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Weak solutions for elliptic problems in weighted anisotropic Sobolev
space
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Abstract. Using Mountain Pass Theorem, the existence of weak solutions for

X 9 du
-5 ( @IZ P25 ) Aol = A8l

i=1

with Dirichlet boundary condition is studied.

1. Introduction

In this paper, we prove the existence of solutions for the weighted anisotropic elliptic problem

ou
pi(x)=2 )2, _ -2,
ZZ ox; ( 8x1| axz) AY T = ASGo)lu in Q, "

on dQ),
where Q) is a bounded smooth domain in RN (N > 3), 1 € R, q,r € C+(§) and 7 Q> RN given by
P = (1), pa),
that for each i € {1,--- , N}, p; : Q — Ris a continuous function with
pi(x) =2 forall xeQ;
also, we assume that
(Ho) v,6 € L*(Q) where inf,cq y(x) > 0 and inf,eq 6(x) > 0;

(H1) 1<gq <qx)<gt<p<plx)<p<r <r(x) <rt(x)<psy,
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where for i € {p,q,r} € C+(Q), we define

h* :=suph(x), h™ :=infh(x),

<G x€Q
and
. L hy :=max{h; :i=1,--- ,N}
(Zl 1 h
We also set
E::max{h;:izl,”',N}, h:=min{h; :i=1,---,N}
and

he := max{h™, h;}, hs :=inf{ 1

i=1,---,N}L

Many problems in physics and mechanics are modeled by p(x)-Laplace operator and are studied by different
methods such as variational method [2, 12-16, 18-20, 23], sub-super solutions method [21] and etc. For
example, Zhou and Wu [23] studied the problem

—dio (a()|Vul®2Vat) = A (b()ul"™2u — ()l 2u),

with the Dirichlet boundary condition on smooth boundary domain Q ¢ RY. They proved the existence of
solutions for the above problem by putting the suitable conditions and using the method of variations.

On the other hand, we deal with problems such as elastic mechanics, crystal growth and etc. that in their
modeling, the exponent should be able to vary in different directions. The anisotropic Sobolev spaces
WLp (")(Q) with ¢ T(x) = (p1(x),--- ,pn(x)) is a suitable space for 1nvest1gat1ng these kinds of problems.
Many authors have examined the problems in this space with the 7-Laplacian operator

ii I -2 O
Apwi — ox; 8x, ox; |’

For example, Razani et al. [15] have studied results in weighted anisotropic Sobolev spaces. They have
proved the existence and approximation results for degenerated anisotropic (p, q)-Laplacian with weights

N

- (oo g2+ oon ) 94 = v
i=1 1 1

i=
and a competing anisotropic (p, q)-Laplacian with weights

N

—Za%((w P = b 5 wﬂ)j”) £, V)

i=1

with Dirichlet boundary condition on a bounded smooth domain in RN, N > 3, where f:OXRX RN - Ris
a Carathodory function. Their proofs are based on weighted antitropic Sobolev spaces, Nemytskij operators
and finite dimensional approximation.

In the next section, we refer to the function spaces, some definitions, theorems and lemmas that we will
use to prove the results. And also, we will introduce the weighted antitropic Sobolev spaces as a solution
space.
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2. Preliminaries
Let Q ¢ RN be an open bounded subset. Adjust
C.(Q) := {p :Q — R measurable: 1<p” <p*< 00}.
For any p € C,(Q), we introduce the Lebesgue space with the variable exponent defined by

Q) := {u : Q — R measurable and f [u(x)PPdx < oo} ,
Q

with the Luxemburg norm

u(x)

llly = ltlleo ) = intf {o S 1}.
o O

We recall the following theorem [8, Theorem 2.8].

Theorem 2.1. Assume that Q is a bounded and smooth domain in RN. Let p1,p2 € C+(5). Then,
LP9(Q) s [1O(Q)

if and only if p1(x) < pa2(x) a.e. in Q.

Proposition 2.2. [8] The space LPY)(Q) is a separable, uniform convex Banach space and its conjugate space is

LF'(Q) where ﬁ + ﬁ = 1. For any u € [P™(Q) and v € LV'™(Q), we have

1 1
Ifuvdxl < (— + —)IIMII 1ol < 2wl |[o]], .
Q p= (y) T pew

Proposition 2.3. [6] Set p(u) = fQ a(x)[ulPWdx, for all u € LPY(a, Q). Then,

(1) pw) >1(=1;<1) ifandonlyif |ullpweq) > 1(=1;<1), respectively;

2) if Nullpweo) > 1, then ||u||ip(x)(glg) < pu) < ||M||z,g<x)(a,m;
3) if lNullpweea) <1, then IIuIIZ,(x)(a’Q) <p(u) < IIuII’L’p(X)(ﬂ,Q).

