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Subgradient extragradient method with double inertial steps for
quasi-monotone variational inequalities

Haiying Li*", Xingfang Wang?

?College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007.

Abstract. In this paper, we present a modified subgradient extragradient method with double inertial
extrapolation terms and a non-monotonic adaptive step size for solving quasi-monotone and Lipschitz
continuous variational inequalities in real Hilbert spaces. Under some suitable conditions, we obtain the
weak convergence theorem of our proposed algorithm. Moreover, strong convergence is obtained when
the cost operator is strongly pseudo-monotone and Lipschitz continuous. Finally, several numerical results
illustrate the effectiveness and competitiveness of our algorithm.

1. Introduction

Throughout this paper, let H be a real Hilbert space with inner product (-, -) and induced norm || - ||. It is
well known that the classical variational inequality problem (VIP, for short) is defined as: find v € C such
that

(Av,y—v) >0, Yy €C, 1)

where C is a nonempty, closed, and convex subset of H and A : H — H is a continuous mapping. The
solution set of VIP is denoted by S.

The variational inequality problem has been widely used to problems such as nonlinear programming,
network equilibrium problems and complementarity problems (see, for example, [9, 16, 24] and the refer-
ences therein). So far, a number of iterative algorithms have been proposed for solving the VIP (see, for
example, [1, 6, 7, 22, 23, 32, 38, 40] ), we mainly focus on several projection methods that inspire us to
investigate new algorithms.

One of the most popular early algorithms for solving the problem (1) is the extragradient method
(EGM), which was presented by Korpelevich in [18]. This method was first introduced to solve saddle
point problems in finite dimensional spaces. It is of the form: Choose x; € C,L > 0,4, € (0, %),

{]/n = Pc(xy, — A Axy)

2
Xn41 = Pe(x, — /\nAyn)- @
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It was shown that {x,} converges weakly to a solution of VIP when the operator A is monotone and
L-Lipschitz continuous. In recent years, the extragradient method has been extend to infinite spaces in
various ways (see, for example, [2, 11, 27, 28, 34]). However, the extragradient method needs to calculate
two projection values onto the feasible set in each iteration, which might be difficult if the feasible set C is
a general closed and convex set.

To overcome the major drawback of algorithm (2), Censor et al.[4] introduced the following subgradient
extragradient method (SEGM), which uses a projection onto a specific half-space in place of the second
projection onto C in the EGM. It is of the form: Given xo € C,L > 0,4, € (0, %),

Yn = Pe(xy — ApAxy)
Tn:{weH:<xn_AnAxn_]/n/w_]/n>SO} (3)
Xn+1 = PT,, (xn - AnAyn)r

the weak convergence has been obtained when the operator A is monotone and L-Lipschitz continuous.
Several improved versions of the SEGM have been proposed (see, for example, [3, 30, 31, 33, 36]).

Quite recently, many authors are committed to investigating algorithms with inertial extrapolation terms,
which can be used to speed up the convergence of iterative methods for variational inequalities effectively
(see, for example [8, 10, 14, 29, 35]). Shehu et al.[26] presented a modified subgradient extragradient method
with single inertial step and self-adaptive step sizes to solve VIP: Given A; > 0,x,x; € Hand p € (0,1),

Wy = Xy + O,(x, — xp-1)
Yn = pe(wy — Anawy)
ty ={w € h: (w, — Apaw, — Y, w — yy,) < 0}

Xn+1 = (1 - an)xn + anp, (wn - /\nayn)r

where

ming Yl A, # Ay
Aps1 = |[Aw, _A]/n”I " " v

A, otherwise,

continuous, then the sequence {x,} generated by algorithm (4) converges weakly to a solution of VIP.
Inspired by Shehu et al.[26], Yao et al.[37] proposed a relaxed SEGM with double inertial extrapolation
steps, that is, added an inertia to the algorithm (4). It is of the form: Given A; > 0,x9,x; € Hand p € (0,1),

and0<6,<0,11 <1,0<a<a, <apq < 213(6 > (). If the operator A is monotone and L-Lipschitz

Zn = X + O6(Xy — X-1)

Wy = X + 0y — Xy-1)

Yn = Pc(w, — AyAw,) ®)
T, :={we H: (w, — AyAw, — Y, w — Yy < 0}

Xn+1 = (1 — an)zn + P, (wy — AnAyy),

where
. .u”wn - yn” .
min{—————— A,,}, ifAw, # Ay,
Tt = 4 A, — 2y, M y
Au, otherwise,

and0<6,<60,,1<1,0<6< min{%i,el}, O<a<a, <ap < ﬁ(Z < € < o). {x,} converges weakly

to a solution of VIP when A is pseudo-monotone and L-Lipschitz continuous. Moreover, in the Numerical
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Examples section of Yao et al.[37], it has been shown that this method is more efficient and implementable
than the algorithm (4).

It is worth mentioning that very few authors consider the existing methods when the operator A is
quasi-monotone, which is weaker than the usual monotone (or pseudo-monotone) condition. Obviously,
convergence results obtained under quasi-monotone can be generalized to the results under monotone (or
pseudo-monotone), but the reverse may not be true.

Our contributions:

e We introduce a modified subgradient extragradient method with double inertial extrapolation steps
to solve the variational inequality problem in real Hilbert space, our method accelerate the convergence
rates of the methods in [26, 37] effectively. Compared with the method in [37], our algorithm has the
following advantages: (1) we obtain weak convergence result under a weaker operator condition (A is
quasi-monotone rather than pseudo-monotone); (2)we take a modified non-monotonic step size, which
accelerates the convergence rate effectively; (3) 6, is variable in the inertia term z,, = x,, + 0,(x, — X,-1) in our
paper.

e We obtain {x,} generated by Algorithm 1 converges strongly to a point of S when the operator A is strongly
pseudo-monotone; We obtain {x,} generated by Algorithm 2 converges weakly to a point of Fix(T) NS when
the operator A is monotone, T is quasi-nonexpansive and I — T is demiclosed.

o We give numerical simulations to show that our proposed method is more efficient and faster than the
related methods.

