irrational
exercises [3, 12, 13]. Various reasons may cause irrational behavior of option holders, such as emotional
reactions to market movements, incorrect information, or using imperfect input data for models [12]. In
addition, sometimes holding American options as a hedging strategy can lead to exercise at a time that
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might not be optimal and is known as an irrational exercise strategy. Due to the irrational behavior and
the irrational exercise strategy, the pricing problem of American-style options results in overvalued option
prices, so we cannot consider the classical model of American options under a rational exercise strategy.
Thus, irrational exercise behavior is needed to take into account through other alternative option pricing
models.

Recently in [13], under the Black-Scholes model a penalty approach is proposed for the valuation of
American options to capture irrational behavior. For this, the authors assumed the exercise time as the
first jump time of a point process with a stochastic intensity parameter called a rationality parameter. On
the other hand, if the option holder decides to exercise the option at the non-optimal time (early or late
exercise), his (or her) profit at each exercise time can be measured as the difference between the payoff
and the value of the option, so the dependence of the exercise intensity in terms of the profitability can
be described by the rationality parameter. The authors also provided probabilistic proof of the existence
of a solution to the pricing problem and show that under the proposed model the American option prices
converge to the corresponding American options under the rational strategy when the rational parameter
tends to infinity.

To obtain the fair value of American put options under irrational strategy with the PDE approach, a
finite difference method has been applied by authors in [2]. As far as we know, no research paper has
been done on this issue with other accurate and efficient numerical methods to compare the results. This
motivated us to propose a finite element method to obtain more accurate and fast solutions for the pricing
problem of American put options under the irrational strategy. In this way, our main contribution in
this paper is finding a stable, fast, and accurate solution for the pricing problem of American put options
under irrational behavior. For this purpose, we first use a variable transformation technique to transform
the pricing problem of the American put option under the irrational strategy into a nonlinear parabolic
equation with constant coefficients in an infinite domain. Then the truncated problem over a finite domain is
written in a variational form. A finite element method is applied to solve the variational problem for option
price on a truncated domain. We then study the stability of the finite element method by proving some
theoretical results. Our numerical experiments demonstrated the accuracy and efficiency of the proposed
method to obtain fast solutions for the pricing problem of American put options under irrational behavior.

The paper is organized as follows: In section 2 we consider the intensity-based models to obtain an
appropriate PDE with boundary conditions for the American put option under the irrational behavior of its
holder, and use a transformation technique to take some numerical advantages of working on PDEs with
constant coefficients. In section 3, we first write the variational form of the truncated problem and apply
a finite element method. In section 4, a theorem is proven to illustrate the stability of the applied finite
element method. Some numerical examples are examined in section 5 to show the accurate and fast results
of applying the proposed method for American put option prices under the irrational strategy. Finally, the
conclusion is presented in section 6.

2. American Put Options with Rationality Parameter

Let’s fix a filtered probability space (Ω,F , {Ft}t≥0,P) and assume that the dynamics of an underlying
asset price {St, t ≥ 0} follows a geometric Brownian motion (GBM) under a risk-neutral probability measure
Q, which are captured by the following stochastic differential equation (SDE)

dSt = rStdt + σStdWt,

where, r denotes the constant risk-free interest rate, σ > 0 is the constant instantaneous volatility of the
asset and Wt represents the Wiener process (standard Brownian motion).

Now, if we consider an American put option on the underlying asset St, with the strike price $E, maturity
time T and the exercise value which is given by the payoff function (E − St)+ = max(E − St, 0) at time t < T,
then the value of the put option, P(t,St), can be characterized as the solution to the following optimal
stopping time problem [8]:

P(t,St) = sup
τ∈S
EQ
[
e−r(τ−t)

(
E − Sτ

)+
|Ft

]
,
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where, S is the set of the stopping times taking values in [t,T] and EQ denotes the conditional expectation
under the risk-neutral probability measure Q and filtration Ft = σ({Ss, 0 ≤ s ≤ t}).

