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Subhajit Beraa, Binod Chandra Tripathya

aTripura University, Department of Mathematics, Suryamaninagar-799022, Tripura, India

Abstract. In this article we have introduced the concept of Cesàro convergence, Cesàro null and Cesàro
bounded sequences of bi-complex numbers defined by BC-Orlicz function having hyperbolic norm. we
have investigated some of their algebraic and topological properties by defining a D-norm on these spaces.
Also inclusion results involving these sequence spaces have been established.

1. Introduction

Bi-complex numbers are being studied for quite a long time now. Probably Italian school of Segre [12]
introduced the bi-complex numbers. For more details on bi-complex numbers and bi-complex functional
analysis see ([14], [16], [11]). The hyperbolic numbers studied by Cockle [2], Lie and Scheffers [7]. Hy-
perbolic number system has been studied for various reasons. Many research developed the hyperbolic
numbers.

The sequence space has been investigated by different researchers from different aspects, such as Buck
[1], Fast[5], Schoenberg [13], Fridy [6], Rath and Tripathy [10], Tripathy and Nath[15].
A real sequence x = (xk) is said to be Cesàro convergent to l if

lim
n→∞

1
n

n∑
k=1

xk = l.

Definition 1.1. An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous, non-decreasing and
convex withM(0) = 0,M(x) > 0, for x > 0 andM(x)→∞, as x→∞.
Lindendstrauss and Tzafriri [8] used the idea of Orlicz function to construct the sequence space

ℓM :=

x ∈ ω :
∞∑

k=1

M

(
|xk|

ρ

)
< ∞, for some ρ > 0

 .
The sequence space ℓM is Banach space with the norm

∥x∥ := inf

ρ > 0 :
∞∑

k=1

M

(
|xk|

ρ

)
< 1

 .
2020 Mathematics Subject Classification. 46A45; 46E30, 40A35
Keywords. Orlicz Function, Cesàro Convergence, Bi-complex
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The concept of Orlicz function has been applied for studying different classes of sequences by Datta and
Tripathy[3], Nath and Tripathy[9] and many more. In this article we developed the Cesàro convergence
using BC-Orlicz function. Throughout the article we denote C0,C1 and C2 by set of real, complex and
bi-complex numbers respectively also we denote by w∗, the sequences of all bi-complex numbers.

2. Definition and Preliminaries

2.1. Bi-complex Numbers
A bi-complex number ξ is of the form

ξ = z1 + i2z2 = x1 + i1x2 + i2x3 + i1i2x4,

where z1, z2 ∈ C1 and x1, x2, x3, x4 ∈ C0 and the independent units i1, i2 are such that i21 = i22 = −1 and i1i2 = i2i1,
The set of bi-complex numbers C2 is defined as:

C2 = {ξ : ξ = z1 + i2z2; z1, z2 ∈ C1(i1)},

where C1(i1) = {x1 + i1x2 : x1, x2 ∈ C0}. C2 is a vector space over C1(i1). Other than 0 and 1, there are two
more idempotent elements in C2 given by e1 =

1+i1i2
2 and e2 =

1−i1i2
2 such that e1 + e2 = 1 and e1e2 = 0.

Every bi-complex number ξ = z1 + i2z2 can be uniquely expressed as the combination of e1 and e2, namely

ξ = z1 + i2z2 = (z1 − i1z2)e1 + (z1 + i1z2)e2 = µ1e1 + µ2e2,

where µ1 = (z1 − i1z2) and µ2 = (z1 + i1z2).
For ξ = z1 + i2z2 ∈ C2, the norm is defined as

∥ξ∥C2 =
√
|z1|

2 + |z2|
2.

The product of two bi-complex numbers is connected by the following inequality:

∥ξ · η∥C2 ≤

√

2∥ξ∥C2 .∥η∥C2 .

C2 together with the norm defined above form a generalized algebra. Since C2 ≃ C4
0 and C4

0 is complete
with respect to usual metric, it follows that C2 forms a generalized Banach algebra.
The bi-complex number ξ = z1 + i2z2 is called singular if |z2

1 + z2
2| = 0.

The set of all singular numbers is denoted by O2.

2.2. Hyperbolic Numbers
The hyperbolic number is of the form

α = x1 + i1i2x2; x1, x2 ∈ C0.

The idempotent representation of any hyperbolic number α = x1 + i1i2x2 is

α = v1e1 + v2e2,

where v1 = x1 + x2, v2 = x2 − x1.
The set of hyperbolic numbers is given by

D = {v1e1 + v2e2 : v1, v2 ∈ C0}.

The set of positive hyperbolic numbers is given by

D+ = {v1e1 + v2e2 : v1, v2 ≥ 0}.
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Let ξ ∈ C2, then hyperbolic norm(D- valued) norm on C2 is given by

|ξ|D = |µ1|e1 + |µ2|e2 ∈ D+.

If ξ, η ∈ C2, then

|ξ + η|D ≤
′

|ξD + |η|D and |ξη|D = |ξ|D|η|D.