Our paper is organized as follows: Several definitions and lemmas are given in Sect. 2. In Sect. 3, we
present our method and analyse the weak convergence of our method. In Sect. 4, we analyse the strong con-
vergence of our method. We give numerical experiments to illustrate the feasibility of our methods in Sect. 5.

2. Preliminaries

Definition 2.1. The operator A : H — H is said to be

(i) L-Lipschitz continuous, if there exists a constant L > 0 such that
1Ax — Ayll < Lilx — yll, Vx,y € H.
(ii) o-strongly monotone, if there exists a constant ¢ > 0 such that
(Ay— Ax,y —x) > olly — x|, Vx,y € H.

(iii) monotone, if
(Ay—Ax,y—x) >0, Yx,y € H.

(iv) n-strongly pseudo-monotone, if there exists a constant 1 > 0 such that
(Ax,y—x) 2 0= Ay, y—x) 2 1lly - x|[%, Vx,y € H

(v) pseudo-monotone, if
(Ax,y—x)>0=(Ay,y—x) >0, Yx,y € H.

(vi) quasi-monotone, if
(Ax,y—x) > 0= (Ay,y—x) >0, Yx,y € H.

Clearly, (ii) = (iij) = (v) = (vi) and (ii) = (iv) = (v) = (vi), but the converses are not always true.
Minty formulation of VIP (shortly, MVIP) is defined as:

find v € C such that (Ay,y —v) >0, Vy € C.

The solution set of MVIP is denoted by Sp. When A is quasi-monotone, we have Sp is a closed and convex
subset of C. Furthermore, since C is convex and A is continuous, we have Sp C S.
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Lemma 2.2. ([39]) Let C be a nonempty closed and convex subset of H. If either

(i) A is pseudomonotone on C and S # 0,

(ii) A is the gradient of G, where G is a differential quasiconvex function on an open set K > C

and attains its global minimum on C,

(iii) A is quasimonotone on C, A # 0 on C and C is bounded,

(iv) A is quasimonotone on C, A # 0 on C and there exists a positive number r such that, for every v € Cwith |[v|| > 7,
there exists y € C such that ||ly|| < r and (Av,y —v) <0,

(v) A is quasimonotone on C, intC is nonempty and there exists v* € S such that Av* # 0.

Then, Sp is nonempty.

Lemma 2.3. The following statements hold in H:

(i) lx + ylP* = lIxI* + 2¢x, yy + lIyll>, ¥V x,y € H.
@)llx + yl* < IIxI? + 2y, x + y), ¥ x,y € H.
(iii)[|[Ax + (1 = Dyl = Al + 1 = Dlyll> = AL = Allx = ylI>, Vx,y € H, A €R.

Lemma 2.4. Let C be a nonempty closed and convex subset of H and Pc be the matric projection from H onto C.
Then for any x,y € H and z € C, the following hold:

(i) [[Pcx = PcylP? < (Pcx — Pey, x = ).
(i)l|[Pex = 2I* < llx = z|I* = [|[Pex — ][

Lemma 2.5. Forany x € H and z € C, then z = Pc(x) if and only if
(x-z,y-2z)<0,VyeC
Lemma 2.6. ([21], Lemma 2.2) Let {¢p,}, {6,,} and {0,,} be sequences in [0, +00) such that

Pt < bu+ Ou(Pn = Put) + 60, V1 21, ) 5y < oo,

n=1

and exists a real number 6 with 0 < 6, < 0 < 1 for all n € N. Then the following assertions hold:
(i) f [pn — Pn-1ls < +o0 where [t]. = max{t,0} for any t € R;
n=1
(ii) there exists ¢* € [0, +00) such that lim ¢, = ¢*.
n—o0

Lemma 2.7. ([25]) Let C be a nonempty subset of H and let {x,} be a sequence in H such that the following two
conditions:

(i) for each x € C, the limit of sequence {||x, — x||} exists;
(ii) any weak cluster point of sequence {x,} is in C.

Then there exists x* € C such that {x,} converges weakly to x*.

Lemma 2.8. ([5]) Consider the problem VIP with C being a nonempty, closed, convex subset of a real Hilbert space
Hand F : C — H being pseudomonotone and continuous. Then, x* is a solution of VIP if and only if

(Fx,x —x")>0,Vx e C.

Lemma 2.9. ([19], Lemma 3.2) Let A : H — H be a monotone and L-Lipschitz continuous mapping. Let T =
Pc(I - AA), where A > 0. If {x,} is a sequence in H satisfying x, — q and x, — Tx, — 0, then q € S.
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Lemma 2.10. ([12, 17]) Suppose f : R" — R is differentiable and pseudo-convex on C. Then x* € C C R" satisfies
(Vfx),x=x) >0, VxeC

if and only if x* is a minimum of f in C.

3. Weak convergence

In this section, we show that the sequence {x,} generated by Algorithm 1 converges weakly to a point
in Sp C S under the following conditions:
(C1) The feasible set C is a nonempty, closed and convex subset of H;
(C2) The operator A : H — H is quasi-monotone;
(C3) The operator A : H — H is L-Lipschitz continuous and satisfies the following condition:

if {x,} C H, x, = v* and liminf ||[Ax,|| = 0, then Av* = 0;
n—oo

(C4) Sp # 0;
(C5)0 < 0y < Opi1 < 1;
(C6) 0 < 8, < buy1 < 6 < min[EYE, 0;), € € (2, +00);

(C7)0<a<ay <ap < 7, € € (2,+0).