It is shown that there exists an optimal stopping time τ∗ and corresponding rational boundary exercise
price Sτ∗ , for which the supremum is attained, (It is known as an optimal strategy) and the option should
be exercised for S ≥ Sτ∗ . Under the optimal strategy, we assume that the option investor is rational and his
decision occurs at rational exercise time. Thus, we derive the option price as follows:

P(t,St) = EQ[e−r(τ∗−t)
(
E − Sτ∗

)+
|Ft].

However, irrational behavior as a reaction to real market movements can lead to an exercising option
strategy (at a time τ up to the time of the contract) which might not be an optimal exercising time and
consequently a non-optimal strategy. Under the irrational exercising time strategy, the pricing problem of
the American style option results in an overvalued price. Thus, to study the irrational behavior of option
holders and its impact on the option pricing problem, the authors in [13] introduced a rationality parameter
λ > 0 associated with an intensity function f λ : [−E,E] −→ [0,∞] which denotes the differences between the
American option payoff and its value under the corresponding exercise strategy τwhich is not necessarily
optimal time:

f λ
[
(E − St)+ − P(t,St; τ)

]
, 0 ≤ t ≤ T,

where P(t,St; τ) is American put option price under irrational exercise strategy τ,

P(t,St; τ) = EQ
[
e−r(τ−t)

(
E − Sτ

)+
|Ft

]
.

Theorem 2 in [13], states that the value of the American put option under irrational exercise strategy
τ converges to the value of corresponding American put option P(t,St) with rational exercise strategy τ∗

when λ tends to infinity:

lim
λ→∞

P(t,St; τ) = P(t,St), 0 ≤ t ≤ T.

For more details, see Theorem 2 in [13].
Now to obtain the American put option price under the irrational exercise strategy τ, we assume that

τ is the first jump time of a point process with stochastic intensity µt = α(t,St), which α is a positive
deterministic measurable function [13]. In this paper, α is defined as follows [2]:

α(t,St) = f λ
[
(E − St)+ − P(t,St; τ)

]
.

To consider a family of intensity functions f λ, the parameter λ must satisfy the condition of rationality
parameter according to Theorem 2 in [13]. The two following intensity functions have been defined in [13]:

f λ1 (x) =
{

λ x ≥ 0,
0 x < 0, (1)

and

f λ2 (x) = λeλ
2x. (2)

Under the first family of intensity functions, the option holder certainly does not exercise when it is not
profitable. Thus, the non-optimal behavior of option holders is to exercise too late. However, the second
family of functions [13] shows that the option holder is affected by profitability.

Recently, more functions are proposed to use as intensity functions, which we mention the two follow-
ings:

f λ3 (x) =
2λ

1 + e−λ2x
, (3)
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f λ4 (x) = λ(1 +
2
π

arctanλ2x). (4)

Now let define

Gt = σ({1{τ≤s}, 0 ≤ s ≤ t}),

and apply the following Lemma from [9] to price American put options under the irrational strategy τ.

Lemma 2.1. Under the assumption

EQ
[ ∫ T

t

(
α(u,Su)e−r(u−t)−

∫ τ
t α(u,Su)du

(
E − Su

)+)
du
]
< ∞,

we have

EQ
[
1{τ≥T}|FT ∨ Gt

]
= 1{τ>t}e−

∫ T
t α(u,Su)du,

thus,

EQ

[
e−r(τ−t)(E − Sτ)+1{τ≥T}|FT ∨ Gt

]
= e−r(T−t)EQ

[
e−
∫ T

t α(u,Su)du
(
E − ST

)+
|Ft

]
, (5)

and

EQ
[
e−r(τ−t)

(
E − Sτ

)+
1{τ<T}|Ft ∨ Gt

]
=

∫ T

t
e−r(u−t)

(
EQ
[
α(u,Su)e−

∫ τ
t α(u,Su)du

(
E − Su

)+
|Ft

])
du. (6)

Proof. See Proposition 3.1 in ref. [9].

