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Abstract. This paper treats general unbounded operators, closed operators, and relative boundedness in
non-Archimedean Banach spaces.

1. Introduction

The theory of valuations was begun in 1912 by J. Kürschák who defined the valuation axioms as we are
used today. The main motivation was to supply a solid base for the theory of p-adic fields as formulated by
K. Hensel. In 1934, A. Ostrowski published essential contributions to valuation theory. Simultaneous, W.
Krull generalized the notion of an absolute value to that of a valuation. This generalization made possible
applications in other mathematical fields, including algebraic geometry and functional analysis. Since the
early 1940s, non-Archimedean field analysis has been attempted from different perspectives. In 1943, A. F.
Monna [14] outlined the non-Archimedean normed vector spaces.

One of the successful applications of p-adic functional analysis was the use by B. Dwork of an ad hoc
linear operator in his study of the rationality of the zeta function of a hypersurface over finite fields (a
part of Weil conjectures) (see [6]). Immediately, J. P. Serre has given a general setting of this operator by
constructing the Fredholm determinant of completely continuous operators which applies very well to
Dwork’s operator (see [19]).

1.1. Valuation

The valued fields of the real numbersR and the complex numbersC are important to several mathematics
theories. Noting that there are two types of valuation, one is the Archimedean valuation, as in the cases
of C and R, and the other is the non-Archimedean valuation. The effects of replacing R or C by the more
general object of a non-Archimedean valued field (K, | · |) in these theories has long been investigated. In
fact, the study of non-Archimedean analysis is much concerned with the base valued field. The adopted
definition segregates the classical norm from all other the non-Archimedean norm as to avoid carrying out
generalizations.
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1.2. Definitions and some properties

LetK be a field. It’s unit element, we dented by 1K. The symbol 1 is the unit element of R.
We start by presentation of the notion of valuation on a field generalK. The following concept will play

a key role in this paper.

Definition 1.1. A valuation onK is a map | · | : K −→ R satisfying:
(i) |x| ≥ 0 for any x ∈ K with equality only for x = 0.
(ii) |xy| = |x| · |y| for any x, y ∈ K.
(iii) For some real number C ∈]1,+∞[, which will be called Artin constant and any x ∈ K, if |x| ≤ 1, then |x+1K| ≤ C.

The following result can be easily derived from Definition 1.1.

Proposition 1.2. Let | · | be a valuation onK. Then, the following hold:
(i) |1K| = 1.
(ii) For x ∈ K and n ∈N, if |xn

| = 1, then |x| = 1.
(iii) | − 1K| = 1.
(iv) For all x ∈ K, we have | − x| = |x|.
(v) For x ∈ K \ {0}, we have |x−1

| = |x|−1.

Proof. (i) In view of Definition 1.1 (ii), we may deduce that,

|1K| = |1K × 1K|
= |1K| × |1K|
= |1K|2.

Then, we infer that |1K| (1 − |1K|) = 0. Moreover, by using (i) of Definition 1.1, we have that |1K| = 1.

(ii) Let x ∈ K and n ∈N. According to Definition 1.1 (ii), we have

|xn
| = |x × . . . × x︸      ︷︷      ︸

n times

|

= |x| × . . . × |x|︸        ︷︷        ︸
n times

= |x|n. (1)

Using the fact that |xn
| = 1, we infer from Eq. (1) that |x|n = 1. Hence, we obtain

|x| = n
√
|x|n = 1.

(iii) Observe that

|1K| = | − (−1K)|
= | − 1K × −1K|
= | − 1K|2.

So, from both (i) and Definition 1.1 (ii), we have | − 1K|2 = 1. Hence, by virtue of (ii), we conclude that
| − 1K| = 1.
(iv) Let x ∈ K. Since −x = −1K × x. then by using Definition 1.1 (ii), we see that

| − x| = | − 1K| × |x|.
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The use of (iii) makes us to conclude that | − x| = |x|.
(v) It follows from both Proposition 1.2 (i) and Definition 1.1 (ii) that

1 = |1K|
= |x × x−1

|

= |x| |x−1
|.

This implies that |x| = |x−1
|
−1. Hence, we deduce |x−1

| = |x|−1. This completes the proof.

Remark 1.3. (i) The usual absolute values of R and C are examples of valuations.
(ii) Let | · | be a valuation onK. The valuation | · | is called the trivial valuation, if

|x| =


1 if x , 0

0 otherwise,

Proposition 1.4. Let | · | be a valuation onK and C ∈]1,+∞[. Then, the following statements are equivalent:
(i) For any α ∈ K, if |α| ≤ 1, then |α + 1K| ≤ C.

(ii) For any α, α1 ∈ K, |α + α1| ≤ C max
(
|α|, |α1|

)
.

Proof. First we suppose that (i) holds. Let α, α1 ∈ K. Without loss of generality, we may suppose that

0 < |α| ≤ |α1|. Hence,
∣∣∣∣∣ αα1

∣∣∣∣∣ ≤ 1, and so we get∣∣∣∣∣ αα1
+ 1K

∣∣∣∣∣ ≤ C. (2)

Multiplying the inequality (2), by |α1|, we get

|α + α1| ≤ C|α1|

= C max
(
|α|, |α1|

)
.

Conversely, let α ∈ K be such that |α| ≤ 1. This entails that,

|α + 1K| ≤ C max
(
|α|, |1K|

)
= C max

(
|α|, 1

)
= C.

This completes the proof.

Definition 1.5. A valuation | · | on the fieldK satisfies the triangle inequality if for any α, α1 ∈ K, we have

|α + α1| ≤ |α| + |α1|.

We start our investigation with the following lemma, which constitute a preparation for the proof of
Theorem 1.8

Lemma 1.6. Let | · | be a valuation onK.
(i) Let p ∈N and let α1, . . . , α2p ∈ K. Then,

|α1 + α2 + . . . + α2p | ≤ 2p max
1≤i≤2p

|αi|.

(ii) Let q ∈N and let α1, . . . , αq ∈ K. Then,∣∣∣α1 + α2 + . . . + αq

∣∣∣ ≤ 2q max
1≤i≤2q

|αi|. (3)
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Proof. (i) By induction on p. For p = 1. Without loss of generality, we may suppose that 0 < |α1| ≤ |α2|.

Multiplying by |α2|
−1, then

∣∣∣∣∣α1

α2

∣∣∣∣∣ ≤ 1, so

∣∣∣∣∣α1

α2
+ 1K

∣∣∣∣∣ ≤ C

≤ 2.

Multiplying by |α2|, we get

|α1 + α2| ≤ 2|α2|

= 2 max
(
|α1|, |α2|

)
.

The case |α2| ≤ |α1| is handled similarly. Assume the result true up to p − 1. Since

|α1 + . . . + α2p | = |α1 + . . . + α2p−1 + α2p−1+1 + . . . + x2p |

≤ 2 max (|α1 + . . . + α2p−1 |, |α2p−1+1 + . . . + x2p |) .

Putting 
β1 = α2p−1+1
β2 = α2p−1+2
...
β2p−1 = α2p−1+2p−1 = α2p

and applying the inductive hypothesis, on α1, . . . , α2p−1 and β1, . . . , β2p−1 we obtain

|α1 + . . . + α2p | ≤ 2n max
1≤i≤2p

|αi|.

(ii) Let p be an integer such that 2p−1 < q ≤ 2p. So, if we take xq+1 = xq+2 = . . . = x2p = 0, we have

∣∣∣α1 + α2 + . . . + αq

∣∣∣ = ∣∣∣α1 + α2 + . . . + αq + αq + . . . + α2q

∣∣∣
≤ 2p max

1≤i≤2p
|αi| (as (i)).

≤ 2qmax
1≤i≤2p

|αi|.

This completes the proof.

Remark 1.7. Let n ∈ N. Then, |n| ≤ 2n. Indeed, if we take x1 = x2 = . . . = xn = 1K, then by using the inequality
(3) we obtain |n| ≤ 2n.

Theorem 1.8. LetK be a field and | · | a valuation with Artin constant C (see Definition 1.1 (iii)). Then, | · | satisfies
the triangle inequality if, and only if, C ≤ 2.

Proof. Let | · | be a valuation satisfying the triangle inequality, and let α ∈ K such that |α| ≤ 1. Then,

|α + 1K| ≤ |α| + |1K|
≤ 1 + 1
= 2.
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Conversely, let α, β ∈ K. Hence, for all n ∈N, we obtain that

|α + β|n =

∣∣∣∣∣∣∣ ∑0≤i≤n

Cn
i α

iβn−i

∣∣∣∣∣∣∣
≤ 2(n + 1)max

0≤i≤n

(
|Cn

i ||α
i
||βn−i

|

)
≤ 4(n + 1)max

0≤i≤n

(
Cn

i |α|
i
|β|n−i

)
≤ 4(n + 1)

∑
0≤i≤n

(
Cn

i |α|
i
|β|n−i

)
= 4(n + 1)(|α| + |β|)n.

Taking n-th root and letting n→∞, we find

|α + β| ≤ |α| + |β|,

which completes the proof.

Note that any positive power of a valuation is still a valuation.

Proposition 1.9. Let (K, | · |) be a valued field with Artin constant C, and let λ be a positive real number, then

| · |
λ : K → R+

α 7→ |α|λ

is a valuation onK with Artin constant Cλ.

Proof. According to Definition 1.1, the statements (i) and (ii) of can be proved easily.
For the statement (iii) of Definition 1.1. The fact that |α|λ ≤ 1 implies that |α| ≤ 1. Since | · | is valuation onK
we infer that |α + 1K| ≤ C. Consequently,

|α + 1K|λ ≤ Cλ.

This entails | · |λ is a valuation onKwith Artin constant Cλ.

The following theorem essentially separates the absolute value onR orC from all other valuations enabling
us to avoid carrying out mere generalizations.

