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Certain fractional inequalities via the Caputo Fabrizio operator
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Abstract. The Caputo Fabrizio fractional integral operator is one of the key concepts in fractional calculus.
It is involved in many concrete and practical issues. In the present study, we have discussed some novel
ideas to fractional Hermite-Hadamard inequalities within a Caputo Fabrizio fractional integral framework.
The fractional integral under investigation is used to establish some new fractional Hermite-Hadamard
inequalities. The findings of this study can be seen as a generalization and extension of numerous earlier
inequalities via convex function. In addition, we demonstrate a few applications of our findings to special
means of real numbers.

1. Introduction

Fractional calculus, which is interested with differential and integral operators of non integer orders, is
nearly as old as classical calculus, which is concerned with integer orders. Because the classical calculus
operators cannot model the entirety of real-world phenomena, scientists and authors investigated gener-
alizations of these operators. As of present now, a lot of researchers are very interested in the theory of
fractional calculus. Particularly for the fractional calculus, such as the definitions of Riemann-Liouville
and Caputo, there is a wide range of studies and literature. The Riemann-Liouville derivative is a general
concept that, according to some definitions, is the most uniform and natural. Due to the fact that the
necessary initial conditions are themselves fractional, which is probably incorrect for physical situations,
it has significant drawbacks when used to modeling physical problems. The Caputo derivative has the
advantage of being acceptable for physical conditions because it requires only typical type [1] initial con-
ditions. However, these are not the only ways to define and describe fractional calculus. Convex functions
have a famous and scientific history, and for almost a century, they have been the focus of study. Due to
the quick development of the theory and the wide-ranging applications of fractional calculus, inequalities
with unique convex functions have been a significant research problem for many researchers. By utilizing
convex functions, mathematicians have proposed numerous types of inequalities or equalities, including
the Hermite-Hadamard type, the Ostrowski type, the Hermite-Hadamard-Mercer type, the Bullen type, the
Opial type, and other types. Many researchers are interested in the Hermite-Hadamard inequality [2] out
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of all of these integral inequalities.

h(x1+x2)< 1 fxzh(x)dxﬁh(X1)+h(XZ)-

2 T X —xp X 2

It has been the most well-known and helpful inequality in mathematical analysis since its discovery
in 1883. Other authors have also worked on improving this condition for different classes of convex
functions and mappings, as shown in these articles[3-14]. It is crucial to note that the idea of fractional
calculus was first introduced in 1695 by Leibniz and L'Hoéspital. To the science of fractional calculus and
its numerous applications, other researchers, such as Riemann, Liouville, Griinwald, Letnikov, Erdéli, and
Kober, have made significant contributions. Fractional calculus has attracted the interest of many physical
and engineering professionals due to its behavior and ability to resolve numerous real-world problems. The
importance of fractional operators in the development of fractional calculus is highly crucial. Numerous
engineering and science fields, including as physics [15], epidemiology [16], medicine [17], nanotechnology
[18], economics [19], bioengineering [20], and fluid mechanics[21], utilized fractional calculus. Several
researches have shown that fractional operators can explain complex multiscale phenomena that are difficult
to model using traditional mathematical calculus. It has been known in recent years that presenting well-
known inequalities employing various novel ideas of fractional integral operators is extremely popular
among mathematicians. For other fractional-order integral inequalities, see the articles discussed in [22-30]
in this connection.

2. Preliminaries
We recall some known concepts related to our main results.

Definition 2.1. See [31, 32]. Let I be a convex subset of a real vector space R and let h : I — R be a function. Then,
a function h is said to be convex, if

R+ 1 — n)x)<nh(x)+ (1 —n)h(x)

holds for all x1x, € I and n € [0,1].
In [33, 34], Hudzik and Maligranda considered among other, class of functions which are s-convex in the second
sense

Definition 2.2. [33, 34]. A function h : R* — R where R* = [0, 00) is said to be s—convex in the second sense if
h(nxp + (1 =n)x2) < °h(x1) + (1 = 1) h(x2)

holds for all x1,x, € [0, 0), n € [0,1] and for some fixed s € (0,1] is denoted by k2. It can be easily seen that for
s = 1, s-convex function reduces to the ordinary convex function.

Hudzik and Maligranda also established a result that if s € (0,1), h € k2 implies h ([0, 0)) C [0, o), proved that
all functions from k2, s € (0, 1) are positive.