Let S be a subset of D. Consider the two sets D1 = {v1 : v1e1 + v2e2 ∈ S} and D2 = {v2 : v1e1 + v2e2 ∈ S}.
Then supremum of the set S is given by

sup
D

S = e1 sup D1 + e2 sup D2.

Similarly, infimum of the set S is given by

inf
D

S = e1 inf D1 + e2 inf D2.

The partial order relation on D is given by

α ≤
′

β if and only if β − α ∈ D+∀α, β ∈ D.

Remark 2.1. Denote D∗+, by the the non negative extended hyperbolic numbers

D∗+ = {µ1e1 + µ2e2, µ1, µ2 > 0} ∪ {∞} ∪ {−∞} ∪ {∞e1 + µ2e2} ∪ {µ1e1 −∞e2}

Throughout the article we denote

0D = 0 + 0i1i2.

Definition 2.2. A function ΥD : D→ D∗+ is called D-valued convex function if for every ξ, η ∈ D with 0 ≤
′

α ≤
′

1
such that

ΥD(αξ + (1 − α)η) ≤
′

αΥD(ξ) + (1 − α)ΥD(η).

Definition 2.3. [4] A convex function ΥD : D+ → D∗+ is said to be BC-Orlicz function if it satisfies the following
conditions
(i) ΥD(0D) = 0D;
(ii) limξ→∞ΥD(ξ) = ∞∗, where∞∗ = µ1e1 +∞e2 = ∞e1 + µ2e2 = ∞e1 +∞e2 and limξ→∞ΥD(ξ) must exist along
any line in the hyperbolic plane and must be equal.
We denote the BC-Orlicz function byMD.

Definition 2.4. An BC-Orlicz functionMD is said to satisfy the ∆2
D-condition denoted byMD ∈ ∆

2
D if there exist

some hyperbolic constants K ≥′ 0 and ξ0(depending upon K) such that

MD((2e1 + 2e2)ξ) ≤
′

KMD(ξ),∀ 0 ≤
′

ξ ≤
′

ξ0.

Definition 2.5. A function 1 : C2 → D∗+ is called D-norm if the following conditions are satisfied;
p1 : 1(ξ) ≥

′

0D, for all ξ ∈ C2;
p2 : 1(−ξ) = 1(ξ), for all ξ ∈ C2;
p3 : 1(ξ + η) ≤

′

1(ξ) + 1(η), for all ξ, η ∈ C2;
p4 : αk → α, |xk − x|D → 0D, then |αkξk − αξ|D → 0D.



S. Bera, B. C. Tripathy / Filomat 37:28 (2023), 9769–9775 9772

3. Main result

In this section we introduce the notion of different types of Cesàro convergence sequences of bi-complex
numbers defined by BC-Orlicz function. We investigate their different properties and we define the follow-
ing sets

[b∗1,MD] :=

ξ ∈ ω∗ : lim
n→∞

1
n

n∑
k=1

MD

(
|ξk − ξ∗|D
α

)
= 0D, for some hyperbolic number α >

′

0


[b∗0,MD] :=

ξ ∈ ω∗ : lim
n→∞

1
n

n∑
k=1

MD

(
|ξk|D

α

)
= 0D, for some hyperbolic number α >

′

0


[b∗∞,MD] :=

ξ ∈ ω∗ : lim
n→∞

1
n

n∑
k=1

MD

(
|ξk|D

α

)
<
′

∞, for some hyperbolic number α >
′

0

 .
Theorem 3.1. The sets [b∗1,MD], [b∗0,MD] and [b∗∞,MD] are linear space over C2 \O2.

Proof. Let ξ, η ∈ [b∗∞,MD], then for some small hyperbolic numbers α1, α2 >
′

0 such that

lim
n→∞

1
n

n∑
k=1

MD

(
|ξk|D

α1

)
<
′

∞

lim
n→∞

1
n

n∑
k=1

MD

(
|ηk|D

α2

)
<
′

∞.

Let k1, k2 ∈ C2 \O2. and α = max{|k1|Dα1, |k2|Dα2}.
Now

lim
n→∞

1
n

n∑
k=1

MD

(
|k1ξk + k2ηk|D

α

)

≤
′

lim
n→∞

1
n

n∑
k=1

MD

(
|k1ξk|D

α

)
+ lim

n→∞

1
n

n∑
k=1

MD

(
|k2ηk|D

α

)

= lim
n→∞

1
n

n∑
k=1

MD

(
|k1|D|ξk|D

α

)
+ lim

n→∞

1
n

n∑
k=1

MD

(
|k2|D|ηk|D

α

)

= lim
n→∞

1
n

n∑
k=1

MD

(
|ξk|D

α1

)
+ lim

n→∞

1
n

n∑
k=1

MD

(
|ηk|D

α2

)
<
′

∞.

Therefore, [b∗∞,MD] is linear space over C2 \O2.

Result 3.2. LetMD be BC-Orlicz function then

[b∗0,MD] ⊂ [b∗1,MD] ⊂ [b∗∞,MD].

Theorem 3.3. The spaces [b∗0,MD] and [b∗∞,MD] are solid.