Theorem 1.10. [18, Theorem 1] Let (K, | · |) be a valued field. Then,
(i)K is a subfield of (or isomorphic to) C and the valuation induces the restriction topology onK, or
(ii) the valuation onK satisfies the strong triangle inequality

|α1 + α2| ≤ max
(
|α1|, |α2|

)
for all α1, α2 ∈ K.

Definition 1.11. Two valuations | · |1 and | · |2 on the fieldK are equivalent, if there exists a positive real numbers λ
such that | · |2 = | · |λ1 .

Remark 1.12. It follows from Theorem 1.10 that a valuation is either Archimedean as a valuation on a subfield of (or
isomorphic to) C for example that of R and C, or is non-Archimedean.

We define the distance between two elements x, y ∈ K by

d(x, y) = |x − y|.
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The function d(·, ·) is called the topological induced by the valuation. Then, (K, d) is topological space.
Define the closed and the open balls onK centered at λ0 and with radius ε, respectively:

BK(λ0, ε) = {λ ∈ K : |λ − λ0| ≤ ε}

and
BK(λ0, ε) = {λ ∈ K : |λ − λ0| < ε}.

Hence, the fundamental system of neighborhoods of each element λ0 in K consists of the set of element λ
such that |λ − λ0| < ε.

1.3. Non-Archimedean Valuations
A fieldsK to will be considered as a different subfield of (or isomorphic to) C, and all non-Archimedean

valuations to will be considered are non-trivial.

Theorem 1.13. [16, Theorem 1.1] Let | · | be a valuation onK. The following conditions are equivalent:
(i) The valuation is non-Archimedean.
(ii) |n 1K| ≤ 1 for every n ∈N.
(iii) For all x, y ∈ K, |x + y| ≤ max{|x|, |y|}.
(iv) If x, y ∈ K and |x| < |y|, then |x − y| = |y|.

Remark 1.14. A valuation | · | is non-Archimedean, if the set {|n 1K| ≤ 1 : n ∈ N} is bounded, otherwise it is
Archimedean (see [16, Chapter 1]).

In the following, we give one of the most interesting example of the non-archimedean valuation.

Example 1.15. Let Q be a field and p be a prime number. We write every non-zero rational number x as:

x =
a
b

pn

where n, a, b are integers, and gcd(p, ab) = 1 (where gcd means the greatest common divisor). Put

|x|p =
{

p−n if x , 0
0 otherwise. (4)

Then, | · |p is a non-Archimedean valuation on Q. It is called the p-adic valuation.

Proof. • It follows from (4) that |x|p = 0 if, and only, if x = 0.

• If x =
a
b

pn and y =
c
d

pm, where n, m, a, b, c, d are integers, gcd(p, ab) = 1 and gcd(p, cd) = 1(where gcd
means the greatest common divisor), then

xy =
ac
bd

pm+n,

and
gcd(abcd, p) = 1.

Therefore, |xy|p = p−(n+m) = |x|p |y|p. Moreover, xy = 0, if, and only if, x = 0 or y = 0 if, and only if, |x|p |y|p = 0.
Then,

|xy|p = 0 = |x|p |y|p.

•We assume x and y are non-zero rational number. If n ≤ m, then

x + y = pn
(

ad + pm−ncb
bd

)
.
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Hence, we obtain
|x + y|p ≤ p−n

≤ max
{
|x|p, |y|p

}
.

The case m ≤ n is handled similarly.

If x = y = 0, then |x + y|p = 0 = max
{
|x|p, |y|p

}
.

If x = 0 and y , 0, then
|x + y|p = |y|p ≤ max

{
|x|p, |y|p

}
.

If y = 0 and x , 0, then
|x + y|p = |x|p ≤ max

{
|x|p, |y|p

}
.

So, | · |p is a non-Archimedean valuation, is claimed. This completes the proof

Remark 1.16. Let p ≥ 2 be a prime.
(i) The non-Archimedean valued field (Q, | · |p) is not complete.
(ii) The completion of (Q, | · |p) is called the field of p-adic numbers and denoted by (Qp, | · |p). Moreover, we have the
following characterization of p-adic numbers: each x ∈ Qp can be expressed as

x =
∑
i≥n

aipi,

where 0 ≤ ai ≤ p − 1, and |x|p = p−n.

In non-Archimedean theory, there are two kinds of valuations: discrete and dense.

Definition 1.17. Let (K, | · |) be a non-Archimedean valued field.
|K∗| = {|x| : x ∈ K, x , 0} is called the value group of the non-Archimedean valuation.

Moreover, |K∗| is a subgroup of the multiplicative group of positive real numbers.

Definition 1.18. (i) The non-Archimedean valuation is called discrete, if there is a real number 0 < r < 1 such that

|K∗| = {rn : n ∈ Z}.

(ii) The non-Archimedean valuation is called dense, if it is non discrete.

Remark 1.19. (i) If a non-Archimedean valuation is trivial, then it is discrete. Indeed, it follows from Remark 1.16
that for all x , 0, we have |x| = 1 . Then, we infer that |K∗| = 1. This implies that there is 0 < r < 1 such that
|K∗| = {r0 : 0 ∈ Z}. Hence, the non-Archimedean trivial valuation is discrete.
(ii) The p-adic valuation on Qp is discrete. Indeed, by referring to Example 1.15, we have for all x ∈ Q∗p,

|x|p = p−n.

Clearly, 0 < p−1 < 1. Put r = p−1. Hence, we infer that

|Q∗p| = {r
n : n ∈ Z}.

Example 1.20. For nonzero polynomial P ∈ R[X] given by

P(X) = a0 + a1X + · · · + ade1(P)Xde1(P),

where de1(P): is the degree of P, ade1(P) , 0 and a0, a1, · · · , ade1(P) ∈ R. By convention, the degree of the zero polynomial
is −∞.
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Let r be any number greater than 1. For P ∈ R[X], puting

|P| =
{

rde1(P) if P , 0
0 if P = 0. (5)

We define the map | · |∗ on the filed of rational function R(X) by

|PQ−1
|∗ = |P| |Q|−1,

where P ∈ R[X] and Q ∈ R[X]\{0}. Then,
(i) | · | behaves like a non-Archimedean valuation.
(ii) | · |∗ is a non-Archimedean valuation.
(iii) The valuation | · |∗ is discrete on R(X).

Proof. (i) We will prove that | · | satisfies the axioms of a valuation.
• It is clear that P = 0 if, and only if, |P| = 0.
• Let P,Q ∈ R[X]. Then,

|PQ| =
{

rde1(PQ) if PQ , 0
0 if PQ = 0.

=

{
rde1(P) rde1(Q) if PQ , 0
0 if PQ = 0. (6)

We discuss two cases.
First case. If PQ , 0, then we obtain P , 0 and Q , 0. It follows from (6) that

|PQ| = rde1(P) rde1(Q) = |P| |Q|.

Second case. If PQ = 0, then P = 0 or Q = 0 which yields |P| |Q| = 0. Thanks to (6), we can see that
|PQ| = 0 = |P| |Q|. Hence, for all P,Q ∈ R[X], we conclude that

|PQ| = |P| |Q|. (7)

• Let P,Q ∈ R[X]. Then,

|P +Q| =
{

rde1(P+Q) if P , −Q
0 if P = −Q. (8)

We discuss two cases.
First case. If P , −Q, then by using (8), we have

|P +Q| = rde1(P+Q)

≤ rmax{de1(P),de1(Q)}.

Second case. If P = −Q, then by referring to (8), we have

|P +Q| = 0 ≤ rmax{de1(P),de1(Q)}.

Hence, for all P,Q ∈ R[X], we deduce that

|P +Q| ≤ rmax{de1(P),de1(Q)}

≤ max{rde1(P), rde1(Q)
}

≤ max{|P|, |Q|}. (9)
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Thus, | · | is satisfy the axioms of the valuation.
(ii) • Let PQ−1

∈ R(X) and |PQ−1
|∗ = |P| |Q|−1 = 0. Then, we obtain |P| = 0. It follows that P = 0. This implies

that
PQ−1 = 0.

Conversely, let 0 ∈ R(X). Then, 0 = 0 Q−1 for all Q ∈ R[X]\{0}. Hence, |0|∗ = |0| |Q|−1 = 0.
• Let P1Q−1

1 ,P2Q−1
2 ∈ R(X). Therefore,

|P1Q−1
1 P2Q−1

2 |∗ = |(P1P2)(Q2Q1)−1
|

= |P1P2| |Q2Q1|
−1.

It follows from (7) that

|P1Q−1
1 P2Q−1

2 |∗ = |P1| |P2| (|Q2| |Q1|)−1

= |P1| |Q1|
−1
|P2| |Q2|

−1

= |P1Q−1
1 |∗ |P2Q−1

2 |∗.

• Let P1Q−1
1 ,P2Q−1

2 ∈ R(X). So, we have

|P1Q−1
1 + P2Q−1

2 |∗ = |(P1Q2 + P2Q1)(Q2Q1)−1
|

= |P1Q2 + P2Q1| |Q2Q1|
−1.

In view of (7) and (9) implies that

|P1Q−1
1 + P2Q−1

2 |∗ ≤ max {|P1Q2|, |P2Q1|} |Q2Q1|
−1

≤ max{|P1| |Q2|, |P2| |Q1|} |Q2|
−1
| |Q1|

−1

≤ max{|P1| |Q1|
−1
|, |P2| |Q2|

−1
}

≤ max{|P1Q−1
1 |∗, |P2Q−1

2 |∗}.

Hence, we conclude that | · |∗ is a non-Archimedean valuation.
(iii) For all PQ−1

∈ R(X)∗, we have

|PQ−1
|∗ = rde1(P) r−de1(Q)

=
(
r−1

)de1(Q)−de1(P)
.

Put u = r−1. Clearly, 0 < u < 1. Hence, we deduce that

|R(X)∗| = {un : n ∈ Z}.

This completes the proof.

Remark 1.21. | · | satisfies the axioms of a valuation but it is not a valuation, because R[X] is not a field.