Here, we introduce the weighted Sobolev space
WD(g, Q) := {u € PI(Q): f a(x)|Vul@dx < oo},
Q

endowed with the norm

Vu u
ooy = inf{o>0, f (a(x)|—|ﬁ<x>+|—|”<x>)dxs1}
, Q o o

Note that C5°(Q) € W™ (g, Q3) and the closure of C7*(Q) in W#®(a, Q) with respect to the norm ||.|w1e)4,0)
is the space Wé’p (x)(a, Q).

A reduction in the regularization of classical Sobolev spaces is based on the following condition from [7]:
Let a be a measurable positive and a.e. finite function in RN satisfying that

(H]) ael!

loc

(Q) and a7 € L, (Q);
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(H}) a=® e LY(Q) for some s(x) € (max{%, ]ﬁ}, +oo).
For p,s € C,(Q), denote

_ p(x)s(x)
ps(x) == T+5()

<p(),
where s(x) is given in (H). Also we set

p)s(x)N

pi(x) =4 (s(x) + DN = p(x)s(x)
o) for N < ps(x).

for N > ps(x),

for almost all x € Q3. Next, we recall the following Proposition according to [7, Theorem 2.11].

Proposition 2.4. Let p,s € C,(Q) and (H}) and (H)) be satisfied. Then, we have the following compact embedding
WO (g, Q) s WPO(Q) eses [TW(Q),

provided that
reCy(Q), 1<r() <pi(x) forall xeQ.

For all u € W,"(a, ),

Vu
— (%)
||M||W3,p<x>(ﬂ/g) :=inf {o >0, L a(x)| - PDdx < 1}

is an equivalent norm on W(l)’p ® (a,Q) for which W(l)’p © (a, Q) becomes a uniformly convex Banach space.
In the following, we consider the vectorial function 7 : Q — RN as follows

P =P = (i), pal),
where
pi € Co(Q) forall iefl,---,N}.
The anisotropic variable exponent Sobolev space defined by
WP (Q) = {u e WH(Q): % e POQ) fori=1,- ,N},
WP (@) = W Q) n WH(Q),

The anisotropic variable exponent Sobolev space WS?(Q) can also be defined as the closure of C7’(Q2) in
WL?(Q) with respect to the norm

N
lul =) 124
WP @ T 4 = Jx; pit
1=

These spaces are separable and reflexive Banach spaces [4, 10].
The suitable space for the solutions to our problem is the weighted anisotropic variable exponent Sobolev
space, i.e.,

WP (a,Q) := {u e Whl(a, Q) : % € LFW(a,Q) fori=1,--- ,N}. (2)
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We remind that W;’? (a,Q) can be defined as the closure of C7(Q) in WLFP (a,Q2) with respect to the norm

N

ou i
ol = lly7 = ( fg a(x)lgl”’dx)
i=1

1

N
=) e
i=1

Theorem 2.5. [10] Suppose, Q C RN is a bounded domain with smooth boundary. If, foralli=1,--- N,

1
P

> 1.

N
i=1
(1) For any a € C(Q) verifying
1<a(x)<pe forall xeQ,
the embedding
W7 (@) © L0,
is continuous and compact.

(2) Assume that p > N, then the embedding

W Q) o @)

is compact.

9733

Also, it is shown in [10, Theorem 1] that WS’W(Q) is continuously embedded in Wé’p (Q). The following

condition gives interesting results of embedding in Wé’p (a,Q).
(Hy) a=*® € LY(Q)  for some s(x) € (max{Zf‘il ;ﬁ, E%}’ +oo),

Notice that one can prove the following embedding result.

Proposition 2.6. Assume (Hy) is hold. There are continuous embeddings
L7 Ly a
Wy (a,Q) — W, (Q) — LY(Q).
Also, the embedding
15 a
Wy (Q) = LYQ),

is compact for a < ps_, . Furthermore, Wé’p (Q) is a uniformly convex Banach space.

Now, we recall the definition of Palais-Smale condition.

Definition 2.7. Let ¢ and ¢ be two continuously Gateaux-differentiable functionals defined on a real Banach space
X and fix r € R. The functional I = ¢ — 1 is said to confirm the Palais-Smale condition (in short (PS)I"), if any

sequence {u,} ey in X such that
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o {I(u,)}is bounded;
o limy, oo [[I'(n)llx+ = 0;
o P(uy) <rforeachn e N;
has a convergent subsequence.

