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Inverse conformable Sturm–Liouville problems by three spectra with
discontinuities and boundary conditions
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Abstract. In this manuscript, we consider the conformable fractional Sturm–Liouville problem (CFSLP)
with finite numbers of transmission conditions at an interior point in [0, π]. Also, we study the uniqueness
theorem for inverse second order of fractional differential operators by applying three spectra with a finite
number of discontinuities at interior points. For this aim, we investigate the CFSLP in three intervals [0, π],
[0, p], and [p, π] such that p ∈ (0, π) is an interior point.

1. Introduction

Sturm–Liouville problem is one of the most important problems in mathematics, physics and engi-
neering. This problem arises in the modeling of many systems in vibration theory, quantum mechanics,
hydrodynamics, and etc. [8, 16, 23].

There are two types of CFSLP: direct and inverse problems. In direct problems, the eigenvalues,
eigenfunctions, and other properties are estimated from the known coefficients [14, 15, 25]. The inverse
spectral problem can be considered as three aspects: existence, uniqueness, and reconstruction of coefficients
with special property of eigenvalues and eigenfunctions, (see [5–7, 9, 13, 15, 17, 20, 21, 24] and the references
therein).

The inverse three spectra problems to reconstruction of the potential function in the Sturm–Liouville
problem firstly discussed by Pivovarchik in [17, 18] and Gesztesy and Simon in [7]. They proved if the
three spectra are pairwise disjoint, then the potential q can be uniquely determined by the three spectra of
the problems defined on three intervals [0, 1], [0, d] and [d, 1] for some d ∈ (0, 1). Also, in [7] they gave a
violation example to demonstrate that the pairwise disjoint conditions are necessary. Recently, in [2–6, 19],
the authors discussed the inverse three spectra problems in the several cases such as reconstruction of the
potential function with different boundary and transmissions conditions and some uniqueness results.

The main purpose of this manuscript is to study the inverse CFSLP by using three spectra. One may
consider the results of this paper as an extension of [5–7, 12, 17–19, 25] to the CFSLP. Furthermore, we
introduce that a Weyl–Titchmarsh m-function uniquely determined the CFSLP. We also show that the
Weyl–Titchmarsh function is a meromorphic Herglotz-Nevanlinna function.
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2. The conformable fractional Sturm-Liouville problem

In this section, before introducing the main results, we give some important contents of the conformable
fractional (CF) derivative. In what follows, we always take Dαx = Dα. In [11], Khalil and et al. defined the
CF derivative as follows:

Definition 2.1. For the function h : [0,∞)→ R, the CF derivative of order α ∈ (0, 1] defined by:

Dαh(x) = lim
ϵ→0

h(x + ϵx1−α) − h(x)
ϵ

,

for all x > 0, and

Dαh(0) = lim
x→0+

Dαh(x).

If h is a differentiable function, then

Dαh(x) = x1−αh′(x).

If Dαh(x0) exists and finite, then the function h is α-differentiable at x0.

Definition 2.2. For the function h : [0,∞)→ R, the CF integral of order α ∈ (0, 1] defined by:

Jαh(x) =
∫ x

0
h(t)dαt =

∫ x

0
tα−1h(t)dt, x > 0.

For CFSLP, we use some fundamental CF derivative relations as detailed in [1, 11, 21].
Let us consider the following three CFSLPs

ℓ0y := −DαDαy + qy = λy (1)

with

B1(y) := Dαy(0) + h y(0) = 0, (2)
B2(y) := Dαy(π) +H y(π) = 0, (3)

subject to the following jump conditions

Uk(y) := y(pk + 0) − bky(pk − 0) = 0,
Vk(y) := Dαy(pk + 0) − ckDαy(pk − 0) − dky(pk − 0) = 0, (4)

ℓ1y := −DαDαy + q1y = λy (5)

with

B1(y) = 0, B3(y) := Dαy(p) +H1 y(p) = 0, (6)

subject to the following jump conditions

Uk(y) = 0, Vk(y) = 0, for k = 1, 2, . . . , p − 1, (7)

and

ℓ2y := −DαDαy + q2y = λy (8)
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with