Example 1.22. Let Γ be a field. Consider the formal series by

f =
∑
i∈N

aitαi ,

where (ai)i ⊂ Γ and (αi)i is an increasing sequence of rational number such that αi −→ +∞ as i → +∞. It is know
that the set of formal series is a field. We denote it by K. Let f ∈ K and a1 , 0. We define a non-Archimedean
valuation onK by

| f | =
{

2−a1 if f , 0
0 if f = 0.



A. Ammar / Filomat 37:29 (2023), 9791–9821 9800

Then, | · | is discrete onK. Indeed, for f ∈ K∗, we have | f | = 2−a1 . Then,

|K∗| = {2−a1 , a1 ∈ Q}.

This is equivalent to saying that | · | is not dense which yields is discrete.

Remark 1.23. Let (K, | · |) be a non-Archimedean valued field.
(i) The non-Archimedean valuation onK can be either dense or discrete. This nature of the valuation is closely related
to the nature of the metric that it induces onK.
(iii) The valuation on K is discrete if, and only if, the metric that it induces on K is discrete (i.e., if for any sequence
(xn, yn)n in K2 such that the sequence of real numbers (d(xn, yn))n is strictly decreasing and d(xn, yn) −→ 0 as
n→ +∞).
(iii) The metric d onK is dense if, and only, if the valuation inducing it is dense (i.e., the value group |K∗| is dense in
R∗+).

Proposition 1.24. [18, Proposition 2] Let (K, | · |) be a non-archimedean valued field.
(i) Every ball is both open and closed.
(ii) Two balls are either disjoint or one is a subset of the other.
(iii) Each point of any ball is a center.

Remark 1.25. In general, the closed ball is not compact on non-archimedean valued field. But ifK is a locally compact
field (i.e. every point has a neighborhood which is a compact set) with a non trivial non-archimedean valuation, then
every closed ball ofK is compact.

Proposition 1.26. [16, Exercice 1. B] LetK be a field with a non trivial non-archimedean valuation. The following
conditions are equivalent
(i)K is locally compact.

(ii) BK(0, 1) is compact.
(iii) Every closed bounded subset ofK is compact.

Notice that the classification of locally compact fields is well known see for instance A. Weil in [20].

Definition 1.27. Let (K, | · |) be a non-Archimedean valued field.
(i) A sequence (xn)n ofK is said to converge to x ∈ K if, the sequence of real numbers (|xn − x|) converges to 0.

(ii) A sequence (xn)n of K is called a Cauchy sequence if, for each ε > 0 there exists n0 ∈ N such that |xm − xn| < ε
whenever n ≥ m ≥ n0.

(iii) A metric space (K, d) is said to be complete if every Cauchy sequence of elements inK converges.

Definition 1.28. X is called spherically complete if each nested sequence of balls B1 ⊃ B2 ⊃ . . . has a non-empty
intersection.

Now, let us assume that (K, | · |) be a complete non-Archimedean filed.

Definition 1.29. Let X be a vector space over non-Archimedean field K. A non-Archimedean norm on X is a map
∥ · ∥ : X −→ R+ satisfying
(i) ∥x∥ = 0 if, and only if, x = 0.
(ii) ∥λx∥ = |λ| ∥x∥ for any x ∈ X and any λ ∈ K.

(iii) ∥x + y∥ ≤ max
{
∥x∥, ∥y∥

}
, for any x, y ∈ X.
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Property (iii) of Definition 1.29 is referred to as the ultrametric or strong triangle inequality. The pair (X, ∥ · ∥)
is called a non-Archimedean normed space, where X is a vector space over non-Archimedean filed K and
∥ · ∥ is a non-Archimedean norm on X.

Remark 1.30. (i) The non-Archimedean valuation onK itself is a non-Archimedean norm.
(ii) Let (X, ∥.∥) be a non-Archimedean normed space. If x, y ∈ X such that ∥x∥ , ∥y∥, then we have

∥x + y∥ = max
{
∥x∥, ∥y∥

}
.

(iii) It is clear that the strong triangle inequality implies the triangle inequality. Then, a non-Archimedean normed
space are normed according to the standard definition.

A normed vector space (X, ∥.∥) will be considered as a metric space with respect to the metric

d(x, y) = ∥x − y∥ for any x, y ∈ X.

Then, d(·, ·) induces a topology on X. Define the closed and the open balls on X centered x0 and with radius
ε, respectively :

BX(x0, ε) = {x ∈ X : ∥x − x0∥ ≤ ε}

and
BX(x0, ε) = {x ∈ X : ∥x − x0∥ < ε}.

Definition 1.31. Let (X, ∥.∥) be a non-Archimedean normed space and E be a nonempty subset of X.
(i) The set E is said to be bounded, if the set of real numbers {∥x∥ : x ∈ E} is bounded.

(ii) The set E is said to be absolutely convex, if αx + βy ∈ E, for all x, y ∈ E and α, β ∈ BK(0, 1), i.e., if E is
BK(0, 1)-module.
(iii) The set E is said to be compactoid, if for every r > 0 there exists a finite set F ⊂ X such that

E ⊂ BX(0, r) + CoF,

where CoF is a intersection for all closed absolutely convex subsets of X containing F. ♢

Lemma 1.32. [16, 4.S Exercise] Let (X, ∥.∥) be a non-Archimedean normed space over a fieldK.
(i) Every compactoid is bounded.
(ii) If E,F are compactoid of X, then so E + F.
(iii) IfK is locally compact, then the compactoids of X are just the precompact set.

Definition 1.33. Let (X, ∥.∥) be a non-Archimedean normed space. A sequence (xn)n ⊂ X converges to x ∈ X, if the
sequence of real numbers (∥xn − x∥)n converges to 0.

Lemma 1.34. [3, Proposition 2.13] Let (X, ∥.∥) be a non-Archimedean normed space. If the sequence (xn)n converges
in X, then it is bounded. ♢

Definition 1.35. A non-Archimedean Banach space (X, ∥.∥) is a non-Archimedean normed space, which is complete
with respect to the natural metric induced by the norm. ♢

Remark 1.36. (i) A closed subspace of a non-Archimedean Banach space is a non-Archimedean Banach space.
(ii) The space (K, | · |) is a non-Archimedean Banach spaces. Indeed, the fact that (K, | · |) is complete follows from
Remark 1.30 (i) that it is non-Archimedean Banach spaces.
(iii) The space (Kn, ∥ · ∥) is equipped with the norm defined by

∥λ∥ = max
{
|λi| : 1 ≤ i ≤ n

}
, for all λ = (λi)i ⊂ K

n,

is a non-Archimedean Banach space. Indeed, it follows from (ii) and (iii) that (Kn, ∥ · ∥) is a non-Archimedean Banach
space.
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Example 1.37. Let X be a non-Archimedean Banach space and F be a closed subspace of X. Let P : X→ X/F be the
quotient map. Define the norm on the quotient space X/F by

∥Px∥ = d(x,F), x ∈ X

where d(x,F) = inf
y∈F
∥x − y∥. Then, this norm is a non-Archimedean norm on X/F. Indeed, we have Px = Py, if and

only if, x − y ∈ F. This implies that the norm is well defined.
• Let Px ∈ X/F such that ∥Px∥ = 0. Then, d(x,F) = 0 which yields x ∈ F. Hence, we infer that Px = 0. Conversely,
we have ∥0∥ = ∥P0∥. The fact that F is a subspace of X implies that d(0,F) = 0. Consequently, ∥0∥ = 0.
• Let λ ∈ K∗ and Px ∈ X/F. Since F is a vector space, then we have

∥λPx∥ = ∥P(λx)∥
= inf

y∈F
∥λx − y∥

= inf
λ−1 y∈F

∥∥∥∥λ (
x − λ−1y

)∥∥∥∥
= |λ| inf

λ−1 y∈F

∥∥∥x − λ−1y
∥∥∥

= |λ| ∥Px∥.

• Let Px ∈ X/F and Py ∈ X/F. Then, we have

∥Px + Py∥ = inf
z∈F
∥x + y − z∥. (10)

Let z1 ∈ F. Then, we have z = z − z1 + z1. Putting z2 = z − z1. Since F is a vector space, then z2 ∈ F. It follows from
(10) that

∥Px + Py∥ = inf
z1+z2∈F

∥(x − z2) + (y − z1)∥

≤ inf
z1+z2∈F

max{∥x − z2∥, ∥y − z1∥}

≤ max{ inf
z1∈F
∥x − z2∥, inf

z2∈F
∥y − z1∥}

≤ max{∥Px∥, ∥Py∥}.

It is shown that ∥ · ∥ is a non-archimedean norm.

Example 1.38. [2, Example 7] Let ω = (ωi)i be a sequence of non-zero elements inK. We define ℓ∞(N,K) by

ℓ∞(N,K) =
{
x = (xi)i : xi ∈ K,∀ i ∈N and ∥x∥ = sup

i∈N
|ωi|

1/2
|xi| < +∞

}
,

where (|ωi|
1/2)i ⊂ R∗+, and it is equipped with the norm

x = (xi)i ⊂ Eω, ∥x∥ = sup
i∈N

(
|ωi|

1/2
|xi|

)
.

The space (ℓ∞(N,K), ∥ · ∥) is a non-Archimedean Banach space.

Now, let us recall the space Eω which plays a very important role in the sequel. The reader interested in
this space may also refer to T. Diagana and F. Ramaroson [3].

Definition 1.39. Let ω = (ωi)i be a sequence of non-zero elements inK. We define Eω by

Eω =
{
x = (xi)i : xi ∈ K,∀ i ∈N and lim

i→+∞
|ωi|

1/2
|xi| = 0

}
,

and it is equipped with the norm

x = (xi)i ⊂ Eω, ∥x∥ = sup
i∈N

(
|ωi|

1/2
|xi|

)
. ♢
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We recall the following results due to S. Ludkovsky and B. Diarra [13].

Proposition 1.40. The space (Eω, ∥ · ∥) is a non-Archimedean Banach space.