If r = oo, we say that the functional I = ¢ — 1) verify the Palais-Smale condition or in short (PS).
In this paper, we intend to prove the existence of a nontrivial weak solution for problem (1) and also show
that this problem has infinitely many solutions. Due to do this, one can define the functional

WP
D: W, (@,Q) - R,

by

a(x) ou Pit0) dy — A M My + A o(x) () Jy
Plar) = me @ Lq(x)'”' i Lr( "

for all u € W7 (a, Q). Notice that

cD(u)v—Z [ atongpe2 22 2
—Afy(x)lulq(x)_zuvdx—/\f6(x)|u|r(x)_2uvdx,
Q o)

forallo € W7 (2, Q).

Definition 2.8. It is called u € W(l)’7 (a,Q) is a weak solution of problem (1) if it verifies

ou ou 80
pi(x)-2
§ f e
A f () |ul""2yvdx — A f S(x)ul" ™2 uvdx
Q Q

forallv e Wé’7 (a,Q).

It is clear that the critical points of ® are weak solutions of the Problem (1).
Now, we can state the main results in this paper.

Theorem 2.9. Suppose (Hy), (H1) and (Hy) hold.

(A) if A > 0, then problem (1) has a nontrivial solution which is a minimizer of the associated integral functional of
.

(B) if A <0, then problem (1) has a sequence of solutions {+u,} such that

O(+u,) » +c0 as n — +oo.

In the next section we prove the existence of a weak solution of (1), when A > 0 and the existence of a
sequence of solutions when A < 0.
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3. Weak solutions

Throughout the article, the letters ¢, c;,i = 1,2, - - - show positive constants that are possible change from
one line to another.
Note that, by using (Hp) and Proposition 2.3, we have

Y@ ey < Wl (o Mm o
;ﬁwﬂ'< fH < == [l + 1l ],

and from Proposition 2.6,

X 0o + _
fﬂ)WRW”LMWHmW}
a () q

Proof. First, we examine part (A) of Theorem 2.9 and prove the existence of a nontrivial solution for problem
(1). For this purpose, we show that if A > 0 then the functional @ is coercive. Let [|u|| > 1, according to the
definition of the functional ®, we have

S i s 1 [
) = anmwﬂ L(ﬂ' L(ﬂ'x

CII)/IIoo
q

p
2 ?Ilullf— ——lull”", (4)

PN=
because p > q*, so @ is coercive and has a minimizer which is a solution for problem (1). Now, we show

that the minimizer is nonzero. Indeed, for ¢ > 0 small enough and vy € Wé’p (a,Q)

D(tvy) =

Zf a(x) tn(x)|avo POy — fy( )t‘7<")|v |‘7(x)dx+Af O) oo ™ dx
apilx)  ox q(x)

v X t “ ”oo q(x tri 6 00 r(x
<t Z]\m°wu z f| i+ —%Lfmww
E t o ' 6Nl
TZ P
< c3t B — et
<0.

Since q* < p, the last inequality is obtained. Now, we prove part (B) of Theorem 2.9. Set

X =W (a,Q),

this is a reflexive and separable Banach space. We remind that if X be a reflexive and separable Banach
space, then there exist {;} C X and {Q } € X* such that,

X:span{gj 1j=1,23,---}, X'= span{g; 1j=1,2,3,---}
and

SN B S
<&@0‘{0 j#i.
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Where (., .) denotes the duality product between X and X*. For convenience, we write
Xj = SPLZV[{Q]‘}, Y = 69}](-=1X]' and Z; = @}.ikx]'. (5)
The following lemma is our main tool for proving the infinitely many solutions to problem (1).

Lemma 3.1. [22] X is a Banach space, ® € CY(X,R) is an even functional, the subspaces Yy and Zy. are defined as
(5). If, foreach k = 1,2,3, - - - , there exists px > dy > 0 such that

(1) maxuey, juj=p, P() < 0;

(2) infuez, uj=a, P(u) = 00 as k — oo

(3) The functional ® satisfies the (P.S.) condition;
Then, ® has an unbounded sequence of critical values.

Using Lemma 3.1, we prove that if A < 0 then problem (1) has infinitely many solutions. Assume, t > 1
and v € Yy with [[v|]| = 1. Adjust

b= inf f o )|V|r(x)d
veYe =1 Jo 7(x)

From definition ®, we obtain

D(tv)

3 a(x) pix) i) y(x) (%)
= X i) dx q(X) q(x) dx + A r(x) r(r)d
ZLMK 7 ‘Laf" o f e

Iy IIyllm - [ 8
< — |- |Pf<x f W™ @dx + At f @ ddx
P Zf ) Q Q V(X)
p (o)
< — : —— |l + 5”7/” vl + A 6
pNF