Under an irrational exercise strategy τ, the American put option price at each time t is given by the
expression

P(t,St; τ) = EQ
[
e−r(τ−t)

(
E − Sτ

)+
|Ft

]
= EQ

[
e−r(τ−t)

(
E − Sτ

)+
1{τ≥T}|FT ∨ Gt

]
+ EQ

[
e−r(τ−t)

(
E − Sτ

)+
1{τ<T}|Ft ∨ Gt

]
. (7)

Using the Lemma (2.1), expression (7) can be rewritten as

P(t,St; τ) = e−r(T−t)EQ
[
e−
∫ T

t α(u,Su)du
(
E − ST

)+
|Ft

]
+

∫ T

t
e−r(u−t)EQ

[
α(u,Su)e−

∫ τ
t α(u,Su)du

(
E − Su

)+
|Ft

]
du. (8)

In the rest of this paper, to emphasize the significance of the intensity parameter on option price, we
denote the value of the American put option under irrational strategy τ and the corresponding intensity
parameter λ by P(t,St;λ).

Now consistent with Feynman-Kac Theorem [9] and applying Ito’s Lemma, we obtain the subsequent
nonlinear Black-Scholes equation for option price P(t,St;λ) corresponding to price (8) under exercise strategy
τ, intensity parameter λ, time to maturity t ∈ (0,T] and St in the unbounded domain (0,∞) [2]:

∂P
∂t

(t,St;λ) =
1
2
σ2S2 ∂

2P
∂S2 (t,St;λ) + rS

∂P
∂S

(t,St;λ) − rP(t,St;λ)

+
(
(E − St)+ − P(t,St;λ)

)
f λ
(
(E − St)+ − P(t,St;λ)

)
, (9)
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with the initial condition

P(0,S;λ) = (E − S)+, (10)

and boundary conditions:

lim
S→∞

P(t,S;λ) = 0, (11)

∂P
∂t

(t, 0;λ) = −rP(t, 0;λ) +
(
E − P(t, 0;λ)

)
f λ
(
(E − P(t, 0;λ)

)
. (12)

Thus, based on the intensity parameter λ and the corresponding intensity function f λ, the value of the
American put option can be governed by equation (9) with initial and boundary conditions (10)-(12).

To value American put options under the irrational strategy, we need to solve the pricing problem (9)-
(12) under the intensity functions (1)-(4) with a numerical approach. To take some numerical advantages
of working on PDEs with constant coefficients, we first use the following variable transform [5]:

S = Eex, P(T − t,S;λ) = Ee−αx−βtu(t, x;λ),

where α and β are constants to be determined.
By simple calculation, the pricing problem (9)-(12) of American put options under irrational exercise strategy
corresponding to intensity parameter λ > 0 is transformed to the following PDE for (t, x) ∈ ([0,T]×R) with
constant coefficients:

∂u
∂t

(t, x;λ) − γ
∂2u
∂x2 (t, x;λ) + ν

∂u
∂x

(t, x;λ) + εu(t, x;λ) + Γ(t, x) f λ
(
EΓ(t, x)

)
= 0, (13)

with the initial condition

u(0, x;λ) = 1(0, x), (14)

and boundary conditions:

lim
x→+∞

u(t, x;λ) = lim
x→+∞

1(t, x), (15)

lim
x→−∞

∂u
∂t

(t, x;λ) + εu(t, x;λ) +
(
1 − u(t, x;λ)

)
f λ
(
E
(
1 − u(t, x;λ)

))
= 0, (16)

where the coefficients γ, ν and ε are defined as

γ =
σ2

2
, ν = γ(1 + 2α) − r, ε = r + αr − γα(1 + α) − β,

and the functions 1(t, x) and Γ(t, x) are defined as follows:

1(t, x) = eαx+βt(1 − ex)+, Γ(t, x) = 1(t, x) − u(t, x;λ).

Now to find the American put option prices with a numerical approach, we solve the approximation
pricing problem on a bounded domain. For this, we truncate the problem over a bounded interval
Ω = (X1,X2) for large negative number X1 and positive number X2. Thus, problem (13)-(16) for λ > 0 turns
to the following truncated problem on bounded domain (t, x) ∈ ([0,T] ×Ω):

∂u
∂t

(t, x;λ) − γ
∂2u
∂x2 (t, x;λ) + ν

∂u
∂x

(t, x;λ) + εu(t, x;λ) + Γ(t, x) f λ
(
EΓ(t, x)

)
= 0, (17)

u(0, x;λ) = 1(0, x), (18)
u(t,X2;λ) = 1(t,X2), (19)
∂u
∂t

(t,X1;λ) + εu(t,X1;λ) +
(
1 − u(t,X1;λ)