Algorithm 1

Iterative step:

1. Take the parameters u € (0,1) and A; > 0. Choose a nonnegative real sequence {a,} such that }; a, < +oo.
n=1
Let xg, x1 € H be given starting points. Set n:=1.

2. Compute

Zy = Xy + O (X — Xy—1)
Wy = Xy + O, (x, — xp-1)

6
Yn = PC(wn - /\nAwn) ( )
Uy = PT,, (wn - AnAyn)/
where
(il = yul® + e = yul?) .
in A+ an;, if{Aw, — Ay, u, — vy, >0,
Aps1 = { 2(Aw, — Ayn/ Uy — yn> } f< Y Y ) (7)
An + ay, otherwise,
and
T, ={w e H : {w, — A,Aw, — Y, w — yn) < 0}.
If w, = y, = x,, STOP. Otherwise
3. Compute
Xn+l = (1 - an)zn +ayuy,n > 1. (8)

4. Setn < mn+1,and go to 2.

Remark 3.1. Observe that if x,, = wy, = y,, then (6) implies x, = Pc(x, — AyAxy,), from Lemma 2.5 we know x,, € S.
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Remark 3.2. It is obvious that (Aw, — Ay, Uy — Yn) < ﬁ (Ilwn - ynll2 + ||u, — yn||2).

Lemma 3.3. ([20], Lemma 3.3) Suppose that Condition (C3) holds, then the sequence {A,} generated by (7)

is well defined and lim A, = Aand A € [min{%,Al}, A+ Y a,].
n—oo

n=1

Lemma 3.4. Suppose that {x,} is generated by Algorithm 1 and Condition (C1)-(C7) hold. Then {x,} is bounded and
lim ||x,, — x*|| exists, where x* € Sp.

Proof. Pick a point x* € Sp, we have (Ay,, y, — x*) 2 0, then (Ay,, y, — x* + u, — u,) > 0 and thus
<Ayn/ x - un> < <Aynz ]/n - un>/ (9)
by u, € T, we get (w, — AyAwy, — Yp, tty — Yn) < 0. Therefore
{wy, — /\nAyn — Yn,Un — yn> = (W, — AAwy, — Yn, Un — yn> + Au(Aw, — Ayn/ Uy — yn>
< An<Awn - Aym Uy — yn> (10)
From y, = Pc(w, — A,Aw,) and Lemma 2.5, we have
(Wy = AAWy = Yn, ¥ — Yn) <0, Yy € C. (11)
By (11) and the definition of T,,, we know y € T}, therefore x* € C C T),.
Using Lemma 2.4 and (9), we have
lln = %117 < llwy = AnAyn — XN = llwn — AnAyn — uall*
= lwy — X1 = llwwn = tnll* + 24, (A, X* = 1)
< “wn - x*Hz - ”wn - unllz + 2An<Ayn/ Yn — un)
= |lw, - X*Hz = llwy, — u, + Yn — ynHz + 2/\n<Aynr Yn — Up)
= |lw, — x*Hz — |lw,, — ynHZ - ”]/n - unllz + 2w, — /\nAyn = Yn, Up — ]/n) (12)
Using (10) and (12), we obtain
1w = X1 < Ny = X1 = llwn = Yul® = Y = al® + 240 (AW, = Ay, iy = Y

Anjt
*112 2 2 n
< lwy = x¥|° = llw, — yn” - ”yn — uy|l” + 1
+1

(tewn = yull® + N1ty = ul?)

A A
- ||wn—x*||2—(1— ot )nwn—ynnz—(l— N )uun—ynuz. (13)

n+1 n+1

Anlt
Anst

Since lim (1 - ) =1 - u > 0, there exists a natural number N > 1 such that
n—o00
llin = x°|* < lfw, = 2|7, Y1 = N. (14)
From Algorithm 1 and (14) we have
et =271 = 111 = @)(zn = x°) + ety = 2
=1 - apllz, - x*”2 + apllu, — x*Hz —an(1 = ay)llzn — unllz

< (1= apllza = I + aullw, — xIF = (1 = ay)llzn — unl?, ¥ > N. (15)
From x,,11 = (1 — a,)z, + ayu,, we have

1
et = zall = —=llusr = zull, Y1 2 1. (16)
n
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Combining (15) and (16) we get

1-a,

Ixne1 = XIP < (1 = ap)llza = X1 + agllw, — x| = 241 = zall?, ¥n > N. (17)
n
From Lemma 2.3, we have
”wn - x*Hz = ”xn + 6n(xn - xn—l) - x*HZ
=11 + 0)(xn = x*) = Ot — x|
= (1 + Op)llxy — X°IP = Oullxn—1 = x°I7 + Ou(1 + O)llxy — xpal?, ¥ > 1. (18)
Iz, — x*HZ = |lxy + 0n(xy — Xp-1) — x*Hz
= (1 + Sp)llxn = XI7 = Sulln=1 = XIP + 84 (1 + Sp)llxy — Xpal?, ¥ > 1. (19)

Also,

xs1 = Zal® = i1 = (X + 0n(xn = X1
= l(ns1 = xu) = 8 (¥ = x|
= a1 = Xl + 6311 = X1 IP = 20501 = X, X = Xu1)
> |xns1 = Xl + 53l1 = X011 = 20lX41 = Xall - [l = X1l
2 1 = Xl + Sl = X1l = B (11 = xall? + Il = 3111

= (1= 8)lxns1 = Xall® + (65 = 01w = Xl (20)
Substituting (18), (19) and (20) into (17), we have

1 = X1 < (1= @) [(1 + 0n)lly = X1 = Onllx-1 = XIP + 8,(1 + 6,)llxy — xn—1||2]

+ 0(,,[(1 + 0yl — x*”2 = Onllxy-1 — x*Hz + 0,(1 + O)llx, — Xn—1||2]

1-a,
[(1 = i1 = 2l + (62 = Bn)lln — 1]

n

= (1= @) (1 + 6) + (1 + 6) )l = X7 = (6(1 = ) + @0 )l s — x|
(1- an)(éﬁ - 611))

n

+((1 = an)0u(1 +6,) + 4n0,(1 + 6,,) - e = sna

1-a,)(1 -0,
T
Ay
= (14 cyOp + 5u(1 = )l = I = (04O + 5u(1 = ct))llts — x°I

2 2
+ oullxy — xp-all” — Pn”xn+1 —x4ll°, Vi > N, (21)

where

n . .