B4(y) := Dαy(p) +H2 y(p) = 0, B2(y) = 0, (9)

subject to the following jump conditions

Uk(y) = 0, Vk(y) = 0, for k = p + 1, 2, . . . ,m − 1, (10)

where Dα is the CF derivative of order 0 < α ≤ 1, q(x) ∈ L1
α[0, π], q1 = q|[0,p), and q2 = q|(p,π] are real valued

functions. Also, h, H, H1, H2, bk, ck, dk, and pk, k = 1, 2, . . . ,m−1 (with m ≥ 2) are real numbers. The parameter
λ is the spectral parameter. In this paper, we suppose that bkck > 0, p0 = 0 < p1 < p2 < ... < pm−1 < pm = π.
In this section, we assume that p = ps for 1 ≤ s ≤ m−1. As well as, we use the notations L0 = L(q(x); h; H; pk),
L1 = L(q1(x); h; H1; pk), L2 = L(q2(x); H2; H; pk) for the problems (1)–(10). Using the jump conditions (4) in the
transmission point p = ps, (1 ≤ s ≤ m − 1), we must have ds = 0 and

H2 =
cs

bs
H1, for H1 ∈ (0,∞). (11)

To obtain a self-adjoint operator, we define the weighted inner product as follows

⟨ f , 1⟩T0 :=
∫ π

0
f (t)1(t)r0(t)dαt,

where f , 1 ∈ L2
α((0, π); r0) and

r0(t) =


1, 0 ≤ t < p1,

1
b1c1
, p1 < t < p2,

...
1

b1c1···bm−1cm−1
, pm−1 < t ≤ π.

Also, r1 = r0(t)|[0,p), and r2 = r0|(p,π]. Note that Ti := L2
α((0, π); ri), (i = 0, 1, 2), are the Hilbert spaces with the

norms ∥ f ∥Ti = ⟨ f , f ⟩1/2Ti
. Define the operators

Ai : Ti → Ti, i = 0, 1, 2 (12)

with domains

dom (A0) =
{

f ∈ T0

∣∣∣∣∣∣ f ,Dα f ∈ AC
(
∪

m−1
0 (pk, pk+1)

)
, ℓ0 f ∈ L2

α(0, π) :
Uk( f ) = Vk( f ) = 0, k = 1, 2, . . . ,m − 1

}
, (13)

dom (A1) =
{

f ∈ T1

∣∣∣∣∣∣ f ,Dα f ∈ AC
(
∪

s−1
0 (pk, pk+1)

)
, ℓ1 f ∈ L2

α(0, p) :
Uk( f ) = Vk( f ) = 0, k = 1, 2, . . . , s − 1

}
, (14)

and

dom (A2) =
{

f ∈ T2

∣∣∣∣∣∣ f ,Dα f ∈ AC
(
∪

m−1
s (pk, pk+1)

)
, ℓ2 f ∈ L2

α(p, π) :
Uk( f ) = Vk( f ) = 0, k = s + 1, s + 2, . . . ,m − 1

}
(15)

respectively by

Ai f = ℓi f with f ∈ dom (Ai) , i = 0, 1, 2.

In this paper, the notation AC
(
∪

m−1
0 (pk, pk+1)

)
denotes the set of all functions whose restriction to (pk, pk+1)

is absolutely continuous for all k = 0, 1, . . . ,m − 1. The function

Wα( f , 1) = r0(t)
(

f (t)Dα1(t) −Dα f (t)1(t)
)

(16)

is called the modified fractional Wronskian of f and 1, where these functions are two solutions of ℓ0 f = λ f ,
ℓ01 = λ1. The similar modified fractional Wronskian can be defined to L1 and L2. It is easy to see that the
function Wα does not depend on t.
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Lemma 2.3. For 0 < α ≤ 1, the operators Ai, i = 0, 1, 2, are self-adjoint on L2
α((0, π); ri).