)
f λ
(
E(1 − u(t,X1;λ))

)
= 0. (20)
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3. Finite Element Method

In this section, we propose a finite element method to solve the approximation problem (17)-(20). Let
define the space H1

0(Ω) and the admissible space V as follows [6]:

H1
0(Ω) = {v : v ∈ L2(Ω), vx ∈ L2(Ω), v|∂Ω= 0},

and

V = {v : v ∈ L2(0,T; H1
0(Ω)), vt ∈ L2(0,T; H−1(Ω))},

where L2(Ω) is the space of square-integrable functions on Ω and H−1(Ω) is the dual space of H1
0(Ω).

We denote the inner product of L2(Ω) by ⟨., .⟩ and define the following bilinear forms for u ∈ V and v ∈ H1
0(Ω):

a⟨u, v⟩ = γ⟨
∂u
∂x
,
∂v
∂x
⟩ + ν⟨

∂u
∂x
, v⟩ + ε⟨u, v⟩, b⟨u, v⟩ = ⟨Ru, v⟩,

where

Ru = Γ(t, x) f λ
(
EΓ(t, x)

)
.

Then the variational form for problem (17)-(20) is as follows:
Find u ∈ V such that for v ∈ H1

0(Ω) and 0 ≤ t ≤ T

⟨
∂u
∂t
, v⟩ + a⟨u, v⟩ + b⟨u, v⟩ = 0, (21)

u(t,X2;λ) = 1(t,X2), (22)
∂u
∂t

(t,X1;λ) + εu(t,X1;λ) +
(
1 − u(t,X1;λ)

)
f λ
(
E(1 − u(t,X1;λ))

)
= 0. (23)

Now to obtain a discrete solution for the variational problem (21)-(23), we need to define a finite subspace
Vh ⊂ V of piecewise linear functions with basic functions

φ j(xi) = δi, j,

for any j = 1, 2, . . . ,N and i = 0, 1, 2, . . . ,N where δi, j is the Kronecker delta.
Under the spatial partition ∆x : X1 = x0 < x1 < · · · < xN = X2 and the time partition ∆t : 0 = t0 < t1 <

· · · < tM = T, we show the discrete solutions of the variational problem (21)-(23) by u j
i = u(t j, xi) for any

i = 0, 1, . . . ,N and j = 0, 1, . . . ,M.
Therefore, for um

h ∈ Vh with h = max1≤ j≤N(x j − x j−1), there are constant coefficients um
j such that

um
h (x) =

N∑
j=1

um
j φ j(x).

Now the finite element approximation to the variational problem (21)-(23) is as follows [5]:
For m = 1, 2, . . . ,M find um

h ∈ Vh such that

⟨δtum
h , v⟩ +L⟨u

m−θ
h , v⟩ = 0, (24)

um
N = 1(tm, xN), (25)

δtum
0 + εu

m
0 +
(
1 − um

0

)
f λ
(
E(1 − um

0 )
)
= 0, (26)

where linear operator L is defined as

L⟨um−θ
h , v⟩ = a⟨um−θ

h , v⟩ + b⟨um−θ
h , v⟩,
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and

δtum
h =

um
h − um−1

h

∆tm
, ∆tm = tm − tm−1,

um−θ
h = (1 − θ)um

h + θum−1
h ,

for θ ∈ [0, 1].
By definitionα j = E

(
(1−ex)+−e−αx−βtum−θ

j φ j(x)
)

and simple calculation, we also obtain following integrals
for i, j = 1, 2, . . . ,N

b⟨um−θ
h , φi(x)⟩ =

∫ X2

X1

1(t, x) f λ(α j)φi(x)dx −
∫ X2

X1

um−θ
h f λ(α j)φi(x)dx.