Example 2.3. [33, 34]. Let s € (0,1) and x1,x2,x3 € R. We define the function h : [0, c0) — R as

_)x o =0
h(n)—{ X' +x3 n>0.
We can easily checked that

MW ifx, =2 0 and OSx3§x1,thenh€k§,
() if x2 > 0 andx3 <O, thenh ¢ k2.
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Theorem 2.4. [35]. Suppose that h : [0, 00) — [0, 00) is an s—convex function in the second kind, where s € (0,1),
and let x1,x, € [0,00), x1 < x2. If h € L [x1,x2], then the following inequalities hold:

s—17, (1 + A2 B () CFra CFra 2(1 - a)
2 h( 2 ) = 04(%2—X1)[(x11 h)(k) * ( E )(k) ﬁh(k)
h(x1) +h(x)
s+ 1

Lemma 2.5. [35]. Let I be a real interval such that x1 x; € I°, the interior of [ with x; < x. Leth : I° C R — Rbea
differentiable mapping on I°, x1 x5 € [with x; < x,. If W’ € L[x1,x2], then following equality holds:

"X 1
h(%l);h(}‘z)_ 1 fh(u)duzngxlfo(1—2n)h’(nx1+(1—77)xz)d’7-

X2 —X1

Lemma 2.6. [35]. Let I be a real interval such that x x, € I°, the interior of lwithx; <x.Leth:ICR — Rbea
differentiable mapping on I x1,%2 € Twith x1 < xp. If W € L[x1,x2], and 0 < a < 1, then following equality holds:

x1f A-2n)K (1 + (1 —1n)x2)dn — %h(k)
h(au)+h(x)  B(@) - )
= T o ooy (@) e+ (T 1) ).

where k € [#1, %3] and B (a) > 0 is a normalization function.
Definition 2.7. See [36]. Let [x1x2] — R. Then, Riemann-Liouville fractional integrals 1¢,h (1) and 1% h(n)
1 2
of order > 0 are defined by

1 a-
Iféh(x) F(a) (r] — )" h(y) dn, x> x1,

1L h () W f (x — ) h(n) dn, x < x,.

Definition 2.8. See [37-39]. Let h € H' (x1,%2), X1 < x2, @ € [0,1], then the notion of left and right Caputo-
Fabrizio fractional integrals are defined by

a 1 - a,

(Frn® = e + 55 h(n) dn
. 1 - a *

(CFIXZ h) (x) = B( ) ( ) + m h(n) dT],

where B () > 0 is a normalization function that satisfies B (0) = B(1) = 1.

3. Caputo Fractional Integral type inequalities

This section explains how to use the Caputo-Fabrizio fractional integral operator to derive a new identity
for differentiable convex functions. Then, taking this identity into consideration, numerous improvements
are shown using some basic integral inequalities.

Lemma 3.1. Let h : I — IR be three times differentiable function on 0 If h" € L[xy, 2], then we have the
following equality for Caputo-Fabrizio fractional integral operator:

- 1+ 1+ 1 -
%1) f (1 |:h,”( 5 77%1 217%2)_11/”( 217%1 + 5 0%2)] dT]
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_Bl@ [{(ren) (k)+(CF1%1HZ )(k)}+{(§5r21“ )0+ (712, 1) (0}

a(xy — ny)
e )

k € [»1, #2] and B (@) > 0 is a normalization function.

Proof. Let

_ (%2_%1)3f1 3///1_77 1+TI ///1+T] 1_17
I = 9% 0(lry)h 2%1+2%2h 2%1+2%2dn

! 1 - 1+ 1 1+ 1+
f(l—n)Sh”'( . Dy + : nxz)dn—f (1-17)3;1"'( : Doy + . "%2) dn
0 0
= I-D.

By using integration by parts, we get

f(l— )h"’( _ U1+ ;n%z)dT]

RO (B ) 20 (S e
0

L

- —U1 + Xo —U1+X2 d?]
_ -2 (1 + %2) 6 1 B 21, 1 - n 1 + n
= o — %1]/1 ( 5 + Yo — f(; (1 T]) h ( 5 U+ 5 %) dT]
-2 L n + A 12 St + A
- ) "(=5)
M2 — 2 (2 — 1) 2
24 1 5 (1 -1 1+ 7 )
+— 1 - I n+ ny| d
o (e e )
-2 LM+ A 12 , (1 + o 48 n + Ay
- o ) P e )
Hy = 2 (2 — x1) 2 (2 — 1) 2
96 ¢ =
t— f h(u)du+f h(u)dul. 2)
(2 = nq)" \J 12 k
Multiplying both sides of the equality (2) by 25—~ (’tz Kl) and adding %h(k), we have
- (1= 1+ 2(1-a
1) f(1— )’ h ( aa + zn}tz)dn+ (B())h(k)
(%2—%1) [ -2 L (Hit 12 St
- (557 o )
96 Uy — N1 2 (%2 — %1) 2