Proof. We prove this lemma for i = 0. After using α-integration by parts twice, we arrive to the following
expression:〈

ℓ0 f , 1
〉
=Wα

(
f , 1
)∣∣∣

x=π −Wα

(
f , 1
)∣∣∣

x=0
+
〈

f , ℓ01
〉
. (17)

So, from Eqs (2)–(4) we have:
Wα

(
f , 1
)∣∣∣

x=π −Wα

(
f , 1
)∣∣∣

x=0
= 0

Then A0 is self-adjoint operator on L2
α((0, π); r0). Similarly, the operators A1 and A2 are also self-adjoint.

By applying Lemma 2.3, the eigenvalues of the problems Ai and hence of Li are simple and real.
Since the associated Cauchy problem (1) with initial conditions 1(ν ± 0) = 10 and 1′(ν ± 0) = 11 (with
ν ∈ (0, π))) has a unique solution.

Remark 2.4. We will denote the restriction of any function 1with 1 ∈ dom (Ai), by 1k, 1 ≤ k ≤ m, to the subinterval
(pk−1, pk). Also, we will set 1k(pk−1) = 1(pk−1 + 0) and 1i(pk) = 1(pk − 0).

Remark 2.5. Without loss of generality of the problem (1)–(4), by [20, Lemma 2.3], we can take bkck = 1, for
k = 1, 2, . . . ,m.

3. Uniqueness result

In this section, we study the inverse CFSLP of the reconstruction of a boundary value problem L0 from
its spectral characteristics. For this purpose, we consider three boundary value problems Li, (i = 0, 1, 2),
from three spectra {λn, µn, νn}n≥0. To prove the uniqueness theorem, we use an adaptation of this technique,
firstly it was discussed by F. Gesztesy and B. Simon in [7].

Consider the CFSLPs (1)–(4) on the interval [0, π], CFSLPs (5)–(7) on subinterval [0, p) and CFSLPs
(8)–(10) (p, π] which are imposed the boundary condition at p. Suppose that v(x, λ) and w(x, λ) are solutions
of (1) with the initial conditions

v(0, λ) = 1, Dαv(0, λ) = −h, (18)
w(π, λ) = 1, Dαw(π, λ) = −H,

and the transmission conditions (4), respectively. The functions v(x, λ), Dαv(x, λ), w(x, λ), and Dαw(x, λ)
for any fixed x ∈ [0, π] are entire functions in λ of order 1

2 [22]. The asymptotic form of solutions and
characteristic function ∆(λ) are discussed as follows:

Theorem 3.1 ([21]). Let λ = ρ2 and ρ := σ+ iτ. The asymptotic forms of solutions v(x, λ) and Dαv(x, λ) for CFSLP
(1)–(4) as |λ| → ∞, are the following forms:

v(x, λ) =



cos
(
ρ
αxα
)
+O
(

1
ρ exp

(
|τ|
α xα
))
, 0 ≤ x < p1,

a1 cos
(
ρ
αxα
)
+ a′1 cos

(
ρ
α (xα − 2pα1 )

)
+O
(

1
ρ exp

(
|τ|
α xα
))
, p1 < x < p2,

a1a2 cosρ
(
ρ
αxα
)
+ a′1a2 cos

(
ρ
α (xα − 2pα1 )

)
+ a1a′2 cos

(
ρ
α (xα − 2pα2 )

)
+a′1a′2 cos

(
ρ
α (xα + 2pα1 − 2pα2 )

)
+O
(

1
ρ exp

(
|τ|
α xα
))
, p2 < x < p3,

...

a1a2 . . . am−1 cos
(
ρ
αxα
)
+

+a′1a2 . . . am−1 cos
(
ρ
α (xα − 2pα1 )

)
+ · · ·

+a1a2 . . . a′m−1 cos
(
ρ
α (xα − 2pαm−1)

)
+

+a′1a′2a3...am−1 cos
(
ρ
α (xα + 2pα1 − 2pα2 )

)
+ · · ·

+a1 . . . a′i . . . a
′

j . . . am−1 cos
(
ρ
α (xα + 2pαi − 2pαj )

)
+a1 . . . a′i . . . a

′

j . . . a
′

k . . . am−1 cos
(
ρ
α (xα − 2pαi + 2pαj − 2pαk )