Then, the scheme (24)-(26) can be presented in the following vector form:

AUm + (γB + νC + µA +D)Um−θ = L, (27)
um

N = 1(tm, xN), (28)

um
0 = um−1

0 − ε(tm − tm−1)um
0 −
(
1 − um

0

)
f λ
(
E(1 − um

0 )
)
, (29)

where

A = (φ j, φi)N×N =


2h
3 , i = j,

h
6 , |i − j| = 1,
0, otherwise,

B = (φ′j, φ
′

i )N×N =


2
h , i = j,
−1
h , |i − j| = 1,

0, otherwise,

C = (φ′j, φi)N×N =


−

1
2 , i = j = 1,

1
2 , i = j = N,
1
2 , |i − j| = 1,
0, otherwise,

D =



∫
Ω
φ1(x)φ1(x) f λ(α1)dx . . .

∫
Ω
φ1(x)φN(x) f λ(αN)dx∫

Ω
φ2(x)φ1(x) f λ(α1)dx . . .

∫
Ω
φ2(x)φN(x) f λ(αN)dx

...
...

...∫
Ω
φN(x)φ1(x) f λ(α1)dx . . .

∫
Ω
φN(x)φN(x) f λ(αN)dx

 ,

L =



∫
Ω
1(t, x)φ1(x) f λ(α1)dx∫

Ω
1(t, x)φ2(x) f λ(α2)dx

...∫
Ω
1(t, x)φN(x) f λ(αN)dx

 ,
and

Um = (um
1 ,u

m
2 , . . . ,u

m
N)T.

It can be seen that the above matrices are three-diagonal and definite positive. So we use the Thomas
algorithm to find the solutions to the equation.
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4. Stability Analysis

In this section, we study the stability of the proposed finite element method which is used in the previous
section. For this purpose, we apply the approach in [1, 5].

Let substitute v = um−θ
h in (24), therefore

⟨δtum
h ,u

m−θ
h ⟩ +L⟨um−θ

h ,um−θ
h ⟩ = 0. (30)

We use the following equation for the first term in (30) (see Appendix A.)

⟨δtum
h ,u

m−θ
h ⟩ =

1
2∆tm

[
∥um

h ∥
2
−∥um−1

h ∥
2+(1 − 2θ)∥um

h − um−1
h ∥

2
]
. (31)

From the inner product definition, we also have

⟨um−θ
hx ,u

m−θ
hx ⟩ = ∥u

m−θ
hx ∥

2, ⟨um−θ
h ,um−θ

h ⟩ = ∥um−θ
h ∥

2. (32)

Applying integration by parts, we obtain

⟨um−θ
hx ,u

m−θ
h ⟩ =

1
2

[
|um−θ

h (X2)|2 − |um−θ
h (X1)|2

]
. (33)

Thus, we have the following theorem about the stability of the proposed finite element method.

Theorem 4.1. Assume that the constant parameters α and β are determined such that ε ≥ 0 and ν ≥ 0. For
um

h ∈ H1
0 ∩H2, the system (24)-(26) is stable when θ = 1

2 and θ = 0, and we have

∥uM
h ∥ ≤ ∥u

0
h∥ + C,

where C is a positive constant independent of time.

Proof. According to the results (31)-(33) the equation (30) turns to

1
2∆tm

[
∥um

h ∥
2
−∥um−1

h ∥
2 + (1 − 2θ)∥um

h − um−1
h ∥

2
]
+ γ∥um−θ

hx ∥
2 + ε∥um−θ

h ∥
2

+
ν
2

[
|um−θ

h (X2)|2 − |um−θ
h (X1)|2

]
+ ⟨Rum−θ

h ,um−θ
h ⟩ = 0 (34)

It is obvious that γ ≥ 0 and for θ = 0 or 1
2 , we also have 1 − 2θ ≥ 0. On the other hand, according to the

discussion in [2], we know that the term Rum−θ
h in (34) is non-negative. Therefore, the equation (34) turns to

∥um
h ∥

2
−∥um−1

h ∥
2+2ε∆tm∥um−θ

h ∥
2 + ν∆tm

[
|um−θ

h (X2)|2 − |um−θ
h (X1)|2

]
≤ 0 (35)

Note that um−θ
h (X2) = 1m−θ(X2) = eαX2+β(m−θ)(1 − eX2 )+ is bounded and positive.