(1 — ) (52 — 6n) (I =ay)(1-06y)
an v P an

on = (1= n)on(1 + 0y) + @, 0,(1 + 0) —

Define T = [t = I = (@,6, + 8u(1 = an) a1 = X1 + oulbs = 2aall?, Y12 1.
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By the definition of I'; and (21) we have

Fovr =T = e — x*”2 - (U(n+1 Ons1 + Onr1(1 = an+1))||x,, - x%“2 + ons1llXner — xn“z
= lpen = 2P + (a0 + 651 = ) ln1 = X°I2 = Gllty = 2,4
< (@B + 84 (1 = @) = Aps1 Ot = Sy (1 = tpan) Iy — X711
+ OpllXnst = Xull® = pullnen — xull®
= (@n(On = 64) = w1 (Ot = 611 + (B = Bs1) Il — 2|12

+ OpallXne1 — xn||2 - Pn”xn+1 - xn”Zr ¥n > N. (22)

By 0 <0, <6p+1 <01 <60, <0p1and 0 < @y < ays1 <1, we have —a41(0n41 — On41) < = (i1 — 0441) and
—(0p41 — 04) < =y (Ops1 — On).
Thus,

(0 = On) = u41(Onr1 — Onr1) + (0n — Ons1)
< an(0n = 6n) = an(Ons1 — Op1) — An(Ons1 — On)
= (0 — Op41)
<0.

Then from (22) we have

Iwn-+—l - Fn < _(pn - Gn+1)||xn+1 - xn“2/ Vn > N. (23)
By a, < 71z, we can get 1;;“” > ¢, thus
1-a,)1-06
Pn —0Op+1 = (no)(# - (1 - an+1)6n+1 (1 + 0p41) — Ayt 9n+1(1 + 6n+1)
n
" (1 - an+1)(6i+1 - 6n+1)
An+l
L (Q=an)(1-6,) (- n1)(02,; = Ons1)
- Xyl Ayt

— (1 = ay41)0p1(1 + Ops1) — An410p41 (1 + O41)
> (1 - an+1)(6i+1 - 5n+1 - 671 + 1)

Antl
(1 - 0(,,+1)(52 - 2611+1 + 1)
>

= 2(1 = ay1) — 2041

n+l

- 2(1 - an+1) - 2OfrH—l
A+l

> (02, — 201 +1) =2
=ed%,, — 260,41 +€—2. (24)

n+1

Since y = ex? — 2ex + € —2 has two roots: x; = ﬂ, X = %@ and 6,41 < 6 < ﬂ, we have

€67, — 25,1 +€—2 > ed* —2ed + € —2 > 0. Therefore from (23) and (24) we have ‘
Iﬂn-+—l - Fn < _,B“xn+l - Xn||2, ¥n > N. (25)

where B := €% — 2¢6 + € — 2 > 0. Hence, {I',} is non-increasing (n > N).
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Furthermore, by Assumption (f) and (g) we know 6, < 6 <1, a, < 1, thus
(1- an)((ﬁ = On)
ay

)+ a,0,(1+6,)

on = (1 —0a,)0,(1 + 6,) + @,0,(1 +6,) —
0n—1

n

=1 -a,)0,(1+06, -
> 0.

Therefore,

* *112 2
Ty = It = X2 = (a0 + 60(1 = )y = 21 + 0l = 21l

> [t = 12 = (@00 + 641 = ) ltacs = X1, ¥ > 1.

So,

1 *
< (oo +o0- ))ll1 = 2|2 + T,
1 -
< m + 6(1 - 0())”3{,,,1 - X || + FN
= Yllatu-1 = x*|P + Ty
< P22 = x| + YTy + Ty

<Y Ny =P + (L y o+ "Ny

I'n

< n—-N 12 + 26
<" llan = x| =y (26)
where y := 1%6 +6(1 — a).
Now we prove y € (0,1). By %2? T = mexﬁdf)_ez = e_(el(;i)e;/fe < 0, we have 0 < %ﬁ < 752,80
Y= ﬁ +0(l —a) < 11?+ﬁ =1,s0y €(0,1).
Hence, {||x, — x*||} is bounded and so is {x,,}.
By the definition of I',1 and (26), we have
~Tpat < (ns1 81 + 51 (1 = ) )ln — x°I
1 o
< (g7 + 00~ @)l — x|
= yllxy — x|
T
<y My — 22 + (27)

1-

By (25) and (27), we get

n
- " I'n
B E k1 = Xl < Ty = Tor < "N oy — 2|7 + e
k=N
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Therefore,
co I_,N
Ixns1 = xall* < < co. (28)
,;‘V n+1 n ‘8(1 — )/)
Thus,
V!I—I};o [lxn41 — xull = 0. (29)

From (21) we get

s = 212 < (14 cuOp + 8u(1 = )l = 212 = (04O + 5u(1 = ct) )l — x°I

2 2
+ oullxy — x4-1ll _Pn||xn+1 — Xull
<y = 212 + (a0 + 8u(1 = ) (1w = %1 = lens — °I1?)

