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A new perspective on Fibonacci and Lucas numbers
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Abstract. In the present work, we introduce a new version of Fibonacci and Lucas numbers which we
will call non-Newtonian Fibonacci and non-Newtonian Lucas numbers. Also, we discuss a variety of
some properties of them. Furthermore, we give some formulas and identities such as Binet’s formula, the
d’Ocagne’s identity, Cassini’s identity and Gelin-Cesàro identity involving these new types and we find
the generating functions for these numbers.

1. Introduction and Preliminaries

Since Newton and Leibnitz introduced modern calculus, many calculi have been created with differ-
ent aspects. A known and favored technique of introducing a novel mathematical system is to modify
the axioms of a known one. Grossman and Katz [19] established a new family of calculi, named non-
Newtonian calculus which culminated in their little book Non-Newtonian Calculus, and gave definitions
of contemporary types of integrals and derivatives transforming the acts of addition and subtraction into
multiplication and division in the period between 1967 and 1970. They defined an infinite family of calculus
which involves some special calculi such as geometric calculus, harmonic calculus, bigeometric calculus,
anageometric calculus (see [17, 18]). Furthermore, a mathematical problem, which is difficult or impossible
to solve in one calculus, can be effortlessly exposed through another calculus.

Since the leading-edge work of Grossman and Katz, non-Newtonian calculi have become a hot issue
in recent times due to prevalence of excellent applications for some problems, e.g., in economy, quantum
calculus, biomathematics, calculus in variantions, actuarial science, finance, economics, demography, signal
processing and thermostatistics [3, 6, 12, 13, 15, 16, 20, 27, 30–32, 34].

An arithmetic is a complete ordered field whose realm is a subset of R. Non-Newtonian calculi utilize
different types of arithmetic and their generators. Let α be a bijection whose domain R and whose range is
a subset A ofR. Then, it is called a generator with range A and defines an arithmetic. The range of generator
α is denoted by Rα. Also, every element of Rα is called a non-Newtonian real number. Choosing α = I and
α = exp, the classical arithmetic and the geometric arithmetic are obtained, respectively, and also, RI = R

2020 Mathematics Subject Classification. Primary 11B39, 11B83; Secondary 05A15, 11U10.
Keywords. non-Newtonian calculus, Lucas number, Fibonacci number, Binet’s formula, generating function.
Received: 02 February 2023; Revised: 31 May 2023; Accepted: 06 June 2023
Communicated by Eberhard Malkowsky
* Corresponding author: Nilay Değirmen
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and Rexp = R+.

α−arithmetic
Realm A (= Rα)
Addition x

.
+ y = α

{
α−1 (x) + α−1 (

y
)}

Subtraction x
.
− y = α

{
α−1 (x) − α−1 (

y
)}

Multiplication x
.
× y = α

{
α−1 (x) × α−1 (

y
)}

Division x
.
/y = x

yα = α
{
α−1(x)
α−1(y)

} (
y ,

.
0
)

Ordering x
.
≤ y⇐⇒ α−1 (x) ≤ α−1 (

y
)

If x ∈ Rα and
.
0
.
< x (or x

.
<
.
0), then we say that it is a α−positive number (or α−negative number).

Additionally, R+α denotes the set of α−positive numbers. Also, α (−x) = α
{
−α−1

( .
x
)}
=
.
−
.
x for all x ∈ R. On

the other hand, the number x
.
× x is called the α− square of x, denoted by x

.
2. If x ∈ R+α ∪

{ .
0
}
, then we say

that α
[√
α−1 (x)

]
is the α− square root of x, denoted by .

√
x [7, 19].

Italian mathematician Leonardo Fibonacci created a new number sequence called Fibonacci numbers.
These numbers worked as a model for studying the growth of rabbit populations (see [9]). Also, the rate of
two consecutive Fibonacci numbers reaches the golden ratio 1, 61803399....Fibonacci numbers are connected
with Lucas numbers.

Subsequently, the study of numerical sequences of such numbers is a great topic of research and since
the second half of 20th century it starts to become more popular for researchers. Also, Fibonacci numbers,
Lucas numbers and the golden mean arise in the investigation of numerous areas of art and science, and
they have many original generalizations in different ways with various aspects. In addition, [25] is a good
resource for the rich applications and usefulness of these numbers. Some pivotal attempts at generalizing
these numbers are [1, 2, 5, 14, 21, 22, 24, 28, 29] which each approached them with a different perspective.

For self consistency, we give a brief introductory of Fibonacci and Lucas numbers which focuses on the
nomenclature used in this paper.

Fibonacci numbers are the terms of the integer sequence

{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...,Fn, ...}

defined by the recurrence relation

Fn = Fn−1 + Fn−2 for each n ∈ {2, 3, 4, ...}

with F0 = 0,F1 = 1, it is well known as the n−th term of the Fibonacci sequence (Fn) which is a numerical
sequence.

Lucas numbers are the terms of the integer sequence

{2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, ...,Ln, ...}

defined by the recurrence relation

Ln = Ln−1 + Ln−2 for each n ∈ {2, 3, 4, ...}

with L0 = 2,L1 = 1, it is well known as the n−th term of the Lucas sequence (Ln) which is a numerical
sequence.

For n,m ≥ 0, the following relations hold (see [4, 8, 10, 23, 25, 26, 33]):

Fn + Fn+1 = Fn+2. (1)

Ln + Ln+1 = Ln+2. (2)
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Ln = Fn−1 + Fn+1. (3)

Ln = Fn+2 − Fn−2. (4)

F2
n + F2

n+1 = F2n+1. (5)

F2
n+1 − F2

n−1 = F2n. (6)

FnFm + Fn+1Fm+1 = Fn+m+1. (7)

FmFn+1 − FnFm+1 = (−1)n Fm−n. (8)

Fn+m = Fn−1Fm + FnFm+1. (9)

Fn =
γn
− βn

γ − β
(10)

and

Ln = γ
n + βn (11)

where γ = 1+
√

5
2 and β = 1−

√
5

2 .