Proof. In order to show that (Eω, ∥ · ∥) is a non-Archimedean Banach space, we will prove that Eω is a
closed subspace of ℓ∞(N,K). Let us assume that x ∈ Eω. Then, lim

i→+∞
|ωi|

1/2
|xi| = 0. This implies that the

sequence of real numbers (|ωi|
1/2
|xi|)i is bounded. Hence, we infer that sup

i∈N
|xi||ωi|

1/2 < +∞. It is show that

Eω ⊂ ℓ∞(N,K). It remains to prove that Eω is a closed. Let (x(n))n ⊂ Eω such that x(n) −→ x as n → +∞.
Then, for any ε > 0, there exists n0 ∈N such that for all n ≥ n0, we have

∥x(n) − x∥ = sup
i∈N
|xi(n) − xi||ωi|

1/2 < ε.

This implies that for all i ∈N and n ≥ n0,

|xi(n) − xi||ωi|
1/2 < ε. (11)

Since the valuation is non-Archimedean, then we have

|xi||ωi|
1/2 = |xi(n0) − xi(n0) + xi||ωi|

1/2

≤ max
{
|xi(n0) − xi||ωi|

1/2, |xi(n0)||ωi|
1/2

}
.

It follows from (11) that

|xi||ωi|
1/2
≤ max

{
ε, |xi(n0)||ωi|

1/2
}
.

Consequently,

lim sup
i∈N

|xi||ωi|
1/2
≤ max

{
ε, lim sup

i∈N
|xi(n0)||ωi|

1/2
}
.

The fact that lim sup
i∈N

|xi(n0)||ωi|
1/2 = lim

i→+∞
|xi(n0)||ωi|

1/2 = 0 implies that

lim sup
i∈N

|xi||ωi|
1/2
≤ ε.

By the arbitrariness of ε, we infer that lim
i→+∞

|xi||ωi|
1/2 = 0. This enables us to conclude that x ∈ Eω. Finally, the

use of Remark 1.36 (i) and Example 1.38 allows us to conclude that (Eω, ∥ · ∥) is a non-Archimedean Banach
space.

Remark 1.41. (i) For x = (xi)i, y = (yi)i, the inner product is defined by

⟨·, ·⟩ : Eω × Eω −→ K

(x, y) 7−→

+∞∑
i=0

xiyiwi.

The space
(
Eω, ∥ · ∥, ⟨·, ·⟩

)
is called a non-Archimedean (or p-adic) Hilbert space (see [3, Section 2.4] and Example

1.38 ).

(iii) Eω has a canonical orthogonal base, namely, {ei : i = 0, 1, 2, . . . } where ei = (0, . . . , 0, 1, 0, . . . ) with 1 at the i th
place. For each i ∈N, we have ∥ei∥ = |ωi|

1
2 (see [2, Subsection 2.3.2]).
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1.4. Gap between subspaces of non-Archimedean Banach spaces

Definition 1.42. Let X be a non-Archimedean Banach space such that ∥X∥ ⊆ |K| (where ∥X∥ = {∥x∥ : x ∈ X} and
|K| := {|λ| : λ ∈ K}) and M, N be two linear subspaces of X. Let us define

δ(M,N) =


sup
x∈M
∥x∥=1

d(x,N) if M , {0}

0 otherwise,

and
δ̂(M,N) = max

{
δ(M,N), δ(N,M)

}
,

where
d(x,N) = inf

{
d(x, z) : z ∈ N

}
= inf

{
∥x − z∥ : z ∈ N

}
.

δ̂(M,N) is called the gap between the subspaces M and N.

Remark 1.43. (i) One of the most difference between the Archimedean and the non-Archimedean theories is that if
X is a normed vector space over K, the set ∥X∥ may not be the same as |K|. As a consequence, non zero element of
X may be fail to have a scalar multiple of norm 1, in fact, the unit sphere {x ∈ X : ∥x∥ = 1} may well very be empty.
Indeed, let us assume that ∥X∥ , R+. Consider for r ∈ R+\∥X∥ the norm ∥ · ∥r on X by

∥x∥r = r−1
∥x∥.

This implies that {
x ∈ X : ∥x∥r = 1

}
= ∅.

(ii) Accordingly, we added the condition ∥X∥ ⊆ |K| in Definition 1.42. This hypothesis leads to the unit sphere is not
empty, and therefore the existence of δ and thus that of δ̂(., .) are ensured.

The following properties of the gap follow directly from the Definition 1.42.

Proposition 1.44. Let M, N be two linear subspaces of a non-Archimedean Banach space X such that ∥X∥ ⊆ |K|.
Then, the following properties are hold:

(i) δ(M,N) = δ(M,N) and δ̂(M,N) = δ̂(M,N).

(ii) δ(M,N) = 0 if, and only if, M ⊂ N.

(iii) δ̂(M,N) = 0 if, and only if, M = N.

(iv) 0 ≤ δ(M,N) ≤ 1 and 0 ≤ δ̂(M,N) ≤ 1.

Proof. (i) The fact that d(x,N) = d(x,N) implies that

δ(M,N) = sup
x∈M
∥x∥=1

d(x,N)

= sup
x∈M
∥x∥=1

d(x,N)

= sup
x∈M
∥x∥=1

d(x,N)

= δ(M,N).
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It follows that

δ̂(M,N) = max {δ(M,N); δ(N,M)}

= max
{
δ(M,N); δ(N,M)

}
= δ̂(M,N).

(ii) Assume that δ(M,N) = δ(M,N) = 0. Then, we have

sup
x∈M
∥x∥=1

d(x,N) = 0.

Hence, for all x ∈M we get d(x,N) = 0. This implies that x ∈ N. Therefore, M ⊂ N.Conversely, let us assume
that M ⊂ N. Then, for all x ∈M we have d(x,N) = 0. Consequently, δ(M,N) = δ(M,N) = 0.

(iii) Let δ̂(M,N) = 0. This is equivalent to saying that δ(M,N) = 0 and δ(N,M) = 0. Then, we can conclude
from (ii) that

δ̂(M,N) = 0 if, and only if, M ⊂ N and N ⊂M.

As a result δ̂(M,N) = 0 if, and only if, N =M, as desired.

(iv) On the one hand, since the distance is always positive, then it is easy to see that δ(M,N) ≥ 0. On the
other hand, we have

δ(M,N) = sup
x∈M
∥x∥=1

[
inf
y∈N
∥x − y∥

]
≤ sup

x∈M
∥x∥=1

[
inf
y∈N

(
max{∥x∥, ∥y∥}

)]
.

If max{∥x∥, ∥y∥} = ∥x∥ = 1, then we can conclude that

0 ≤ δ(M,N) ≤ 1. (12)

If max{∥x∥, ∥y∥} = ∥y∥, then we have inf
y∈N
∥y∥ = 0. This implies that

0 ≤ δ(M,N) ≤ 0. (13)

Therefore, by combining (12) and (13), we deduce that 0 ≤ δ(M,N) ≤ 1. As a result, 0 ≤ δ̂(M,N) ≤ 1.

Remark 1.45. (i) It follows from the Definition 1.42 that δ(M, 0) = 1, if M , {0}.
(ii) Let us assume that ∥X∥ ⊆ |K|. Keeping in mind that d(cx,N) = |c|d(x,N) for any non-zero element c in K, we
infer that

sup
x∈M
∥x∥=|c|

d(x,N) = |c|δ(M,N). (14)

2. Linear operators on a non-Archimedean Banach space

In [2], T. Diagana applied the theory of linear operators on non-Archimedean Banach spaces. He
developed this theory and studied its basic properties. It is worth mentioning that the proofs which are
valid for real or complex spaces cannot be given in the same way for spaces over a non-Archimedean
valued field K. Among the works in this direction, we can state, for example ([1, 4, 5]). Furthermore
in [3], T. Diagana and F. Ramaroson developed this theory and used it to study the spectral theory on
non-Archimedean Hilbert spaces.The analysis in and over non-archimedean valued fields is known as
ultrametric (non-archimedean, p-adic) analysis.
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Definition 2.1. Let X and Y be two non-Archimedean Banach spaces and T : D(T) ⊂ X −→ Y. T is called linear, if
D(T), which designates its domain, is a vector subspace of X, and if

T(αx + βy) = αTx + βTy,

for all α, β ∈ K and x, y ∈ D(T).

The symbols R(T) and N(T) stand respectively for the range and the null space of the operator T, which are
defined by

R(T) =
{
Tx : x ∈ D(T)

}
, and N(T) =

{
x ∈ D(T) : Tx = 0

}
.

2.1. Bounded linear operators
Definition 2.2. Let X and Y be two non-Archimedean Banach spaces. A linear operator T : X −→ Y is called
bounded, if there exists M ≥ 0 such that

∥Tx∥ ≤M∥x∥, for all x ∈ X.

Denoted by L(X,Y), the set of all bounded linear operators to X from Y. If X = Y, then L(X,X) = L(X).
Note that L(X) is a unitary Banach algebra.

Remark 2.3. (i) Let X and Y be two non-Archimedean Banach spaces. For T ∈ L(X,Y), we have

∥T∥ = sup
x∈X\{0}

∥Tx∥
∥x∥

= inf{M ≥ 0 : ∥Tx∥ ≤M∥x∥, for all x ∈ X} < +∞.

(ii) T is continuous if, and only if, ∥T∥ < +∞.
(iii) The null and identity operators on X will be denoted respectively by OX and IX, which are defined by

OX(x) = 0 and IX(x) = x, for all x ∈ X.

Moreover, the operators OX and IX are bounded.

Lemma 2.4. Let X be a non-Archimedean Banach space.
(i) If T,S ∈ L(X) and λ ∈ K, then T + S, λ T, TS and ST belong to L(X).
(ii) The space (L(X), ∥ · ∥) of bounded linear operators on X, is non-Archimedean. ♢

Proof. (i) Since T, S ∈ L(X), thenD(T + S) = X,D(λT) = X,D(TS) = X andD(TS) = X.
• Let x ∈ X, then we have

∥(T + S)x∥ = ∥Tx + Sx∥
≤ max{∥Tx∥, ∥Sx∥}.