+ oyl — x4, ¥n = N. (30)

1- 52 —-96
On = (1_an)5n(1+6n)+an6n(1+6n)_(OKHLM
1-a

[04
l1-a

4o -

(60 = 07)

2
1- 1 P—
<(1-a)d( +6)+1+€+

2
< (1—0()6(14—6)4— m-l—
So,

112 112 112 112
et = 212 < vy = 212 + (c0a O + 5 (1 = ctn))(IPn = %1 = lens — °I1?)

2 1-a 2
+((1 - w51 +0) + ot ﬂ)llxn — Xyl ¥ > N. (31)

Note also that a,0,, + 6,(1 —a,) < == +6(1 —a) = y <Ll

1+e

1+e

By (28) we get H;N[(l —a)d8(1+06) + 1= + L2]lxy — xpa|? < +o0.

Invoking Lemma 2.6 in (31), we get lim [|x, — x*[| exists. [
n—o0

Lemma 3.5. Let {x,} be generated by Algorithm 1 such that Condition (C1)-(C7) hold. If v* is one of the weak cluster
points of {x,}, then we have at least one of the following : v* € Sp or Av* = 0.

Proof. By Lemma 3.4, {x,} is bounded. Hence we can let v* be a weak cluster point of {x,}. Then we can
choose a subsequence of {x,}, denoted by {x,,} such that x,, — v* € H.

We consider the following two possible cases.

Case I: Suppose that limsup ||Ax,, || = 0. Then %1_1}‘?0 [[Ax,, || = likrrli?fllenkll = 0. Thus we obtain from

k—o0

Condition (C3) that Av* = 0.
Case II: Suppose that lim sup [|Ax,, || > 0. Then without loss of generality, we can choose a subsequence of

k—oo
{Ax,,} still denoted by {Ax,, } such that ]}im l1Ax, || = M; > 0.

We first prove that lim ||x, — y,|l = lim ||, — w,|| = lim ||y, — u,l| = 0.
n—oo n—o0 n—oo
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From (29) we know that lim ||x,4+1 — x,|| = 0, then
n—o0

IXn1 = Zall < |IXp1 = Xall + 1x0 = Zall = [Xn41 = Xall + Oullxy — X451l = 0,1 — o0,
IXn1 = Wall < X1 = Xaull + X0 = Wall = %01 = Xull + Onllx, — xp-all = 0,11 — o0,
llwn = zull = llwn — Xnsall + [1Xn41 — zull = 0,1 — co.

1 1

1ty = zull = —Ixp+1 = Znll £ =llxn41 = zull = 0,11 — o0.
ay a

llw, — upll < |lwy = z,ll + [ty — zull = 0,1 — o0.

By {x,} is bounded and [[x,+1 — wyl| = 0, |lw, — uull = 0,n — oo, we can get {|lw, — x*||} and {|lu, — x*||} are
bounded.
From (13), we have

Anl
1- n~— Yn 2+ n~— Un 2
( Anﬂ)(nw Yl + 1y = 1)

< llwn = 21 =l = x|

= (lleww = %11 + et = x*1)(Ilews = 211 = Il = 2°1])

S M”wn - ui’l” - 0/ n— o,

for some M > 0, where the existence of M is from the boundedness of {Ilwn — x| + ||lu, — x*ll}. Noting
lim A, = A, we see that |lw, — yall = 0, [, — yull = 0,1 — 0.

n—oo

By [[xn+1 — wnll = 0, [[wy — yall = 0, and [lx41 — x4l — 0, we have |lx;, — yull = 0,1 — oo.

From u, = Pr,(w, — A,Ay,) and C C T,,, we get

(Wy — ApAYn — Uy, y —uy) <0, Yy € C.
So,

0 S <unk - wl’lk + /\nkAynk/ ]/ - ul’lk>
= (U — Wiy, Y — Un) + A (AYne, Y — Un,)
= <unk — Wy, Y — unk> + /\nk<Aynk1 U ynk> + Ank <A]/nk/ Ynp — Un, >/ Vy eC. (32)

From lim ||w, — u,|| = lim [lu,, — y.ll = 0, we obtain
n—oo n—oo

0< likm inf(Ayn,, ¥ — Yn,) < limsup{Ay,,, y — Yu,) < oo, Yy € C. (33)

k— o0

Based on (33), we consider the following two cases under case II:
Case 1: Suppose that lim sup{Ayy,, ¥ — y»,) > 0, ¥y € C. Then we can choose a subsequence of {y,,} denoted
k—oo
by {y,,kj} such that 1im(Ay,,kj,y - y,,kj> > 0. Thus, there exists jo > 1 such that (Aynkj, Y- ynk}) >0,Yj > jo,
j—oo

by the quasimonotonicity of A on H, it implies that (Ay,y — y”k;> >0,YyeCj=jo. Byx, — v and
Iy — yull = 0,n — oo, we have y,, — v € C. As j — oo, we get (Ay,y —v*) = 0,Yy € C. Therefore, v* € Sp.
Case 2: Suppose that lim sup{Ay,,, ¥ — y»,) = 0, Yy € C. Then by (33), we get

k— o0

I}im(Ay,,k, Yy—1yny =0, Yye(C (34)

from which we get

1
AYns Y = Yn) + KAYne, ¥ = Yu)l + 7 >0, Yy € C. (35)
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Since hm ||Axnk|| = hm lIAYx |l = My > 0, we can find ky > 1 such that ||Ay,,|| > M vk > k.

We set b,,, = then (AYn,, by,) = 1. Therefore, by (35), we get

IIAy ||2 !