< Cth + C7tq+ - Cgtrifk,
according to (Hi), v~ > p > g%, so for a ty € [1, oo[, D(tpv) < 0. As a result, there exists large px > 0 so that

max D(u) < 0.
ueYyllull=px

Therefore, (1) of Lemma 3.1 is satisfied. Now, we show that (2) also holds. For this purpose, adjust

po= sup [ Suroas

veZyIvli<l JQ r(x)
According to the definition of Z;, we see that
0<PBirs1 <P and Pr—0 ask— oo,

so, there exists {u;} such that,

e - EQMMMM<1
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for all k > 1. Considering that {u4} is bounded in Wé’?}(x)(Q), we can conclude that,

U — Uy in W3’7(x)(Q),
therefore,

Q;(uk) -0 as k— oo,
on the other hand, we have

gi(ug) =0 forall j=1,

thus, uy = 0. Now, consider u € W;’p (x)(Q) with |Jul| > 1. According to the definition ®(u), we have

a(x y(x) o(x)
D(u Py — f 1 dx + A f ") dy
= Zf@pm ol 0q®" oo
1 ou Y0 l16]]eo
> = a(x)| == Vdx — A — f [T dx + A —= f || ™ dx
P;‘L ( )395' 7" Ja m Ja
1

B AC "
A f L = Cilul

—Jlull” — CBillull”, (6)

[\

1
> -

note that A < 0, so the last inequality holds. Put

m .
ujl = =|——— P
H 25N CBy

lull > 00 as Pr— 0.

S0,

Therefore, we obtain from (6)

inf  O(u) >

P
( TH ™+ as k — oo
u€Zy,|[ull=ux 2}7]\]3_

Now, it suffices to show that the functional @ verifies the Palais-Smale condition on W(l)’p (a,Q)). Suppose,
the sequence {u,} satisfies in the Palais-Smale condition i.e.,

O(u,) > ¢ and D'(u,) — 0.
So, for ||u,|| large enough, we obtain

rc+12rouy,)— O (u,)uy,

= - Py — A - 1@y
;ﬁ[pl 1a(x )| o f[ =~ Wl
+)\f[ " — 11600ty P dx > [——1 Zfa(x)| |p1(x)d

A f [q() 1y @l + A f [ 115 Pl
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the last mequahty holds according to the condition (H;). From (7), we conclude that {u,} is a bounded
sequence in W 7 (a,€2). We consider the subsequence still denoted by {u,}. Suppose

a(x) Juy
ngpl(x)a POdx— & as n— oo, ®)

on the other hand, there exists u € Wé’p (a, Q) such that

Uy — Uy 1IN Wé'?(a, Q),

Uy(x) = up(x) ae x€Q,
and

U, = Uy in LQ(X)(Q),

Uy, = uy in  L'(Q).

So, we conclude that
im, [ 060 (0, 1) G, = 1) =,
n—oo Q

tim [ 6 (Jual ™21, = luol ™21 (1 — 110) = 0

n—oo Q

As a result, we have

lim Zfa(x)( au" pig-2%n _ Iauol”(x) zauo)(au" - %)d = 0. 9)

n—co ox; ox; d ox;  odx;

Using the above discussion, we show that {u,} has a strongly convergent subsequence in the following
cases:

(1) £=0.

From (8), we obtain

Zf( I”’(")dx—>0 as n— oo,

so, we conclude that {u,} is strongly convergent to 0 in W(l)”7 (a,Q).

(2 £>0.
We recall the following inequality from [9] which states for every (,n € RY,

29(1c2c = Inl"2n) - €= 2 C—nl°  forall 6> 2, (10)

where C - 1) represents the inner product in RN.
From (10), we conclude that there exists ¢’ > 0 such that

f“( )( 8un|p(x) 20Uy _|8u0|p(x) 28u0)(8un B %)d

ox; ox; 0 ox;  0x;
> eifa(x)l(;u” - (;Mo i) dx

, 81/{;1 auo P:(X)
>¢€ La(x)laXi o, — P dx
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forie{l,---,N}, where

& = min ¢;.
i=1,-,N

Which implies,

Ju u u dug \ [ Ju u
i ”P(X)2 n 70 1pi—2 20 n_ 240
Jim, Z f ( " ox; - ox; F ox. ) ( dx;  0x; )dx

' Ity _ Ity 0
> e ;foa(xn&xi S .

And from (9), we obtain

Zf( duy auolp,(x)ﬁo as 1 — oo,

that’s mean,

. 1,7
Uy, — U n WO (ﬂ, Q)/

hence, u, converges strongly to 1 in Wé’p (a, Q).

So, according to Lemma 3.1, @ takes an unbounded sequence of critical values. As a result, part (B) of
Theorem 2.9 is also proved. [
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