Based on the assumption T,S ∈ L(X), we infer that

∥(T + S)x∥ ≤ max{∥T∥, ∥S∥} ∥x∥.

• Let x ∈ X, then by the boundedness of the operator T, we infer that

∥(λ T)x∥ = |λ| ∥Tx∥
≤ |λ| ∥T∥ ∥x∥.

• Let x ∈ X, then by the boundedness of the operators T and S, we have

∥(T S)x∥ ≤ ∥T∥ ∥Sx∥
≤ ∥T∥ ∥S∥ ∥x∥.
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• Let x ∈ X, then we have
∥(S T)x∥ ≤ ∥S∥ ∥T∥ ∥x∥.

(ii) Let (Tn)n be a Cauchy sequence in L(X). This implies that for every ε > 0 there exists n0 ∈N such that

∥Tn − Tm∥ < ε, for all n,m ≥ n0.

Then, for all x ∈ X\{0}, we have,

∥Tnx − Tmx∥ < ε ∥x∥, for all n,m ≥ n0. (15)

This means that (Tnx)n is a Cauchy sequence in X. The fact that X is a non-Archimedean Banach space
implies that there exists y ∈ X such that ∥Tnx − y∥ −→ 0 as n→ +∞. Setting Tx = y, where T : X −→ X is a
linear operator. Letting m→ +∞ in (15), we infer that

∥Tnx − Tx∥ ≤ ε ∥x∥, for all n ≥ n0. (16)

Now, we have

∥Tx∥ = ∥Tx − Tnx + Tnx∥
≤ max{∥Tx − Tnx∥, ∥Tnx∥}.

Using the fact that Tn ∈ L(X) for all n ≥ n0, we deduce from (16) that

∥Tx∥ ≤ max{ε ∥x∥, ∥Tn∥ ∥x∥}
≤ max{ε, ∥Tn∥} ∥x∥.

This shows that T is bounded. Moreover, ∥Tn − T∥ < ε, for all n ≥ n0. This is equivalent to saying that
∥Tn − T∥ −→ 0 as n→ +∞.

Remark 2.5. Let X be a non-Archimedean Banach space. If T ∈ L(X), we defined a descent norm by

∥T∥0 = sup
x∈X
∥x∥≤1

∥Tx∥.

(i) The descent norm ∥ · ∥0 is equivalent to ∥ · ∥ but need not be identical with it (see [16, Chapter 3]).
(ii) If the valuation ofK is dense, then these norms are always equivalent and equal (see [19, Section 2]).

We illustrate Remark 2.5 with the following example:

Example 2.6. Let X = Q5. Consider the linear operator

IQ5 : (Q5, ∥ · ∥5) −→ (Q5, | · |5)

where ∥x∥5 := 2|x|5, for all x ∈ Q5. Then, the norms ∥ · ∥5 and | · |5 are equivalent but not equal. Indeed, it follows from
Remark 1.19 (ii) that | · |5 is discrete. Moreover, we have

∥IQ5∥ = sup
x∈Q5\{0}

|x|5
∥x∥5

= sup
x∈Q5\{0}

|x|5
2|x|5

=
1
2
.

Hence,

∥IQ5∥0 = sup
x∈Q5
∥x∥5≤1

|x|5 = sup
x∈Q5

2|x|5≤1

|x|5 =
1
5
.

Hence, we infer that

∥IQ5∥0 ≤ ∥IQ5∥ ≤ α∥IQ5∥0, for all α ≥
5
2
.

Thus, the norms ∥ · ∥5 and | · |5 are equivalent but not equal.
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Remark 2.7. Let X be a non-Archimedean Banach space overK.
(i) In the non-Archimedean theory, the set ∥X∥ := {∥x∥ : x ∈ X} may not be the same as |K| := {|α| : α ∈ K} i.e., we
can find x ∈ X\{0} and α ∈ K\{0} such that ∥x∥ , |α|. As a consequence,

∥α−1 x∥ = |α−1
| ∥x∥ = |α|−1

∥x∥ , 1,

in fact, the set {x ∈ X : ∥x∥ = 1} may well very be empty.
(ii) Assume that ∥X∥ ⊆ |K|. Let T ∈ L(X). Then, the operator norms ∥ · ∥ and ∥ · ∥0 are equivalent and equal. Indeed,
let x ∈ X\{0}. The fact that ∥X∥ ⊆ |K| implies that there exists c ∈ K\{0} such that |c| = ∥x∥. Setting y = c−1x we
implies that y ∈ X and ∥y∥ = 1. Hence,

∥T∥ = sup
x∈X
∥x∥=1

∥Tx∥ = ∥T∥0.

Remark 2.8. LetK be a quadratically closed field (i.e., every element ofK is a square). Then, we have

∥Eω∥ ⊆ |K|.

Indeed, the fact thatK is a quadratically closed and ωi ∈ K for all i ∈N implies that ω
1
2
i ∈ K for all i ∈N. Then,

|ωi| = |(ω
1
2
i )2
|

= |ω
1
2
i × ω

1
2
i |

= |ω
1
2
i |

2.

Taking square root yields |ω
1
2
i | = |ωi|

1
2 . It follows from Remark 1.41 (iii) that ∥ei∥ = |ω

1
2
i |. This enables us to conclude

that ∥Eω∥ ⊆ |K|.

Proposition 2.9. Consider, for T ∈ L(X,Y), the decent norm ∥ · ∥0 defined by

∥T∥0 = sup
x∈X
∥x∥≤1

∥Tx∥.

Then, ∥ · ∥0 is a non-Archimedean norm equivalent to ∥ · ∥, i.e.,

∥T∥0 ≤ ∥T∥ ≤
1
ζ
∥T∥0, (17)

where ζ = sup{|λ| : λ ∈ K and |λ| < 1}.

Proof. It is clear that ∥ · ∥0 is a non-Archimedean norm on L(X,Y). On the one hand, since for all x ∈ X, we
have

∥Tx∥ ≤ ∥T∥∥x∥,

then, we obtain
∥Tx∥ ≤ ∥T∥, for all x ∈ X such that ∥x∥ ≤ 1.

This implies that

∥T∥0 ≤ ∥T∥. (18)

On the other hand, if λ ∈ K such that 0 < |λ| < 1, then the fact that lim
n→+∞

|λ|n = 0 and lim
n→−∞

|λ|n = +∞ implies
that

R∗+ =
⋃
n∈Z

]
|λ|n+1, |λ|n

]
.
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Hence, for x , 0, there exists m ∈ Z such that

|λ|m+1 < ∥x∥ ≤ |λ|m. (19)

This is equivalent that |λ| < ∥λ−mx∥ ≤ 1. This implies from definition of the descent norm that

∥T(λ−mx)∥ ≤ ∥T∥0. (20)

Based on the assumption ∥T(λ−mx)∥ = ∥λ−mTx∥ = |λ|−m
∥Tx∥, we infer from (20) that

∥Tx∥ ≤ |λ|m∥T∥0.

Thus, the use of (19) makes us conclude that

∥Tx∥ ≤
∥x∥
|λ|
∥T∥0, for all x , 0.

This leads to deduce that

∥T∥ ≤
1
|λ|
∥T∥0, for all λ ∈ K and 0 < |λ| < 1. (21)

As a result, by using (18), we infer that (17) holds.

Proposition 2.10. Let T ∈ L(X,Y). Then, the norms ∥ · ∥0 and ∥ · ∥ are equal if one of the following holds:

(i) The valuation ofK is dense.

(ii) ∥X∥ ⊆ |K|

Proof. (i) If the valuation ofK is dense, then there exists a sequence (λn)n≥1 such that |λn| < 1 and lim
n→+∞

|λn| = 1.
This implies that sup{|λn| : (λn)n≥1 ⊂ K and |λn| < 1} = 1. This leads from (17) to

∥T∥0 ≤ ∥T∥ ≤ ∥T∥0.

(ii) If ∥X∥ ⊆ |K|, then there exists c ∈ K∗ such that ∥x∥ = |c|. Then, setting x1 = c−1x ∈ X one indeed has
∥x1∥ ≤ 1. This implies that

∥T∥ = sup
x∈X
∥x∥≤1

∥Tx∥ = ∥T∥0.

As a result, ∥ · ∥0 and ∥ · ∥ are equal, as desired.

Definition 2.11. Let X be a non-Archimedean Banach space. If T ∈ L(X), then
(i) T is said to be injective, if N(T) = {0}.
(ii) T is said to be surjective, if R(T) = X.
(iii) T is said to be invertible (or bijective), if it is both injective and surjective.

Remark 2.12. Let X be a non-Archimedean Banach space and let T ∈ L(X). If T is invertible, then its inverse T−1

is a bounded operator. This is the famous Banach inverse bounded operator theorem.

Lemma 2.13. Let X be a non-Archimedean Banach space and let T ∈ L(X).

(i) If ∥T∥ < 1, then (IX − T) is an isometric operator, (IX − T)−1 = IX +

∞∑
n=1

Tn and

∥(IX − T)−1
∥ = 1.

(ii) If E ⊆ L(X) such that {Tx : T ∈ E} is a bounded set in X, for every x ∈ X. Then, E is a bounded set in L(X).
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Proof. (i) Let n ∈N. Since T ∈ L(X), then we have

∥Tn
∥ ≤ ∥T∥n. (22)

Based on the assumption ∥T∥ < 1, we infer that

∥T∥n −→ 0 as n→ +∞. (23)

This implies that the series
∞∑

k=0

Tk is absolutely convergent. Putting

Sn =

n∑
k=0

Tk,

we have

Sn(IX − T) =

n∑
k=0

Tk
−

n∑
k=0

Tk+1

= IX − Tn+1, (24)

and

(IX − T)Sn =

n∑
k=0

Tk
−

n∑
k=0

Tk+1

= IX − Tn+1. (25)

It follows from (23) and (22) that Tn+1
−→ 0 as n→ +∞. Letting n→ +∞ in (24) and (25), we obtain

(IX − T)
∞∑

k=0

Tk =

∞∑
k=0

Tk(IX − T) = IX.