(AYn v+ bu [AYm, v = vl + ﬁ] ~Yu) >0, ¥y eC. (36)

Using the quasi-monotonicity of A on H, we obtain

<(y+bnk[I<Aynk,y )+ ¢ : ) v+ KAy = g+ ¢ : il ynk> 0, VyeC.

This implies that

(Ay, y+ bnk[KAynk/ Y= Ynl + ﬁ] - ynk>

> (Ay = Ay + b [y, v = 3+ g Doy + O [KAY, =yl + s | = )
> —l|Ay = Ay + bu [ KAV, y = yu )l + mpu My + b [KAY v = vl + m] = Yl
>~ A, = v+ g 1+ Ay = v+ | =

-L 1
= m(KAynk, Y= yn)l+ —) My + b [KAY v = )l + 5] = vl

(|<Aynk,y Bl + M, Yy € Ck =, (37)

for some M; > 0, where the existence of M; is from the boundedness of {y + by, [I(Ay,,k, Y=Y+ %] - ynk}.
From (34) we have lim (KAYm, v = yudl + ) = 0,¥y € C. Thus, as k — oo in (37), we get (Ay,y —v") >
0,Vy € C. Therefore, v* € Sp. [

Theorem 3.6. Let {x,} be generated by Algorithm 1 such that Condition (C1)-(C7) hold and Ax # 0,¥Yx € C
(otherwise, x € S). Then {x,} converges weakly to an element of Sp.

Proof. by Lemma 3.4, {x,} is bounded, hence, let z be a weak cluster point of {x,}. Then there exists a
subsequence {x,,} C {x,}, such that x,, — z,k — oo, also from ||x, — y,|| = 0,1 — o0, we get y,,, — z,k — .
Since C is closed, we have that z € C. Since Ax # 0,Vx € C, we get Az # 0. By Lemma 3.5, we get z € Sp.
Therefore,

(1) by Lemma 3.5, }1_)1{1.0 |lx, — zl| exists for any z € Sp,

(2) every sequential weak cluster point of {x,} is in Sp.

Using Lemma 2.7, we get {x,} converges weakly to a pointin Sp. [J

Remark 3.7. Obuiously, all the results in this section can still be derived from the operator A is monotone (or
pseudo-monotone) rather than quasi-monotone.

4. Strong convergence

Theorem 4.1. Assume that A is n-strongly pseudo-monotone and Condition (C1), (C3)-(C7) hold. Let {x,} be
generated by Algorithm 1, then {x,} converges strongly to an element of S.
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Proof. The strong pseudo-monotonicity of A implies that VIP has a unique solution, which is denoted by
x*, hence (Ax*, y, — x*) > 0. By the strong pseudo-monotonicity of A, we have (Ay,, y» — x*) = nlly, — x|
Thus,

<A]/nr yn — Uy + Uy — x*> 2 nllyn - X*”zl

SO

(AY, X' =y} < (AYr, Y = thn) = 1y = 2|7 (38)
Using Lemma 2.4 and (38), we have

llitn = x| < llwn = AnAyn = X1 = |ty — AnAyn — ull®
= llwn — XI* = llwn — ual® + 24, (A, X* = 1)
< fwn = X1 = ey = wnll® + 20 AYn, Yo = tn) = 2A00llyn — 7|
= llwn = X7 = llwn + Y = Yu — all® + 2A0AY 1, Y — 1n)
=21 llyn = X1
= llwy = X = llwn = Yull* = Ny — al® = 2Au1lly — X717
+ 2{wy, = AuAYn = Yn, Un = Yn)- (39)

Applying (10) and Remark 3.2 in (39), we obtain

Iy — NP < Mfwy — NP = llwn = yul® = Nyn — ual® = 240101y — °I7
+ 2An<Awn - Ayn/ Up — ]/n>

2 2 2 2
<Hlwn = 2N° = llwn = yaull® = llyn — uall® = 2Au7llyn — 27

Anpt 2 2
+ 5 (lon =l + It = yF)
112 112 /\nu 2 2
=l = 21 = 24unlly = 21 = (1= =) (0 = yall® + 1t =yl
n+1

From Lemma 3.3, we know that there exists a natural number N satisfying A, > 4 and 1 - % =1-u>0,
for all n > Ny, thus,

it = 1% < oy = 21 = Anllyn = 2712, Y1 = Ny (40)

Therefore,

s = X1 = (1 = ) (20 = x°) + it — )|
= (1 = aw)llzn — x| + aylly — X117 = (1 = ap)llzn — uall®
< (1= ap)llza = |7 + aullw, — x| = andnlly, — x|
- an(l —ap)llzy — unllz
< (1= apllzn — XIP + anllw, — x> — an(l — an)llzn — uall®

— aAqlly, - x'I?, ¥n > Ny

Repeating similar arguments from (16) to (21), we get

st =17 < (14 B+ 6u(1 = @) It = x°I = (s + 60(1 = @) a1 — x°IF

+ 0nllxn = X1 l? = palluss — xall* = aAnlly, — x*I12, Yn > Ny.
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Thus,
aAnllyn = 1P < 1w = XU = sr = %1 + 0ullt = 1]
+ (@nOn + 6u(1 = ) (Il = X°I = Ity — x|
<ty = X1 = ltnar = 212 + My = 011
+ (@0 + 601 = @) )(Ils = X1 = Ity = I2), ¥ > Ny,

where
(1 CY)
+ — >

2
=(1- 1 — ne
M =1 -a)d( +6)+1+€ " 1o}

Hence,
n n
A Iy = X711 < lny = X\ = e = I+ M)l — xeal?
ann Ye =X = lIXN, — X Xn+1 — X Xk — Xk-1
k:N1 k=N1
+ (cnBs + 6,1 = ) llxey — x|