Now assuming that the constants α and β are chosen so that ν ≥ 0 and ε ≥ 0, we get

∥um
h ∥

2
−∥um−1

h ∥
2
≤ ν∆tm|um−θ

h (X1)|2. (36)

Then by summing (36) for time steps m = 1, . . . ,M we have the desired result,

∥uM
h ∥

2
≤ ∥u0

h∥
2 + C,

where C is a positive constant independent of time steps.
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5. Numerical Implementations

In this section, we illustrate some numerical examples to show the performance of the finite element
method to solve the pricing problem of American put options under irrational behavior. Our numerical
implementations verify the accuracy and stability of our computational method compared to some recent
results.

Example 1: In this example, we consider an American put option with the possibility of the irrational
exercise of its holder with parameters as follows:

r = 0.05, σ = 0.2, T = 3, S = E = 100.

By applying the proposed finite element scheme, the American put option price with irrational strategy,
for the different values of the rational parameter λ under the intensity functions (1)-(4), and considering
M = 10000 (the number of time steps) and N = 600 (the number of spatial steps) on the finite interval
(X1,X2) = (−3, 3) are illustrated in Table 1. Our numerical results verify that the American put option prices
under irrational strategy tend to the classical American put option prices as λ is increasing. In addition, it
can be seen that under the intensity function (2), for smaller values of λ, the option price converges to the
corresponding American put option price.

To investigate whether the proposed approach still meets the desired expectations under the different
values of volatility, we implemented Example 1 for volatilities σ = 0.25 and σ = 0.3. This implies that the
proposed method is robust and can handle different variations in volatility without significantly affecting
the results. The evidence supporting this claim can be found in both Table 2 and Table 3, which show that
the results obtained using the proposed approach remain consistent even when different values of volatility
are used.

To show the accuracy of our algorithm, we also compared our results with other numerical techniques,
like the Penalty method [4] and the Tree method [11].

Figure 1: Numerical option prices with the intensity function belonging to family (1) under different values of the rational parameter
λ by applying the finite element method for M = 10000 and N = 600.

Additionally, in Fig. 1 for the family of the intensity function (1) and different values of the rational
parameter λ the American put option price is shown. Note that the case λ = 0 corresponds to the European
option, while λ = 1 corresponds to a near-zero rationality parameter which can be understood as a case
with a large irrational exercise and the value of the American put option is below the exercise value for
small values of the asset. This situation may be caused by additional circumstances that prevent the owner
from exercising, although the option price is below the exercise prices. For λ = 10000 the irrational case
tends to be the rational one, corresponding to the American put option pricing problem.

To compare the speed of convergence for each of the intensity functions (1)-(4), Figures 2-3 are displaying
the convergence rate of option prices under irrational behavior to American put option prices regard to the
rational parameter λ for intensity functions f1, f2, f3 and f4, respectively. Finally, to compare the accuracy
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Table 1: The speed of convergence American put option prices under irrational strategy to the values of the classical American put
options with increasing λ for intensity functions (1)-(4) and σ = 0.2.

λ f1 f2 f3 f4
0 6.9948 6.9948 6.9948 6.9948
1 7.9543 8.0815 7.7269 7.2048
10 8.6022 8.6978 8.6512 8.5291

100 8.6987 8.7105 8.7043 8.6914
1000 8.7090 8.7105 8.7096 8.7083
10000 8.7102 8.7105 8.7108 8.7107
Tree 8.7106 8.7106 8.7106 8.7106

Penalty 8.7100 8.7100 8.7100 8.7100

Table 2: The speed of convergence American put option prices under irrational strategy to the values of the classical American put
options with increasing λ for intensity functions (1)-(4) and σ = 0.25.

λ f1 f2 f3 f4
0 9.9124 9.9124 9.9124 9.9124
1 10.9065 11.1152 10.7848 10.0850

10 11.5927 11.6949 11.6458 11.5193
100 11.6952 11.6949 11.7012 11.6880
1000 11.7061 11.6949 11.7067 11.7054

10000 11.7073 11.6949 11.7084 11.7083

Table 3: The speed of convergence American put option prices under irrational strategy to the values of the classical American put
options with increasing λ for intensity functions (1)-(4) and σ = 0.3.