On the other hand, one sees that∥∥∥∥∥∥∥
∞∑

n=1

Tk

∥∥∥∥∥∥∥ ≤ sup
n≥1
∥Tn
∥.

= max
n≥1
∥Tn
∥

< 1.

Therefore ∥∥∥(IX − T)−1
∥∥∥ = ∥∥∥∥∥∥∥IX +

∞∑
n=1

Tn

∥∥∥∥∥∥∥ .
∥∥∥(IX − T)−1

∥∥∥ =

∥∥∥∥∥∥∥IX +

∞∑
n=1

Tn

∥∥∥∥∥∥∥
= 1.

A consequence of these observations is that IX − T is an isometric operator.
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(ii) Let E ⊂ L(X) be such that for every x ∈ X the set {Tx : T ∈ E} is bounded. For each positive integer n, let

Fn = {x ∈ X : for all T ∈ E, ∥Tx∥ ≤ n}. (26)

Clearly, Fn is closed in X. Then, X =
⋃

n

Fn, one of Fn has nonempty interior. Hence, there exists n ∈N and

ε > 0 such that BX(y, ε) ⊂ Fn. Moreover, each Fn is a group. Therefore, we obtain BX(0, ε) ⊂ Fn. Let c ∈ K
such that 0 < |c| < 1. For every x ∈ X there is an m ∈ Z for which

ε|c| ≤ |c|m∥x∥ ≤ ε. (27)

This implies that cmx ∈ BX(0, ε). By virtue of (27) and (26), we have

∥Tx∥ = ∥T(c−mcmx)∥
= |c|−m

∥T(cmx)∥
≤ n|c|−m

≤
n
ε|c|
∥x∥.

This implies that E ⊂
{
T ∈ L(X) : ∥T∥ ≤

n
ε|c|

}
. This completes the proof.

Remark 2.14. Let X be a non-Archimedean Banach space. Then, L(X,K) which is called the dual of X and denoted
X′, is a non-Archimedean Banach space. ♢

The following result may be found in [16]

Theorem 2.15. LetK be spherically complete. Let T be a closed absolutely convex subset of a locally convex space X.
For any non zero x ∈ X and x < T, there exists x∗ ∈ X′ such that x∗(x) = 1, |x′(T)| < 1.

2.2. The adjoint operator on Eω
Definition 2.16. Let T ∈ L(Eω). The linear operator S is called the adjoint of T if ⟨Tx, y⟩ = ⟨x,Sy⟩, for all x, y ∈ Eω,
where ⟨·, ·⟩ is the inner product of Eω.

Remark 2.17. Let T ∈ L(Eω). Then,
(i) In the classical Banach space, any bounded linear operator admit an adjoint, but in the non-Archimedean Banach
space, it is not true.
(ii) The adjoint of an operator T is denoted by T∗. If T∗ exists, then it is unique.
(iii) Let (ei)i ∈ N the canonical basis of (Eω). Then, T∗ is an adjoint for T if, and only if, ⟨Tei, e j⟩ = ⟨ei,T∗e j⟩, for all
i, j ∈N.
(iv) If M is a subspace of Eω, then M⊥ =

{
x ∈ Eω : ⟨x, y⟩ = 0, for all y ∈ Eω

}
.

The collection of all bounded linear operators on Eω whose adjoint operators do exist is denoted by L̃(Eω).
Furthermore L̃(Eω) is a closed unitary subalgebra of L(Eω).

Proposition 2.18. [3, proposition 3.20] If T ∈ L̃(Eω) and for λ ∈ K, then
(i) (λ + T)∗ = λ + T∗.
(ii) ∥T∥ = ∥T∗∥.

Lemma 2.19. If T ∈ L̃(Eω), then N(T∗) = R(T)⊥.

Proof. Let us assume that x ∈ N(T∗). Then, we obtain T∗x = 0. This leads to ⟨y,T∗x⟩ = 0, for all y ∈ Eω.
Consequently, ⟨Ty, x⟩ = 0, for all y ∈ Eω,which yields x ∈ R(T)⊥. It is show that N(T∗) ⊂ R(T)⊥. Conversely,
let x ∈ R(T)⊥. Then, we infer that ⟨Ty, x⟩ = 0 for all y ∈ Eω. This implies that ⟨y,T∗x⟩ = 0, for all y ∈ Eω.
Hence, we deduce that x ∈ N(T∗).
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Definition 2.20. Let X be a non-Archimedean Banach space and let T ∈ L(X).
(i) A sequence (Tn)n of bounded linear operators mapping on X is said to be norm convergent, denoted by Tn → T, if
∥Tn − T∥ → 0 as n→∞.
(ii) A sequence (Tn)n of bounded linear operators mapping on X is said to be pointwise convergent to T, denoted by
Tn

p
−→ T, if ∥Tnx − Tx∥ → 0 for every x ∈ X as n→∞. ♢

3. Non-Archimedean closed and closable linear operators

Since we are going to deal with graphs of linear operators, it will be necessary to consider the cartesian
product X × Y which is a non-Archimedean normed space with the usual definition of addition and
multiplication by scalars. The norm is defined by∥∥∥(x, y)

∥∥∥ = max
{∥∥∥x

∥∥∥, ∥∥∥y
∥∥∥} for all x ∈ X and y ∈ Y.

Definition 3.1. Let X and Y be two non-Archimedean Banach spaces. An unbounded linear operator T : D(T) ⊂
X −→ Y is said to be closed if its graph

G(T) =
{
(x,Tx) ∈ X × Y : x ∈ D(T)

}
,

as a subset of X × Y, is closed.

The following proposition gives a characterization for closedness of unbounded linear operator T acting
from X into Y.

Proposition 3.2. Let T : D(T) ⊂ X −→ Y be a closed linear operator. If (xn) ⊂ D(T) such that ∥xn − x∥ → 0 and
∥Txn − y∥ → 0 as n→∞, for some x ∈ X and y ∈ Y, then x ∈ D(T) and y = Tx.

The collection of closed linear operators from X into Y is denoted by C(X,Y). When X = Y, this is simply
denoted by C(X).

Remark 3.3. Note that if T ∈ L(X,Y), then it is closed. Indeed, since T is bounded, then D(T) = X. Moreover, if
(xn) ⊂ X such that xn → x on X as n→ ∞, then by the boundedness of T, we infer that Txn → Tx as n→ ∞. This
implies that (xn,Txn)→ (x,Tx) on X × Y as n→∞. Therefore, G(T) is closed.

Example 3.4. Let D be a linear operator on Eω defined by De j = λ je j for all j ∈N and whose domain is

D(D) =
{

x = (x j) j∈N ∈ Eω : lim
j→+∞

|λ j||x j|∥e j∥ = 0
}
.

More precisely, if x ∈ D(D), one has Dx =
∑
j∈N

λ jx je j. Then, D is closed. Indeed, let (xn)n∈N ⊂ D(D) such that

xn → x and Dxn → y as n→∞, for some x, y ∈ Eω.

Write
xn =

∑
j∈N

an
j e j, x =

∑
j∈N

a je j and y =
∑
j∈N

b je j,

where an
j , a j, b j ∈ K, for all n, j ∈N and

lim
j→+∞

|an
j |∥e j∥ = lim

j→+∞
|a j|∥e j∥ = lim

j→+∞
|b j|∥e j∥ = 0. (28)
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The fact that xn → x and Dxn → y as n→∞ implies from [3, proposition 1.40] that

|an
j − a j| → 0 and |λ jan

j − b j| → 0, as n→∞ and for all j ∈N.

This yields that λ ja j = b j for all j ∈N. It follows from (28) that

lim
j→+∞

|λ j||a j|∥e j∥ = lim
j→+∞

|λ ja j|∥e j∥ = lim
j→+∞

|b j|∥e j∥ = 0.

Consequently, x ∈ D(D) and
Dx =

∑
j∈N

λ ja je j =
∑
j∈N

b je j = y.

As a result, D is closed linear operator, as desired.

Definition 3.5. Let T and S be two unbounded linear operators acting from X into Y such that D(T) ⊆ D(S) and
Tx = Sx for all x ∈ D(T), then S is called an extension of T.

Definition 3.6. An unbounded linear operator T : D(T) ⊂ X −→ Y is said to be closable, if it has a closed extension.

Remark 3.7. When T is closable, there is a closed operator T with G(T) = G(T). It follows immediately that T is the
smallest closed extension of T.

Proposition 3.8. Let X, Y and Z be non-Archimedean Banach spaces. Assume that S ∈ L(X,Y) and T is an
unbounded linear operator.

(i) For S + T to be closed it is necessary and sufficient that T : X −→ Y is closed.

(ii) For S + T to be closable it is necessary and sufficient that T : X −→ Y is closable and S + T = S + T.

(iii) Let T : Y −→ Z be a closed linear operator (respectively, closable). Then, TS is closed (respectively, closable).

(iv) Let T : X −→ Y be a closed linear operator (respectively, closable) and S be an invertible bounded operator such
thatD(S−1) = Y. Then, S−1T is closed (respectively, closable).

Proof. (i) Let (xn) be a sequence ofD(T + S) such that{
xn → x,
(T + S)xn → y.

SinceD(S) = X, then we haveD(T + S) = D(T)∩D(S) = D(T). Based on the assumptions xn → x and S is a
bounded linear operator, we get Sxn → Sx. Hence, by writing, Txn = (T + S)xn − Sxn and using the fact that
T is a closed operator, we deduce that {

x ∈ D(T),
y − Sx = Tx.

(ii) If T is a closable operator, then T + S admits the closed extension S + T. It follows from (i) that S + T is
closable and

S + T ⊂ S + T = S + T. (29)

By replacing in (29) T by T + S and S by −S, we infer that T ⊂ T + S − S. So

S + T ⊂ S + S + T − S = S + T.