8 X1+ X 96 k %2 201 - )
(%2 - 2'(1)311( 2 )+(%2—%1)4 (fkl;qh(u)du " L h(“)du]]+ B(a) @ W

(e - %1)2hn(%1 + %2)_ (2 — %1)h,(%1+%2) 1h(%1+%2)

48 2 8 2 2 2

k B " -
+ ﬁwzh(u)du + (1B(a)0‘)h(k)] + (fk h(u)du + (1B(a)a)h(k))

2

_ b6 - %1)2h,,(%1+%2)_ (2 — %1)h,(%1 + %2)
48 2 8 2
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_%h(%l ), B@ (St n)oo + (1) o). 3)

2 a (%2 — %)

Similarly, we obtain

1_
f(1— h( ;,] ; znkz)dn

I

n + 1 12 S (1 + 1 48 1+ A
- () i (5 + (572)
Hy — 1 2 (%2 — x1) 2 (22 — n1) 2
k M1+M2
S fh(u)du + f () dul. @)
(2 = #1)" I k

Multiplying both sides of the equality (4) by (%29“1) and adding %h (k), we have

)P 1 1 - 2(1-
(%2 96%1) f(; (1 _77)3 h///( + 17%1 + 77%2) d77+ ( ( 0() h(k)

2 2 s, — #1)B(a)
_ (o ;8%1)211,,(%1 ;‘ %2)_ (2 ; %1)h,(%1;%2)+1h(%1;%2)
—%((gla W + (1, n)®). )

From equalities (3) and (5), we obtain the equality (1).
This completes the proof. O

Theorem 3.2. Leth : [ — Rbethree times differentiable function onI°. Ifh’”" € L[x1, xa]and |n""'|is s—convex function,
we have the following inequality for Caputo-Fabrizio fractional integral operator:

S
_h(m sz %z) _ (o ;4%1) W (%1 sz %2)

3.25%5 _ 652 — 425 — 84
(s+1)(s+2)(s+3)(s+4)

(%2 — %1)3
3 X 25+5

] (B ()l + 17 (2)l),
where k € [#1, #2] and B («) > 0 is a normalization function.
Proof. Using the Lemma 3 and fact that [i””’| is s—convex function, we have

% [{(ff” h) () + (CFI‘fm )(k)} + {(9& I )(k) + (%12, n) (k)}]

(Mt G- x) ,,(%1+%z)
h( ) T 2

3
-x - 1+ 1+ 1 -
< 1) f (1 (h///( > 71%14_ 5 n}tz)_h///( 5 77%1 + 5 nkz))dfl
%2 - %1) 3 " -1 1+ Ui
< % fo 1-n (h ( Tt %2) )dr]
—x)? 1 1 —
+ (%2 96%1) fo‘ (1 _ 77)3 ( h/// ( ; TI%1 + 5 17%2) )dT]
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< baza) f (- (( ) " >|+( il ) " G )|)
%1)3 f 1- (( ) W (a )I+(1 — n) " (%z)l)dq
= (%926_7%21)( fo (L =)™ dy ™ (o)l + fo 1(1—r])3(1+r])sdq|h”’(%2)|)
+(%926_T};)3 (fol =0’ (L +n)dnlh” (x1)| + fol (1) dnin” (%2)|)
3 s+
- (};Zx_zﬁ) G i21) is_+625)2 8 fzi)zsi)] (™ Gl + 1™ Gl
Note that

1 5 1
1— s+ -

1 5+5 3 2
N s 3.2°7° — g2 — 125 — 535 — 90
f0(1 L R e R Y AR Y A Y T

This completes the proof. [J

Corollary 3.3. If we choose s = 1in Theorem 3, then we have

B(@) )[{(gla W® + (T 1) 0f+ {(Earn)@ + (18 w0)]

a(%z—%1
_h(%l + %2)_ (%2—%1)211/,(%1 + %2)
2 24 2
3
Hy— MU " "
< L) oy e ol

384

Example 3.4. Clarification related to the following expression occurs in Theorem 2

P :=

(2 — %1)2h,,(%1 + %2)

24 2 ©

we consider the function h (x) = 225 on the interval [x1,x,] = [0, 1]. Then, we have

pra )
" - 2x(4x2—3)
x) =K (x)=——=;
Y (2 +2)°
1,,(1\_ 46
po= ﬁh (2)_ 2187°

The Figure 1 represents the relationship between the functions h(x) and y(x).