λ f1 f2 f3 f4
0 12.8760 12.8760 12.8760 12.8760
1 13.8994 14.1674 13.8489 13.0358

10 14.6197 14.7278 14.6762 14.5472
100 14.7276 14.7278 14.7339 14.7206
1000 14.7390 14.7278 14.7397 14.7384

10000 14.7404 14.7278 14.7423 14.7421

Figure 2: The speed of convergence American put option price under irrational behavior to corresponding American put option price
for intensity functions f1 and f2 by applying the finite element method for M = 10000 and N = 600.
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Figure 3: The speed of convergence American put option price under irrational behavior to corresponding American put option price
for intensity functions f3 and f4 by applying the finite element method for M = 10000 and N = 600.

Figure 4: Comparing American put option prices for different intensity functions f1, f2, f3 and f4.

of each intensity function, we display the graphs of intensity functions f1, f2, f3, and f4 in Figure 4. Example
2: As we mentioned in example 1, our numerical results show that under the intensity function (2), for
smaller values of λ, the option prices are close to the corresponding American put option price. To see that
this feature is satisfied for the American options problem independent of the pricing problem parameters,
in this example we consider an American put option with expiry T = 1 year, strike price E = 9, interest rate
r = 0.02, and volatility σ = 0.2. Table 4 illustrates our results obtaining option prices for intensity functions
(1)-(4) and different values of intensity parameter λ. It can be seen that American put option prices can be
obtained for large enough values of λ. We also see that under the intensity function (2), for smaller values
of λ = 80, the option price converges to the corresponding American put option price. Figures 5-6 show
the results for the speed of convergence under the intensity functions (1)-(4).

Since exact solutions for the pricing problem of American options are unknown, we employed the
double mesh technique to calculate the errors between two numerical solutions uh and u h

2
corresponding to

the mesh steps h and h
2 . Refining the grid points, enable us to assess the convergence rate of the proposed

method under L2-norm in the absence of an exact solution [5, 10].

Figure 7 depicts the American option price error curve under the L2-norm for intensity functions
f1, f2, f3 and f4, with a spatial step length of h. The results indicate that the method achieves second-order
convergence under L2-norm, consistent with our expectations.
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Table 4: American put Option prices for different values of intensity parameter λ and intensity functions (1)-(4) by applying the finite
element method for M = 10000 and N = 600.

λ f1 f2 f3 f4
1 0.5050 0.5094 0.4950 0.4997
10 0.6350 0.6347 0.6325 0.5889
80 0.6380 0.6398 0.6391 0.6264

100 0.6390 0.6400 0.6397 0.6345
1000 0.6395 0.6400 0.6400 0.6394
10000 0.6400 0.6400 0.6401 0.6400

Figure 5: The speed of convergence American put option price under irrational behavior to corresponding American put option price
for intensity functions f1 and f2 by applying the finite element method for M = 10000 and N = 600.

Figure 6: The speed of convergence American put option price under irrational behavior to corresponding American put option price
for intensity functions f3 and f4 by applying the finite element method for M = 10000 and N = 600.

6. Conclusion

In this paper, we studied the irrational behavior of the American put option holder to market move-
ments that lead to an exercising option strategy at a time that might not be an optimal time and is known as
an irrational exercising time strategy. Under this situation, the pricing problem of American-style options
results in overvalued option prices such that different alternative models need to be considered to incorpo-
rate possible irrational exercises. In this study, irrational exercise strategy was considered through families
of intensity functions depending on rational parameters. Under these models, we obtained the resulting
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Figure 7: The convergence rates for the American put option prices under the L2-norm.

nonlinear PDE with appropriate boundary conditions and intensity functions for American options. By
using a variable transformation technique, the problem was transformed into a nonlinear parabolic equa-
tion with constant coefficients in an infinite domain. Then a finite element method was applied to solve
the resulting variational problem for option price. Under some appropriate assumptions, we analyzed the
stability of the proposed numerical method. Our numerical experiments also demonstrated the accuracy
and efficiency of the proposed method to obtain fast solutions for the pricing problem of American put
options under irrational behavior.

Appendix A

In this appendix, we try to prove the equality (31) for general values of θ. For this, from the definitions
(27) and (28) and inner product property we have
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Now by simple calculations on (38), we obtain the desired equality (31) as follows:
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