As a result, S + T = S + T, as desired.
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(iii) We haveD(TS) = {x ∈ D(S) : Sx ∈ D(T)}. Let (xn) be a sequence ofD(TS) such that{
xn → x
(TS)xn → y .

Let us show that x ∈ D(TS) and y = (TS)x. Since S ∈ L(X,Y), then we have Sxn → Sx. Hence, the fact that
T(Sxn)→ y and T is a closed operator implies that{

Sx ∈ D(T),
y = TSx.

Therefore, TS is closed. Moreover, if S is closable, then ST admits the closed extension ST.

(iv) Let (xn) be a sequence ofD(S−1T) such that:{
xn → x
(S−1T)xn → y.

Our purpose is to show that x ∈ D(S−1T) and y = S−1Tx. As we have (S−1T)xn → y and S is a linear bounded
operator, so Txn → Sy. Since T is a closed operator, then one obtains{

x ∈ D(T),
Tx = Sy.

This implies that 
x ∈ D(T),
Tx ∈ D(S−1),
y = (S−1T)x.

In addition, if T is closable, S−1T admits the closed extension S−1T.

For more details related to the results of non-Archimedean linear operators, we may refer to [2, 3].

4. Relative Boundedness in non-Archimedean Banach spaces

Let us give the definition of the gap between two non-Archimedean closed linear operators. We proceed
in the same spirit as in Tosio Kato’s book [12], but extend the definition to closed linear operators in a
non-Archimedean Banach while T. Kato in his monograph [12] limits himself to the case of closed operators
in a classical Banach space.

Definition 4.1. Let X and Y be two non-Archimedean Banach spaces such that ∥X × Y∥ ⊆ |K|. Let T,S ∈ C(X,Y).
Then, we define

δ(T,S) = δ
(
G(T),G(S)

)
and δ̂(T,S) = δ̂

(
G(T),G(S)

)
.

More explicitly,

δ(T,S) = sup
x∈D(T)
∥(x,Tx)∥=1

[
inf

y∈D(S)

(
max

{
∥x − y∥, ∥Tx − Sy∥

})]
.

At this level, we shall introduce a new concept ofK-relatively bounded linear operators on non-Archimedean
Banach spaces.
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Definition 4.2. Let X, Y and Z be three non-Archimedean Banach spaces and T, S be linear operators from X to
Y and from X to Z, respectively. Then, S is called T-K-bounded (or K-relatively bounded with respect to T) if,
D(T) ⊂ D(S) and there exist non-negative constants aS and bS, such that

∥Sx∥ ≤ max
{
aS∥x∥; bS∥Tx∥

}
, for all x ∈ D(T). (30)

In that case, the infimum βS of the constant bS which satisfies (30) is called the T-K-bound of S (orK-relative bound
with respect to T).

Remark 4.3. (i) The concept of relative boundedness over a Banach space can be found in the literature (see [12]).

(ii) Obviously, if S is T-K-bounded, then S is T-bounded i.e.,

∥Sx∥ ≤ aS∥x∥ + bS∥Tx∥, for all x ∈ D(T). ♢

Remark 4.4. (i) A bounded operator S is T-K-bounded for any T withD(T) ⊂ D(S) and T-K-bound equal to zero.

(ii) If max
{
aS∥x∥; bS∥Tx∥

}
= aS∥x∥, for all x ∈ D(T) andD(T) ⊂ D(S), then S is a bounded operator onD(T).

Proposition 4.5. Let X and Y be non-Archimedean Banach spaces and K, S, T, V be linear operators from X to Y.

(i) If S is T-K-bounded with T-K-bound β1 and T is V-K-bounded with V-K-bound β2, then S is V-K-bounded with
V-K-bound β1β2.

(ii) If S is T-K-bounded with T-K-bound β1 and K is T-K-bounded with T-K-bound β3, then S ± K is T-K-bounded
with T-K-bound max{β1; β3}.

(iii) If S is T-K-bounded with T-K-bound β1 < 1, then S is T + S-K-bounded with T + S-K-bound less than
β1

1 − β1
.

Proof. (i) Since S is T-K-bounded and T is V-K-bounded, then there exist positive constants aS, aT, bS and
bT such thatD(V) ⊂ D(T) ⊂ D(S),

∥Sx∥ ≤ max
{
aS∥x∥; bS∥Tx∥

}
for x ∈ D(T), (31)

and β1 the infmum of the constant bS which satisfies (31).

∥Tx∥ ≤ max
{
aT∥x∥; bT∥Vx∥

}
for x ∈ D(V), (32)

and β2 the infmum of the constant bt which satisfies (32). Combining (31) and (32), we infer for x ∈ D(V)
that

∥Sx∥ ≤ max
{
aS∥x∥; bS max

{
aT∥x∥; bT∥Vx∥

}}
≤ max

{
max

{
aS, bSaT

}
∥x∥; bSbT∥Vx∥

}
.

Thus, S is V-K-bounded with V-K-bound β1β2.

(ii) The fact that S is T-K-bounded and K is T-K-bounded implies that there exist positive constants aS, aK,
bS and bK such thatD(T) ⊂ D(S) ∩D(K)

∥Sx∥ ≤ max
{
aS∥x∥; bS∥Tx∥

}
for x ∈ D(T) and (33)

∥Kx∥ ≤ max
{
aK∥x∥; bK∥Tx∥

}
for x ∈ D(T). (34)
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and β3 the infmum of the constant bt which satisfies (34). On the one hand, we haveD(T) ⊂ D(S)∩D(K) =
D(S ± K). On the other hand, by using (33) and (34), we conclude for x ∈ D(T) that

∥(S ± K)x∥ ≤ max
{
∥Sx∥; ∥Kx∥

}
≤ max

{
aS∥x∥; aK∥x∥; bS∥Tx∥; bK∥Tx∥

}
≤ max

{
max

{
aS; aK

}
∥x∥; max

{
bS; bK

}
∥Tx∥

}
.

Therefore, S ± K is T-K-bounded with T-K-bound max{β1; β3}.

(iii) Let us assume that D(T) ⊂ D(S) and there exist non-negative constants aS and bS, such that for all
x ∈ D(T), we have

∥Sx∥ ≤ max
{
aS∥x∥; bS∥Tx∥

}
≤ max

{
aS∥x∥; bS∥(T + S)x∥; bS∥Sx∥

}
≤ max

{
max{aS∥x∥; bS∥(T + S)x∥}; bS∥Sx∥

}
≤ max

{
aS∥x∥; bS∥(T + S)x∥

}
+ bS∥Sx∥.

This implies that

∥Sx∥ ≤ (1 − bS)−1 max
{
aS∥x∥; bS∥(T + S)x∥

}
.

This completes the proof

Remark 4.6. Let X, Y and Z be non-Archimedean Banach spaces. Let S : D(S) ⊆ X −→ Z be a linear operator
and T ∈ C(X,Y) such thatD(T) ⊂ D(S). By the same reasoning as [12, Remark 1.4, p. 191], we can conclude that
(D(T), ∥ · ∥D(T)), with the graph norm

∥x∥D(T) = max
{
∥x∥; ∥Tx∥

}
, for all x ∈ D(T),

is a non-Archimedean Banach space. Obviously, S is T-K-bounded if, and only if, S is a bounded operator from
(D(T), ∥ · ∥D(T)).

Theorem 4.7. Let X, Y and Z be non-Archimedean Banach spaces. Let T : D(T) ⊆ X −→ Y and S : D(S) ⊆ X −→ Z
be two linear operators withD(T) ⊂ D(S). If T is closed and S is closable, then S is T-K-bounded.

Proof. Suppose that S0 be a restriction of S to D(T), that is, S0 : (D(T), ∥ · ∥D(T)) −→ Z defined by S0u = Su
for u ∈ D(T). In order to show that S is T-K-bounded, it suffices to show that S0 is bounded. By referring
to [16, Theorem 3.5], it is enough to show that S0 is closed. Fix any sequence (xn) ⊂ D(S0) with xn → x in
norm ∥ · ∥D(T) and S0xn → y in the norm of Z as n → ∞. Using the fact T is closed, we infer that x ∈ D(T)
and Txn → Tx.

Noting that

∥xn − x∥D(T) = max
{
∥xn − x∥; ∥Txn − Tx∥

}
for n ≥ 0,

we get that xn → x in the norm of X. In addition, we have S0xn = Sxn for (xn) ⊂ D(T). By the assumptions
that S is closable and x ∈ D(T) ⊂ D(S), we conclude that

y = Sx = Sx = S0x.

Thus, S0 is closed. This completes the proof.
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Remark 4.8. Let X, Y be two non-Archimedean Banach spaces and T, S be two linear operator from X into Y.
Assume that T is closable operator. If S is T-K-bounded, then we get S̃ the extension of the operator S to the domain
D(T) ∪ D(S). Indeed, let (xn) ⊂ D(T) such that xn → x ∈ D(T) and Txn → y. This implies from (30) that (Sxn)
is a Cauchy sequence in the non-Archimedean Banach space Y. Then, there exists z ∈ Y such that Sxn → z. This
z is uniquely determined, which is a consequence of the closability of the operator T. By setting Sx = z, we get an
extension of S to the domainD(T) ∪D(S).

In the following result, we shall study stability of closedness and closability for linear operators under
K-relatively bounded perturbation. This result is useful in the perturbation theory, which was studied by
T. Kato in the classical Banach spaces (see [12]).

Definition 4.9. Let X, Y be two non-Archimedean Banach spaces and let T be a linear operator from X into Y. A
sequence (xn) ∈ D(T) is said to be T-convergent to x ∈ X if both (xn) and (Txn) are Cauchy sequences and xn → x.

Theorem 4.10. Let X and Y be two non-Archimedean Banach spaces. Let T, S be two linear operators from X to Y.
IfD(T) ⊂ D(S) and there exist positive constants aS and bS such that bS < 1 and we have

∥Sx∥ ≤ max
{
aS∥x∥; bS∥Tx∥

}
, for all x ∈ D(T), (35)

then, S + T is closable if, and only if, T is closable. In this case, the closure of T and T + S have the same domain.