)
+ · · ·

+a′1a′2 . . . a
′

m−1 cos
(
ρ
α (xα + 2(−1)m−1pα1 + 2(−1)m−2pα2 − 2pαm)

)
+O
(

1
ρ exp

(
|τ|
α xα
))
, pm−1 < x ≤ π,

(19)
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Dαv(x, λ) =



ρ
[
− sin

(
ρ
αxα
)]
+O
(
exp
(
|τ|
α xα
))
, 0 ≤ x < p1,

ρ
[
−a1 sin

(
ρ
αxα
)
− a′1 sin

(
ρ
α (xα − 2pα1 )

)]
+O
(
exp
(
|τ|
α xα
))
, p1 < x < p2,

ρ
[
−a1a2 sinρ

(
ρ
αxα
)
− a′1a2 sin

(
ρ
α (xα − 2pα1 )

)
− α1α′2 sin

(
ρ
α (xα − 2pα2 )

)
−a′1a′2 sin

(
ρ
α (xα + 2pα1 − 2pα2 )

)]
+O
(
exp
(
|τ|
α xα
))
, p2 < x < p3,

...

ρ
[
−a1a2 . . . αm−1 sin

(
ρ
αxα
)

−a′1a2 . . . am−1 sin
(
ρ
α (xα − 2pα1 )

)
+ · · ·

−a1a2 . . . a′m−1 sin
(
ρ
α (xα − 2pαm−1)

)
+

−a′1a′2a3 . . . am−1 sin
(
ρ
α (xα + 2pα1 − 2pα2 )

)
+ · · ·

−a1 . . . a′i . . . a
′

j . . . am−1 sin
(
ρ
α (xα + 2pαi − 2pαj )

)
−a1 . . . a′i . . . a

′

j . . . a
′

k . . . am−1 sin
(
ρ
α (xα − 2pαi + 2pαj − 2pαk )

)
+ · · ·

−a′1a′2 . . . a
′

m−1 sin
(
ρ
α (xα + 2(−1)m−1pα1 + 2(−1)m−2pα2 − 2pαm)

)]
+O
(
exp
(
|τ|
α xα
))
, pm−1 < x ≤ π,

(20)

where

ak =
1
2

(bk + ck), a′k =
1
2

(bk − ck), (21)

for k = 1, 2, . . . ,m − 1.

From Theorem 3.1 and Definition 2.1 we get that

|v(x, λ)| = O
(
exp
(
|τ|
α

xα
))
,

|Dαv(x, λ)| = |x1−αv′(x, λ)| = O
(
|ρ| exp

(
|τ|
α

xα
))
, 0 ≤ x ≤ π. (22)

By changing x to π−x and using the jump conditions (4) and Definition 2.1, we obtain the asymptotic forms
of w(x, λ) and Dαw(x, λ). Specially,

|w(x, λ)| = O
(
exp
(
|τ|
α

(π − x)α
))
,

|Dαw(x, λ)| = |x1−αw′(x, λ)| = O
(
|ρ| exp

(
|τ|
α

(π − x)α
))
, 0 ≤ x ≤ π. (23)

Moreover, from Eqs. (2) and Remark 2.4 we set

∆(λ) : =Wα(v(λ),w(λ))
= B1(w(λ))
= −r(π)B2(v(λ))
= r(p)

(
csv(p, λ)Dαw(p, λ) − bsDαv(p, λ)w(p, λ)

)
. (24)

From Eq. (24) the characteristic function ∆(λ) is the composition of the solutions and from [10] it is known
that each solutions are entire function of order 1

2 . Consequently ∆(λ) is an entire function of order 1
2 whose
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roots λn coincide with the eigenvalues of L. The asymptotic form of characteristic function satisfies

∆(λ) =ρr(π)
[
a1a2 . . . am−1 sin

(ρ
α
πα
)
+ a′1a2 . . . am−1 sin

(ρ
α

(πα − 2pα1 )
)
+ · · ·

+ a1a2 . . . a′m−1 sin
(ρ
α

(πα − 2pαm−1)
)
+ a′1a′2a3 . . . am−1 sin

(ρ
α

(πα + 2pα1 − 2pα2 )
)