Theorem 3.5. Let h : I — R be three times differentiable function on I°. If "’ € L[x1, ] and || is s-
convex function where rlﬂ + % =1, p,q = 1, then we have the following inequality for Caputo-Fabrizio fractional

integral operator:

ooy {1 0+ (Fres m )+ (S w1 m ]

_h(%l + %2)_ (%2 = x1)° h,,(%l + %2)
2 24 2
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Figure 1: Graphical description of (6).

3 1 ol \ L

a 1 ! 2+ ! " " 1

(926><215) (3p+1) (S+1) (" Gl + I )",
q

where k € [11, #2] and B () > 0 is a normalization function.

Proof. Using the Lemma 3, Holder inequality and fact that || is s—convex function, we have

sl « o) + (e o - Cn o]

(X(%z - N

_h(%1+%2) (%2—%1 h,,(%1+%2)
< %1) f a - [h'"(l 5 5 n%2)+h”'(1 ; 77%1+ ! ; n%z)] dn
= %1) f (1 - 17) h"’(1 n%1+ 2”%2) dn

+(%2;6%1 fo (1 h,,,(l;rn ;17 2) an
p (%2 ;6%1)3 [(fol 1 - 0)37’); ([)1 h”’(l_TnM + ! ; 1]%2)”’ d’?);

e ([
- g (e

1+ 1 -
h( zn%1+ 277 )

dny]

1
1 - 1+ 1\
( 5 n%l + 5 n%z) dT])
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w1+ 1 1—n g
([ (e o)
(%2_%1)3 1 % ! 1 _775 " ! 1 +775 17

= (3p+1) [fo (—2 )|h <x1>|'*+f0( : )|h )l

YLy R\ WP |
e (Y oo+ (55 e cer|

_ (%2 - %1)3 1 % ( 1 ) " q 2t -1 " q
Sl vy B[ ) [T e [ ES

25+l _1q 1 %
1" q 4 q
+( — )|h G (s+1)'h (%2)|]

- I 4 Z 1
%2 p9 l S+ " )
9 q 3p =+ 1 1

This completes the proof. [J

IN

==

Theorem 3.6. Leth : I — Rbe three times differentiable function on IO.Ifh"’ € L[x1, xoland |h"'|"is s—convex function
where q > 1, then we have the following inequality for Caputo-Fabrizio fractional integral operator:

(11 00 + (T W)@} (St 1) 0+ (T W) 0]

a (% — %)
n+x\ (o-),, (% + K 4(1-a)
_h( 2 )_ a " ( 2 )_a(xz—m)h(k)’
(2 — #1)% (1\70 | ([ 3.25%5 — 53 — 1252 — 535 1 0
= 9% (Z) {((2 G+1)(+2)G+3) (s+4))|h Cal'+ ST (%mq)

1 " 325+5 _53 - 1252 —53s " %
+(25(S+4) K Gl + (25(5+1)(S+2)(S+3)(s+4))|h ba )I) }

where k € [#1, #p] and B (a) > 0 is a normalization function.

Proof. Using the Lemma 3, power -mean inequality and fact that |W'"”|" is s-convex function, we have

s e o ()

(it (22— 1) /,(%1"'%2)
h( ) 24 h 2

2

-x - 1+ 1+ 1 -
< 1) f (1 [h”’( 5 n%l + 5 n%2)+h/”( 5 n}tl + 5 n%z)] dT]
- 1
— }(1) f (1 h/// ( 77%1 + ; 77%2) dn
3 —
%1) f (1 ) h/// ( " + 2 77%2) d’?