Proof. On the one hand, for all x ∈ D(T + S) = D(S) ∩D(T) = D(T) we have

∥(S + T)x∥ ≤ max
{
∥Sx∥; ∥Tx∥

}
≤ max

{
max{aS∥x∥; bS∥Tx∥}; ∥Tx∥

}
≤ max

{
aS∥x∥; max{1; bS}∥Tx∥

}
≤ max

{
aS∥x∥; ∥Tx∥

}
. (36)

On the other hand, we can write

∥Tx∥ = ∥Tx + Sx − Sx∥

≤ max
{
∥(T + S)x∥; ∥Sx∥

}
≤ ∥(T + S)x∥ + ∥Sx∥

Hence, for all x ∈ D(T) we have
∥Tx∥ − ∥Sx∥ ≤ ∥(T + S)x∥.

In addition, it follows from (35) that

∥Tx∥ − ∥Sx∥ ≥ ∥Tx∥ −max
{
aS∥x∥; bS∥Tx∥

}
≥ ∥Tx∥ −

(
aS∥x∥ + bS∥Tx∥

)
≥ −aS∥x∥ + (1 − bS)∥Tx∥. (37)

Combining (36) and (37), we deduce that for any x ∈ D(T)

−aS∥x∥ + (1 − bS)∥Tx∥ ≤ ∥(T + S)x∥ ≤ max
{
aS∥x∥; ∥Tx∥

}
. (38)

Let (xn) be a sequence inD(T+S) = D(T) such that xn → 0 and (T+S)xn → y. By applying the first inequality
in the left hand side of (38), we infer that (Txn) is a Cauchy sequence in the non-Archimedean Banach space
Y. Therefore, there exists y0 ∈ Y such that Txn → y0. Since T is closable, then y0 = 0. It follows from the
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second inequality in the right hand side of (38) that (T + S)xn → 0, which yields that y = 0. This implies
that T + S is closable. Similarly, T is closable if T + S is also closable.

Let T and T + S be the closures of T and T + S, respectively. Our purpose is to show thatD(T) = D(T + S).
Let x ∈ D(T + S), then there exists a sequence (xn) ∈ D(T + S) such that xn → x and (T + S)xn → (T + S)x.
This implies that (xn) is (T + S)-convergent to x. By using the first inequality of (38), we deduce that (xn) is
T-convergent to x. This implies that x ∈ D(T), so thatD(T + S) ⊂ D(T). Similarly, the opposite inclusion is
proved.

The following result is a direct consequence of theorem 4.10.

Corollary 4.11. Let X and Y be two non-Archimedean Banach spaces. Let T, S be two linear operators from X to Y
and S be T-K-bounded with T-K-bounded smaller than 1. Then,

S + T is closed if, and only if, T is closed.

Remark 4.12. (i) Let us assume that the hypotheses of theorem 4.10 are satisfied. If S is bounded withD(T) ⊂ D(S),
then

δ̂(T,T + S) ≤ ∥S∥. (39)

Indeed, if S is bounded withD(T) ⊂ D(S), then it follows from Remark 4.4 (i) that S is T-K-bounded with aS = ∥S∥
and bS = 0 in (30). Hence, (39) holds.
(ii) The results of theorem 4.10 extend those of [12, theorems IV.1.1 and IV.2.14] for linear operators on Banach
spaces to linear operators on non-Archimedean Banach spaces.

The following result is obtained from Theorem 4.10.

Theorem 4.13. Let X and Y be two non-Archimedean Banach spaces such that ∥X×Y∥ ⊆ |K|. Let (Sn) be a sequence
of linear operators from X into Y and let T be a closable linear operator from X into Y. Let (Sn) be T-K-bounded and
satisfy that

∥Snx∥ ≤ max
{
an∥x∥; bn∥Tx∥

}
, for every x ∈ D(T) and for each n ≥ 1.

If an → 0 and bn → 0 as n→∞, then Tn = T + Sn are closable for sufficiently large n and Tn
1
−→ T.

Lemma 4.14. Let X and Y be two non-Archimedean Banach spaces and let S, T, and K be three operators from X into
Y satisfyingD(T) ⊂ D(S) ⊂ D(K). If
(i) there exist two constants a, b > 0 such that

∥Sx∥ ≤ max
(
a∥x∥, b∥Tx∥

)
for all x ∈ D(T),

(ii) there exist two constants e, d > 0 such that µ = max(b, bd) < 1 and

∥Kx∥ ≤ max
(
e∥x∥, d∥Sx∥

)
for all x ∈ D(S).

Then,
∥Tx∥ ≤ (1 − µ)−1 max

(
∥(S + T + K)x∥, ν∥x∥

)
,

where ν = max(a, ad, e) > 0.
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Proof. Let x ∈ D(S + T + K) = D(T). We have

∥(S + T + K)x∥ ≤ max
(
∥Sx∥, ∥Tx∥, ∥Kx∥

)
≤ max

(
max(a∥x∥, b∥Tx∥), ∥Tx∥,max(e∥x∥, d∥Sx∥)

)
≤ max

(
max(a, e, da)∥x∥,max(1, b, bd)∥Tx∥

)
. (40)

Similarly, we have for all x ∈ D(T)

∥(S + K)x∥ ≤ max
(
∥Sx∥, ∥Kx∥

)
≤ max

(
max(a∥x∥, b∥Tx∥),max(e∥x∥, d∥Sx∥)

)
≤ max

(
max(a, e, da)∥x∥,max(b, bd)∥Tx∥

)
. (41)

Since,

∥Tx∥ = ∥(S + T + K)x − (S + K)x∥

≤ max
(
∥(S + T + K)x∥, ∥(S + K)x∥

)
≤ max

(
∥(S + T + K)x∥,max

(
max(a, e, da)∥x∥,max(b, bd)∥Tx∥

))
= max

(
∥(S + T + K)x∥,max(a, e, da)∥x∥,max(b, bd)∥Tx∥

)
≤ max

(
∥(S + T + K)x∥,max(a, e, da)∥x∥

)
+max(b, bd)∥Tx∥,

which yields (1 −max(b, bd))∥Tx∥ ≤ max
(
∥(S + T + K)x∥,max(a, e, da)∥x∥

)
. So, we deduce that

∥Tx∥ ≤ (1 − µ)−1 max
(
∥(S + T + K)x∥, ν∥x∥

)
,

where µ = max(b, bd) and ν = max(a, ad, e). This completes the proof.

Theorem 4.15. Let X and Y be two non-Archimedean Banach spaces and let S, T, and K be three operators from X
into Y satisfyingD(T) ⊂ D(S) ⊂ D(K). If
(i) there exist two constants a, b > 0 such that

∥Sx∥ ≤ max
(
a∥x∥, b∥Tx∥

)
for all x ∈ D(T),

(ii) there exist two constants e, d > 0 such that µ = max(b, bd) < 1 and

∥Kx∥ ≤ max
(
e∥x∥, d∥Sx∥

)
for all x ∈ D(S).

Then,
S + T + K is closable if and only if T is closable.

Further, if ∥X × Y∥ ⊂ |K|, thenD(S + T + K) = D(T) and

δ̂(S + T + K,T) ≤ (1 − µ)−1 max(µ, ν), (42)

where ν = max(a, ad, e) (ν > 0) and δ̂(., .) is the gap between two operators.
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Proof. Let (xn)n∈N be a sequence inD(S+T+K) = D(T) such that xn −→ 0. and (S+T+K)xn −→ χ. By using
lemma 4.14, it follows that (Txn)n∈N is a Cauchy sequence in the Banach space Y and therefore, there exists
Ψ1 ∈ Y such that Txn −→ Ψ1. Since T is closable, then Ψ1 = 0. It follows from (40) that (S + T + K)xn −→ 0.
Then, χ = 0 and S + T + K is closable. Similarly, T is closable if S + T + K is also closable.
In order to prove that

D(S + T + K) = D(T).

Suppose that x ∈ D(S + T + K), then there exists a sequence (xn)n∈N such that (xn)n∈N is (S+T+K)−conver1ent
to x. From lemma 4.14, we deduce that (xn)n∈N is T − conver1ent to x. Hence, x ∈ D(T). As a result, we get
D(S + T + K) ⊂ D(T). The opposite inclusion can be checked in the same way.
Now, let φ = (u, (S + T + K)u) ∈ G(S + T + K) with ∥φ∥ = 1, it follows that

max
(
u, (S + T + K)u

)
= ∥φ∥ = 1. (43)

Since, G(S + T + K) = G(S + T + K), so there exists a sequence φn ⊂ G(S + T + K) such that φn −→ φ. Then,
φn = (un, (S + T + K)un) with un ∈ D(S + T + K), un −→ u and (S + T + K)un −→ (S + T + K)u. Next, let
ψn = (un,Tun) ∈ G(T) By using lemma 4.14, we deduce (un) is T − conver1ent to u. Then,

ψn −→ ψ0 ∈ G(T).

Based on lemma 4.14, we get

∥φn − ψn∥ = ∥(S + K)un∥

≤ (1 − µ)−1 max
(
µ∥(S + T + K)un∥, ν∥un∥

)
.

We obtain when n −→ ∞

∥φ − ψ0∥ ≤ (1 − µ)−1 max
(
µ∥(S + T + K)u∥, ν∥u∥

)
.

Using Eq. (43), we infer that
∥φ − ψ0∥ ≤ (1 − µ)−1 max

(
µ, ν

)
.

Hence,
dist(φ,G(T) ≤ (1 − µ)−1 max

(
µ, ν

)
.

The fact that φ is arbitrary in the unit sphere of G(S + T + K), then

δ(S + T + K,T) ≤ (1 − µ)−1 max
(
µ, ν

)
.

Similarly, we can estimate δ(T,S + T + K). As a consequence, we get (42). This completes the proof.

Remark 4.16. If the hypotheses of theorem 4.15 are satisfied, then

S + T + K is closed if, and only if, T is closed.
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