+ · · · + a1 . . . a′i . . . a
′

j . . . am−1 sin
(ρ
α

(πα + 2pαi − 2pαj )
)

+ a1 . . . a′i . . . a
′

j . . . a
′

k . . . am−1 sin
(ρ
α

(πα − 2pαi + 2pαj − 2pαk )
)
+ · · ·

+a′1a′2 . . . a
′

m−1 sin
(ρ
α

(πα + 2(−1)m−1dα1 + 2(−1)m−2pα2 − 2pαm)
)]

+O
(
exp
(
|τ|
α
πα
))
.

(25)

We need to the following lemma on asymptotic, poles and residues determining a meromorphic Herglotz–
Nevanlinna function, see Theorem 2.3 in [7].

Lemma 3.2. Suppose that the functions h1(z) and h2(z) are two meromorphic Herglotz–Nevanlinna functions with
the same sets of poles and residues. If

h1(it) − h2(it)→ 0, as t→∞,

then h1 = h2.

Define the Weyl–Titchmarsh m-functions

m−(λ) = −
Dαv(p, λ)

v(p, λ)
, m+(λ) =

Dαw(p, λ)
w(p, λ)

. (26)

As a consequence of theorem ([7, Thms. 2.1 and 2.2]) we obtain:

Lemma 3.3. The functions m−(λ) and m+(λ) are the Herglotz–Nevanlinna functions, (i.e. it maps the upper half
plane to the upper half plane).

Proof. Suppose that the functions v and v̄ are solutions of ℓ1v = λv and ℓ1v = ℓ1v̄ = λ̄v̄. It is easy to see that

(λ − λ̄)
∫ x

0
v(t)v̄(t)r1(t)dαt =Wα(v, v̄)(x) −Wα(v, v̄)(0).

From definition of m−(λ) in the point x = p and the condition (18), we get

Im(λ)∥v∥2T1
= Im(m−(λ))|v(t)|2.

Then the function m−(λ) is Herglotz–Nevanlinna function. Similarly the function m+(λ) is also Herglotz–
Nevanlinna function.

Lemma 3.4. For any ε > 0, if ε < argλ < 2π − ε, then m−(λ) and m+(λ) have the following asymptotic behavior

m+(λ) = i
√

λ + o(
√

λ), m−(λ) = i
√

λ + o(
√

λ), as λ→∞. (27)

Specially, when λ→ −∞, we have

m+(λ) = −
√
|λ| + o(

√
|λ|), m−(λ) = −

√
|λ| + o(

√
|λ|) as λ→ −∞. (28)
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Proof. Using the asymptotic forms of v(x, λ) and Dαv(x, λ) in (19) and (20) and similar asymptotic forms for
w(x, λ) and Dαw(x, λ). It is easy to check that the asymptotic forms of m−(λ) and m+(λ) are satisfying in
(27)–(28).

Suppose that the eigenvalues of the CFSLPs (5)–(7) and CFSLPs (6)–(10) are denoted by {µn}
∞

n=1 and {νn}
∞

n=1,
respectively. In this part, we express the main uniqueness theorem for the of problems (1)–(10). For the
uniqueness theorem we need using the similar operators L̃i, with operators Li but with different coefficients
q̃(x), h̃, H̃, H̃1, b̃k, c̃k, d̃k, p̃k. Given a function

f (λ) :=


−

∆(λ)
r(p)v(p, λ)w(p, λ) , H1 = ∞,

−
∆(λ)

r(p)[Dαv(p,λ)+H1v(p,λ)][Dαw(p,λ)+H2w(p,λ)] , H1 , ∞.
(29)

It is easy to check that f (λ) is a meromorphic function and the set of poles of f (λ) is all values of {µn}
∞

n=1 ∪

{νn}
∞

n=1. Using Eq. (24) and H2 =
cs
bs

H1, we have

f (λ) =


−cs

Dαw(p, λ)
w(p, λ) + bs

Dαv(p, λ)
v(p, λ) , H1 = ∞,

−cs
v(p, λ)