- (aN1—19N1—1 +0N-1(1 = 0€N1—1))||XN1—1 - x|~
By Lemma 3.4 and (28), we have {x,} is bounded and Y |lxx — x,_1]*> < oo, from which we deduce that
k=N1
Yo llyk - x*||* < oo0. Thus, lim ly, — x*| = 0.
k=N n—oo
Consequently,
Lim [|x, — x7|]
n—oo
< lim (s = wall + s = yall + llyn = 1))
=0.
This completes the proof. [J

Next, we put an operator T in Algorithm 1, which leads to the sequence {x,} converges weakly to a point
of Fix(T) N S, where Fix(T) := {x € H : Tx = x} is the nonempty fixed point set of T.
We add the following conditions:
(C8) The operator A : H — H is monotone;
(C9) T is quasi-nonexpansive, that is

Fix(T) # 0 and ||Tx — pll < |lx = pll, VYx € H, p € Fix(T);
(C10) I — T is demiclosed, that is
xy, = xand (I - T)x, —» 0 = x € Fix(T);

(C11) Fix(T)N S # 0.

Algorithm 2

Iterative step:

1. Take the parameters i € (0,1) and A; > 0. Choose a nonnegative real sequence {a,} such that )}, a, < +co.
n=1
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Let xo, x1 € H be given starting points. Set n:=1.
2. Compute

Zy = Xy + 0p (X — Xy—1)
Wy = Xy + Op(xy — Xp-1)

41
Yn = PC(wn - /\nAwn) ( )
Uy = PTV, (wn - /\nA]/n)r
where
R e ) o )
Aoy = min{ A0y — Ay, iy — 1) JAn+an},  if(Awy — AYn, un — Yn) > 0,
An + ay, otherwise,
and
T, ={w e H : (w, — AyAwy, — yp, w — yu) < 0}
If w, =y, = x4 = X441 = 24, STOP. Otherwise
3. Compute
Xp1 = (1 — ay)zy + a,Tu,,n > 1. (42)

4. Setn < n+1,and go to 2.

Remark 4.2. Using (41) and x, = y, = w,, we can deduce that x, = Pc(x, — A,Ax,), which implies that
(Axp,y — x4y 2 0, Yy € C, thus, x, € S. On the other hand, from C C T, and w, = y,, we get y, =
Pr,(wy, — AyAyy,) = u,, which together with x, = vy, = xp11 and (42) implies that x, = (1 — a)x, + A Txy, then,
Txy = xp, Xy € Fix(T). Therefore, when w, = Yy = Xp = Xp41 = Zn, Xn € Fix(T) N S, this algorithm could stop.

Theorem 4.3. Let {x,} be generated by Algorithm 2 such that Condition (C1) and (C4)-(C11) hold. Then {x,)}
converges weakly to a point of Fix(T) N S.

Proof. Pick a point of x* € Fix(T) N S. From T is quasi-nonexpansive and (9)-(13), we obtain
Ty = %P < |l = 7|7

A A
< o = 212 = {1 = 22 Ve = yal? = (1= =2 ) sy =yl (43)
Ayt An+l

n+ n+

Repeating the similar arguments from (14)-(31) and use Tu,, in place of u,, we can deduce that [|x,+1 —x,|| =
0, n = oo, {x,} is bounded and lim ||x,, — x*|| exists. By |[x,+1 — x|/l = 0 as n — oo and the definition of z,,
n—oo

w,, we have ||x, — z,|| = 0 and ||x, — w,|| > 0asn — oo.
Hence,

1
ITuy — zpll = —Illxn41 — zull
o

1
< —(Iwsa = xall + s — zall) = 0.
Qp

Combining with {x,} is bounded, we get {w,} and {Tu,} are bounded.
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Using (43), we get
A
(1 - )(nwn — yall® + I = lP)
< llwn = xIP = Ty — 27|

= (llwn = 21l + 1T = x°11)(lewn = 711 = Tty = x°)

< My (llw, — x°l| = 1Ty — x7]1)

< Msllwy — Tuyl|

< My — zull + llzn = Tuall)

< Ma({lewn =l + 1 = 20l + llzw = Tuall) = 0,

for some M3 > 0, where the existence of M3 is from the boundedness of {w,} and {Tu,}. Thus, we get
||w7’l - ]/n” - 0/ ”Mn - ]/n” - 0 as n — 0.
Therefore, from

1T, — wall < Ty — zall + llzn — wall + llwy — yull + llyn — wall,

we have ||Tu, — u,|| - 0as n — oo.

By {x,} is bounded, we know that there exists a subsequence {x,,} of {x,} such that x,, — p € H. From

lim |[x, — wy|| = lim |lw, — y,ll = im |lu, — y,ll = 0, we also get u,, — p, which together with the demi-

n—00 n—oo n—00

closedness of I — T implies that p € Fix(T). Moreover, we deduce w,, — p from lim ||x, — w,|| = 0 and
n—oo

llwy, — Pc(wy, — ApAwp)ll = llwy, — Y ll = 0,n — oo, combining Lemma 2.9, we obtain p € S. Thus,

p € Fix(T) N S. Consequently, using Lemma 2.7 we get {x,} converges weakly to a point of Fix(T) N'S. [

5. Numerical experiments

In this section, we provide some numerical experiments to compare our Algorithm 1 with some existing
related algorithms. All the codes were written in MATLAB R2022b and performed on a PC Desktop Intel(R)
Core(TM) i5-12500H @ 2.50 GHz, RAM 16.0 GB.

In all these examples, we present numerical comparisons of our proposed Algorithm 1 with Algorithm
1 of Shehu et al. in [26] and Algorithm 1 of Yao et al. in [37].