Proof. Let ξ = (ξk) ∈ [b∗∞,MD], then

lim
n→∞

1
n

n∑
k=1

MD

(
|ξk|D

α

)
<
′

∞.
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Let us consider a sequence of bi-complex scalars (ζk) with |ζk|D ≤
′

1.
Now

lim
n→∞

1
n

n∑
k=1

MD

(
|ζkξk|D

α

)
= lim

n→∞

1
n

n∑
k=1

MD

(
|ζk|D|ξk|D

α

)
<
′

lim
n→∞

1
n

n∑
k=1

MD

(
|ξk|D

α

)
<
′

∞.

Hence, [b∗∞,MD] is solid.
Similarly other cases can be proved.

Result 3.4. The spaces [b∗1,MD], [b∗0,MD] and [b∗∞,MD] are not convergence free.

Theorem 3.5. LetM1
D andM2

D be two BC-Orlicz functions with ∆2
D-condition, then

[b∗p,M
1
D] ∪ [b∗p,M

2
D] ⊆ [b∗p,M

1
D +M

2
D],

where p = o, 1,∞.

Theorem 3.6. LetM1
D andM2

D-be two BC-Orlicz functions with ∆2
D-condition, then

[b∗∞,M
2
D] ⊂ [b∗∞,M

1
D ∗M

2
D].

Proof. Let ξ ∈ [b∗∞,M2
D], then

lim
n→∞

1
n

n∑
k=1

M
2
D

(
|ξk|D

α

)
<
′

∞.

Let

p =M2
D

(
|ξk|D

α

)
.

SinceM1
D satisfies ∆2

D-condition, so there exist K ≥′ 0 and ξ0(depending upon K) such that

M
1
D(p) ≤

′

KpM1
D(2e1 + 2e2),∀ 0 ≤

′

ξ ≤
′

ξ0.

Now,

lim
n→∞

1
n

n∑
k=1

(M1
D ∗M

2
D)

(
|ξk|D

α

)
= lim

n→∞

1
n

n∑
k=1

M
1
D

(
M

2
D

(
|ξk|D

α

))
= lim

n→∞

1
n

n∑
k=1

M
1
D
(
p
)

≤
′

lim
n→∞

1
n

n∑
k=1

KpM1
D(2e1 + 2e2)

≤
′

∞.

Thus, ξ ∈ [b∗∞,M1
D ∗M

2
D].

Hence, the theorem.
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Theorem 3.7. LetMD be any BC-Orlicz function, the space [b∗∞,M2
D] is a D-norm space with

1(ξ) = inf

α :
n∑

k=1

[
MD

(
|ξk|D

α

)]
≤
′

1, for some hyperbolic number α >
′

0

 .
Proof. Since α >

′

0, so 1(ξ) >
′

0 and 1(−ξ) = 1(ξ),∀ξ ∈ [b∗∞,M2
D].

Let ξ, η ∈ [b∗∞,M2
D], then for some hyperbolic numbers α1, α2 >

′

0 such that

lim
n→∞

1
n

n∑
k=1

MD

(
|ξk|D

α1

)
<
′

∞

lim
n→∞

1
n

n∑
k=1

MD

(
|ηk|D

α2

)
<
′

∞.

Let

S =

α :
n∑

k=1

[
MD

(
|ξk + ηk|D

α

)]
≤
′

1

 ,
S1 =

α1 :
n∑

k=1

[
MD

(
|ξk + ηk|D

α1

)]
≤
′

1

 ,
S2 =

α2 :
n∑

k=1

[
MD

(
|ξk + ηk|D

α2

)]
≤
′

1

 .
Let α = (α1 + α2) ∈ S, α1 = v′1e1 + v′2e2 ∈ S1, α2 = v”

1e1 + v”
2e2 ∈ S2 and α = v1e1 + v2e2.

Now,

1(ξ + η) = inf

α :
n∑

k=1

[
MD

(
|ξk + ηk|D

α

)]
≤
′

1


= inf{v1 : α ∈ S}e1 + inf{v2 : α ∈ S}e2

= inf{v
′

1 : α1 ∈ S1}e1 + inf{v”
1 : α2 ∈ S2}e1 + inf{v

′

2 : α1 ∈ S1}e2 + inf{v”
2 : α2 ∈ S2}e2

= inf{v
′

1 : α1 ∈ S1}e1 + inf{v
′

2 : α1 ∈ S1}e2 + inf{v”
1 : α2 ∈ S2}e1 + inf{v”

2 : α2 ∈ S2}e2

= inf

α1 :
n∑

k=1

[
MD

(
|ξk + ηk|D

α1

)]
≤
′

1

 + inf

α2 :
n∑

k=1

[
MD

(
|ξk + ηk|D

α2

)]
≤
′

1


= 1(ξ) + 1(η).

Hence, the theorem.

Conclusion. In this article, we have introduced the notion of Cesàro convergence of sequences of bi-complex
numbers defined by BC-Orlicz function. We have investigated its different algebraic and topological prop-
erties. There are very few articles on sequences of bi-complex numbers.
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