- i 1 — 1 9 \i
< (%2 %1) f (1 _ 7])3 f (1 _ T])3 w T]}f.l + + T]%Z dT]

96 o o 2
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e o
<%2—x1)3 f(l [( )|h~'(% W+ (1%)"1 oo

1+ 1- g
+( 2’7) W Gl + (T”) |h'"(%2)|q] d

_ Ga-x) (1)1‘3 [((3zs+5-53-1zsz 535 -
4

IA

i (xl)w)q

77 1
)|h ol + 505D

1
1 3.25%5 — g3 — 1252 — 535 — 0
+(—Ih o)+ ( )Ih (1)l ) }

96 25(s+1)(s+2)(s+3)(s+4)

25 (s +4) 25(5+1)(s+2)(s+3)(s+4)

This completes the proof. [

Theorem 3.7. Let h : [#1,#2] — R be three times differentiable function on (%1, #xp) with x1 < . If ||
is concave on 11, %], then we have the following inequality for Caputo-Fabrizio fractional integral operator:

SO [(Srm e+ (P o)+ {(Ear ® + (18w

a(%z - A1
_h(%l + %2) (G- ) W (%1 + %2)
2 24 2
< (%2 - %1)3 I:I’ZIN (2%1 + 3%2) + W (3K1 + 2%2)]/
384 5 5

where k € [#1, #3] and B (a) > 0 is a normalization function.

Proof. From Lemma 3, we have

ﬂ[{(gw ) (k)+(CF1£:m )(k)}+{(€fﬂ21“ )(k) + (e h)(k)}]

a(n2 — %)
_h(%1+%2) 0~ ) h,,(%1+%2)

24 2
- - 1+
< 1) f |(1 h”/( 5 n}(l + 5 n%z) dﬂ
- 1 + 1 -
1) f |(1 h///( 5 T]%1+ 5 77%2) dn
By the Jensen integral inequality, we have
- 1+
f |(1 - h”’( ’7%1 +— n}tz)dﬂ
3 /// j(; |( - n) |(_%1 + 1;”%2)d17
< (1 - wlan)|[o
0 bl = n?lan
_ 1 W (2%1 ;3%2) ) (7)
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10102
and analogously
f |(1 - T]) hm( U1+ n%z)dﬂ
L1 d
< (f1|(1—n)3|dn)[h"'[f0 A - (G + ) 17]]
0 hla=m Idn

_ 1 (311 + 2%
- U

Combination of the above inequalities (7)and (8) give the result. That is

% [{(;:f]a h) (k) + (CFIQ‘IH2 )(k)} + {(Cﬁz & )(k) n (cp I h) (k)}]
—h(%1 + %2)_ (2 = n1) h,,(%l + %2)

2 24 2
< (%2—%1)3 [h,,,(Z%l +3%2) + h,,,(3%1 +2%2)]
384 5 5

This completes the proof. [

Theorem 3.8. Let h : [x1, %3] — R be three times differentiable function on (xq, ®2) with x1 < . If B’

L[x1, x2] and |W"|" is s—convex on [x1, %3], for some fixed s € (0,1] and q > 1, then we have the following
inequality for Caputo-Fabrizio fractional integral operator:

%[{(gla n) k) + (CFI‘fm )(k)}+{(§fy21“ )(k) + (1 n) (k)}]

_h(%l + %2)_ (2 — 1) hu(%1+%2)
2 24 2

(2 — 11)° 1 gt 1 R | PP e
< % (3p+1)+ ol P i | | LA CEV SRR LR CEV D P

where k € [#1, %3] and B (a) > 0 is a normalization function p~!

=1-g"

Proof. Using Lemma 3, we have

e « o far ]

_h(%l + %2) (22 — %1)2h~(%1+%2)
24 2

Loz ' _ il
2—%1) f(l

(%2 — x1)
+Tf(1— )’

By using the Young’ s inequality stated as

- 1+ 1+ 1 -
h( Doy + 1 nm)w,,,( e, + nkz)
- 1+
hl/l( T]%]+ T]}tz)

1 1 -
h( kA )

N

N
N

2 2

1y 1 4
My < =Hy + —x
p
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we obtain
e L e N G P
) ol )
< (%2 ;6%1)3 [% fol (1= dn+ %fol W (1_Tnx1 + ! ; ’7%2) qdn

1 ! 3p 1 ! " 1+’7 1_77 !
+];f0(1—n) dn+§f0 W\ =+ | dn

(%2_K1)3 1 ! 3 1 ! 1_775 " 1+n5 72
a5 [ amwmane g {5 vrcar (S wcara

1 ! 3] 1 ! 1+n5/// 1_775,;/
3o Y53t {5 oar)

(2 — 11)° 1 gl 1 o+l _ q y — q
= 96 P(3P+1) * 25 \s + ]+ s + 1 [lh )" +1h (%2)|]

This completes the proof. [

IA

4. Application to Special Means

We shall consider the following special means:
(a) Arithmetic Mean:

1 + Ao
A =AM, %): = TI ny, % 2 0;

(b) Geometric Mean:
G =G, ) = Vraunony, n0 > 0;
(c) Harmonic Mean:

2%1%2
U1+ A

H = H(x, 1) = , n, 0 2 0;

(d) Logarithmic Mean:

Uy — A1

—— 1, %2 >0, u1 # Ko,
Inx; —Inxy

L (1, %) :=

(e) Generalized logarithmic Mean:
;+1 _ %‘i+1 r
L =Ll (x, =|—=—————| reR-{-1,0}, »1, 1 €R, .
r = L (1, %) [(7+1)(%2—%1)} r {-1,0}, x1, 2 1 # no

It is well know that L] is monotonic nondecreasing over » € R with L_; = L. In particular we have the
following inequalities

H<G<L<A
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Proposition 4.1. For somen € z{-1,0}, 0 < %1 < %, then we get

nin-1) (% — %)’
24

L(x1, %) — A" (%1, %2) — A" (%1, %)

n(n-1)(n-2) (0 -x)’
- 384

[1¢2"7% + [2*].

Proof. The assertion directly follows from Theorem 2 applying for h(x) = x" and @ =s =1, & B(0) =
B()=1. O

Proposition 4.2. For somen € z{-1,0},0 < x1 < xp, and ;17 + % =1,1<q < oo, then

n(n—1) (% - )°
24

‘L (1, 42) — A" (1, 1) — A" (%1, %2)

1

{ N CEL N Z_’|%2|q(n—3>)q

= =

B 96

(3Bl + boht 3)}

Proof. The assertion directly follows from Theorem 3 applying for h(x) = x" anda =s =1, & B(0) =
B()=1. O

nmn - 1)n - 2) (o —x)°
3p+1

Proposition 4.3. For somen € z{—1,0},0 < %1 < %2, and g > 1, then

n(n—-1)(x —x1)°
24

< nn—1)n-2) (0 —x)° (%); {(W =3 3 |% |q(n—3))1

L(x1,#3) — A" (%1, %2) — A" (%1, %)

384

1
(§ |%1|q(n -3 4 |%2|L7(n —3))"}'
2

Proof. The assertion directly follows from Theorem 4 applying for h(x) = x" and @ =s =1, & B(0) =
B(1)=1. O

Proposition 4.4. For some 0 < %1 < X, then

(%2 — %1)3

L! — A7 (o, m0) —
‘ (21, %2) (%1, #2) 0

A7 (1, %2)

3
Ay — U _ _
< Qa2 o],

Proof. The assertion directly follows from Theorem 2 applying for h(x) = x'anda =s =1, & B(0) =
B(1)=1. O

Proposition 4.5. For some 0 < x1 < x5, and % + % =1,1<q< oo, then

(%2 — %1)3

L! — A7 (o, m0) —
(21, %2) (1, #2) 0

A7 (1, %2)
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1 1
(% — 1) 1\ (1 4y 3 4 )5
< = + = T +
= 64 3p+1) |\ bl 3 el

1
3, 1 Y]
(Frar + Jpal™)

Proof. The assertion directly follows from Theorem 3 applying for h(x) = x ! anda =s =1, & B(0) =
B(1)=1. O

Proposition 4.6. For some 0 < xq1 < xy, and g > 1, then

_ 3
‘L‘l (1, %2) — A7H (1, %0) - %A‘” (%1, %2)
(% - %1)3 (2)‘17 ( _4 3 _4 ):7
< X<z = q e q
< o1 = 1] + 5 |2¢2] +

1

(3 |% |—4q + |% |74q)4
7 1 2

Proof. The assertion directly follows from Theorem 4 applying for h(x) = x ' anda =s =1, & B(0) =
B()=1. O

5. Conclusions

Fractional calculus is an intriguing subject with many applications in the modelling of natural events.
We currently need to strengthen and improve our ability to generalize several recent results directly
related to the subject of fractional calculus. Using fractional calculus tools and operators, many authors
have generalized a variety of alternative fractional operators. Caputo-Fabrizio fractional integral is one
of these operators. With regard to the Caputo Fabrizio fractional integral, Some new fractional integral
Hermite Hadamard type inequalities for three times differentiable mapping have been established using
the current fractional integral. Furthermore, we have obtained newly established inequalities using several
special means. It is an intriguing and novel problem from which future scientists can obtain comparative
inequalities for Atangana fractional.
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