Dαv(p, λ)+H1 v(p, λ) + bs
w(p, λ)

Dαw(p, λ)+H2 w(p, λ) , H1 , ∞,

:=M+(λ) +M−(λ), (30)

where from (26)

M+(λ) =


−csm+(λ), H2 = ∞,

bs
H2+m+(λ) , H2 ∈ R,

M−(λ) =


−bsm−(λ), H1 = ∞,

cs
m−(λ)−H1

, H1 ∈ R.
(31)

Lemma 3.5. Fixed H1 ∈ R∪ {∞}. For any ε > 0, if ε < argλ < 2π− ε, thenM−(λ) andM+(λ) have the following
asymptotic behavior

M−(λ) =


i bs
√
λ + o(

√
λ), H1 = ∞,

i cs
√
λ
+ o
(

1
√
λ

)
, H1 ∈ R,

(32)

and

M+(λ) =


i cs
√
λ + o(

√
λ), H2 = ∞,

i bs
√
λ
+ o
(

1
√
λ

)
, H2 ∈ R.

(33)

Theorem 3.6. If λn = λ̃n, µn = µ̃n, and νn = ν̃n for n ≥ 0, and r(x) = r̃(x), h = h̃, and H = H̃, and if {µn}
+∞
n=1 and

{νn}
+∞
n=1 are pairwise disjoint, then L = L̃.

Proof. From Lemma 3.3, m−(λ) and m+(λ) are Herglotz–Nevanlinna functions. Therefore, it is easy to
check that the functionM+(λ) andM−(λ) are Herglotz–Nevanlinna functions. The functions m̃−(λ), m̃+(λ),
M̃−(λ), M̃+(λ), and f̃ (λ) defined by analogous manner by replacing L to L̃. Define the function

G(λ) :=
f (λ)

f̃ (λ)
.
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Since the functions f (λ) and f̃ (λ) have the same zeros and poles, thus G(λ) is an entire function. Applying
the Lemmas 3.4 and 3.5, we have

G(λ) =
f (λ)

f̃ (λ)
= 1 + o(1)

for any ε > 0 in the sector of ε ≤ argλ ≤ 2π − ε. Using the Liouville’s theorem, we obtain

G(λ) = 1

then
f (λ) = f̃ (λ).

From (29) and (31), the poles of M−(λ) and M+(λ) are exactly the same {µn}
∞

n=1 and {νn}
∞

n=1, respectively.
Then we get

Res
λ=µn

M−(λ) = Res
λ=µn

f (λ) and Res
λ=νn

M+(λ) = Res
λ=νn

f (λ), for n = 1, 2, 3, . . . .

Which means that

Res
λ=µn

M−(λ) = Res
λ=µn

M̃−(λ) and Res
λ=νn

M+(λ) = Res
λ=νn

M̃+(λ), for n = 1, 2, 3, . . . .

From Lemmas 3.2 and 3.5, we get

M−(λ) = M̃−(λ) andM+(λ) = M̃+(λ).

Applying the Borg’s theorem [13] for theM-Weyl-Titchmarsh functionsM+(λ) andM−(λ), we get

L = L̃.

Assuming bs = cs = 1 in Eq. (11) we have H1 = H2. From this assumptions, the main result (Theorem 3.6)
can be extended to the case p ∈ (ps − 1, ps+1).

Corollary 3.7. Let λn = λ̃n, µn = µ̃n, and νn = ν̃n for n ≥ 0, and r(x) = r̃(x), h = h̃, H = H̃, bs = 1, and cs = 1, and
if {µn}

+∞
n=1 and {νn}

+∞
n=1 are pairwise disjoint, then L = L̃.

Let bi = ci = 1, di = 0 for i = 1, 2, . . . ,m − 1 in Eqs. (4), then our CFSLP changes to the continuous case
equation.

Corollary 3.8. If λn = λ̃n, µn = µ̃n, and νn = ν̃n for n ≥ 0, h = h̃, H = H̃, and if {µn}
+∞
n=1 and {νn}

+∞
n=1 are pairwise

disjoint, then L = L̃.
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