Example 5.1. ([13]) Consider the following fractional programming problem:

xTQx +aTx +ay

i) =

subject tox € X := {x € R* : bTx + by > 0}, where

5 -1 2 0
1 5 -1 3

Q=1 » 1 3 0 (44)
0 3 0 5

a=(1,-2,-2,07,b=(2,1,1,0)7,a9 = —2,by = 4. It is easy to verify that Q is symmetric and positive definite in
R* and consequently f is pseudo-convex and on X = {x € R* : bx + by > 0}, Lemma 2.10 reveals the relationship
between pseudo-convex optimization and VIP. We minimize f over a nonempty, closed and convex subset C := {x €
R*:1<x<10,i=1,..,4} C X by using A(x) := Vf(x) = (b"x + bp)(2Qx + a) — b(xT Qx + aTx + ag))/(bTx + bp)*.
This problem has a unique solution x* = (1,1,1,1)T € C. It is known ([15]) that a differentiable function f is
pseudo-convex if and only if its gradient is pseudo-monotone, thus A is pseudo-monotone, then A is quasi-monotone.
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Furthermore, for all x,y € C, V2 f (the Hessian matrix of f), we have

Vi -2 _ QOr+al’ b0+ o
Px+bo  blx+by  (Tx+by)
2(xTQx + aTx + ag)bb”
Tx+by?

2(|QIl + 12Qx + al| [1bl] + 12Qx + al| |1bl|
Tx + bo bTx + by (bTx + bQ)Z
2(xTQx + aTx + ap)||bbT ||
(Tx + bo)3

IV @l =

<L;.

By bTx + by < bTx* + by = 8, |12Qx + al| and (xTQx + alx + ay) are bounded on C, we know L, exists, thus, V2f is
bounded. Then for all x, y € C, we have

Ay — Axll = IVf(y) = V)l

1

' fo V2 f(x + Hy — )y — )]
1

<| fo V2 (x + ty — )l lly —

1
< 2 Hy — )||dt ||y —
< fo V2 £ + Hy — ) lly = ]
< Lilly - x. (45)

Thus, A is L1-Lipschitz continuous.
It is known that strong convergence and weak convergence are equivalent in R", thus, in order to prove that A
satisfies the condition (C3), we only need prove

if {x,} CH, x, = v*and linfgglf”Aan =0, then Av* = 0.
From Li-Lipschitz continuity of A and x, — v*, we have
lAx, — Av|| < Lallx, = 0|l = 0, n — oo,
then, by ||Av*|| = ||Av* — Ax,, + Ax,|| < [JAv* = Ax,|| + ||Ax,l|, we have

0 < [|Av"|| < liminf [|Ax,|| = 0.

Therefore, we obtain Av* = 0.
From A(x) = ((bTx + b)(2Qx + a) — b(xTQx + a"x + ag))/(b"x + bo)?, we have A(x*) = (1, 2, Z, )T, Thus, for
ally = (y1,y2,y3,ya)T € C(A < y; <10,i =1,2,3,4), we have

15 7 17

T
= _ s
16'16'8) =0

(A, y=x)=n-Ly-1Lys -1y - 1)1,
Thus, x* is a solution of VIP. From Lemma 2.8 we obtain x* € Sp, that is Sp # 0.
We now solve VIP with C and A given above. For all methods, we take xo = [10, 10,10, 10]’, x; = [10, 20, 30,407,
other parameters are shown in Table 1. We choose the stopping criterion as error = ||x, — x*|| < 0.0001, that is
log,, (error) < —4. The corresponding results are reported in Figure 1 and Table 2.
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Table 1: Methods parameters for Example 5.1

C our Alg. 1 A1 =05 p=02  O,=1--+  Si=3--5
—1 1 _ 1
O =3~ 73 an = 2
Alg. 1in [37] A =05 u=025 6,=1-L 5=05
Alg. 1in [26] AM=05  pu=025 O,=1--4  a,=1--L
Figure 1:  error < 0.0001 for Example 5.1
Table 2:  Number of iterations for Example 5.1
Algorithm Alg. 1in [26] Alg. 1in [37] our Alg. 1

Number of iterations

361

172

132

9840
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Example 5.2. Consider the problem VIP whenever H is the classical L?[0, 1] space with the inner product and norm
given by

1/2

1 1
(x,y) = j(; x(Hy(Hdt, ||Ix|| = (j; () dt) , VYx,yeH.

Here the unit ball is taken as the feasible set and the nonlinear operator A : H — H is given by
A(x) = (1.5 —|x|)x, VxeH.

It should be noted that the operator A in the example above is pseudo-monotone, and the solution to the
variational inequality problem is x*(t) = 0.

Setting an appropriate stopping criterion in numerical algorithms is crucial to prevent computational
inefficiencies and conserve resources. The maximum allowed iterations in this study is 100. All the
parameters are shown in Table 3. Results of the proposed method against other algorithms are presented
in Figure 2 - Figure 5, showing a superior convergence rate, accuracy, and speed. The proposed method
is robust and insensitive to the initial guess. The proposed algorithm is computationally efficient and
valuable for solving similar problems. With a reasonable stopping criterion and superior performance, it
can be applied to a wide range of applications. This constitutes a significant contribution to numerical
optimization.

Table 3: Methods parameters for Example 5.2

our Alg. 1 M=06 u=09 O,=1-+H Si=1--—
a, =05 a, = nl—z
Alg. 1in [37] A =06 u=09 O,=1--L 6=0.12
a, =05
Alg. 1in [26] M=06 pu=09 6,=1--L a, =05

Figure 2:  xo(f) = x1(t) = 50¢° for Example 5.2
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Figure 3:  xo(t) = x1(t) = 501og t for Example 5.2

Figure 4:  xo(t) = x1(t) = 50 exp(t) for Example 5.2
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Figure 5:  xo(t) = x1(t) = 50 sin t for Example 5.2
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