F4
n − Fn−1Fn−2Fn+1Fn+2 = 1. (12)

Fn+1Fn+2Fn+6 − F3
n+3 = (−1)n Fn. (13)

n∑
k=0

Fk = Fn+2 − 1,
n∑

k=0

F2k = F2n+1 − 1,
n∑

k=0

F2k+1 = F2n+2. (14)

Besides, for n, r ≥ 1, the following relations hold (see [4, 10, 23, 25, 33]):

F2
n − Fn−1Fn+1 = (−1)n+1 . (15)

L2
n − Ln−1Ln+1 = 5 (−1)n . (16)

F2
n − Fn−rFn+r = (−1)n−r F2

r . (17)

L2
n − Ln−rLn+r = 5 (−1)n−r F2

r . (18)

Motivated by rich applications of both non-Newtonian calculus and numerical sequences, in this article,
we present and study non-Newtonian Fibonacci and non-Newtonian Lucas numbers as a new addition to
the existing literature. Hereupon, we connect such numbers with the classical Fibonacci and Lucas numbers.
Also, we investigate non-Newtonian versions of some important identities and remarkable formulas given
for classical Fibonacci and Lucas numbers in a new and direct way. Furthermore, such numbers generalize
the known corresponding numbers, so our results are stronger than counterparts in the literature and they
gain importance as a starting point for new applications to many interesting problems in various aspects
e.g. the applications to problems in encryption theory.

2. Non-Newtonian Fibonacci and Non-Newtonian Lucas Numbers with Some Properties

In this part, we define the concepts of a non-Newtonian Fibonacci number and a non-Newtonian Lucas
number with a new perspective on the concepts of a Fibonacci number and a Lucas number. We also
deal with the non-Newtonian versions of some formulas and identities in analogy with some well-known
identities and formulas for classical counterparts and evince their relationships with each other.
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Definition 2.1. The non-Newtonian Fibonacci and non-Newtonian Lucas numbers are defined

ℵℵFn =
.

Fn = α (Fn)

and

ℵℵLn =
.

Ln = α (Ln) ,

respectively where Fn and Ln are the n−th Fibonacci and Lucas numbers, respectively. The set of non-Newtonian
Fibonacci and non-Newtonian Lucas numbers are denoted by ℵℵF and ℵℵL, respectively. That is,

ℵℵF = {ℵℵFn : n ∈N}

=
{ .
0,
.
1,
.
1,
.
2,
.
3,
.
5,
.
8,
.

13,
.

21,
.

34,
.

55,
.

89,
.

144, ...,
.

Fn, ...
}

and

ℵℵL = {ℵℵLn : n ∈N}

=
{ .
2,
.
1,
.
3,
.
4,
.
7,
.

11,
.

18,
.

29,
.

47,
.

76,
.

123,
.

199, ...,
.

Ln, ...
}
.

If we use the generator I defined by α (x) = x for all x ∈ R,we obtain Fibonacci and Lucas numbers with
respect to classical arithmetic, respectively.

Also, by choosing the generator exp defined by α (x) = ex for all x ∈ R, we obtain Fibonacci and Lucas
numbers with respect to geometric arithmetic, respectively, as follows:

ℵℵGF = {α (Fn) : n ∈N}

=
{
eFn : n ∈N

}
=

{
e0, e1, e1, e2, e3, e5, e8, e13, ..., eFn , ...

}
and

ℵℵGL = {α (Ln) : n ∈N}

=
{
eLn : n ∈N

}
=

{
e2, e1, e3, e4, e7, e11, e18, ..., eLn , ...

}
.

In what follows, we focus on some relations for non-Newtonian Fibonacci and non-Newtonian Lucas
numbers and relationship between each other.

Theorem 2.2. Let ℵℵFn and ℵℵLn be a non-Newtonian Fibonacci number and a non-Newtonian Lucas number,
respectively. For n,m ≥ 0, the following equalities hold:

1) ℵℵFn
.
+ ℵℵFn+1 = ℵℵFn+2.

2) ℵℵLn
.
+ ℵℵLn+1 = ℵℵLn+2.

3) ℵℵFn−1
.
+ ℵℵFn+1 = ℵℵLn.

4) ℵℵFn+2
.
− ℵℵFn−2 = ℵℵLn.

5) ℵℵF
.
2
n
.
+ ℵℵF

.
2
n+1 = ℵℵF2n+1.

6) ℵℵF
.
2
n+1

.
− ℵℵF

.
2
n−1 = ℵℵF2n.

7) ℵℵFn
.
× ℵℵFm

.
+ ℵℵFn+1

.
× ℵℵFm+1 = ℵℵFn+m+1.

Proof. Based on addition and subtraction property of non-Newtonian real numbers, from (1), (2), (3) and
(4), the proofs of 1), 2), 3) and 4) are clear.

5) From (5) and addition and multiplication property of non-Newtonian real numbers, we have

ℵℵF
.
2
n
.
+ ℵℵF

.
2
n+1
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= ℵℵFn
.
× ℵℵFn

.
+ ℵℵFn+1

.
× ℵℵFn+1

= α (Fn)
.
× α (Fn)

.
+ α (Fn+1)

.
× α (Fn+1)

= α
{
α−1α (Fn) × α−1α (Fn)

} .
+ α

{
α−1α (Fn+1) × α−1α (Fn+1)

}
= α

{
α−1α

{
α−1α (Fn) × α−1α (Fn)

}
+ α−1α

{
α−1α (Fn+1) × α−1α (Fn+1)

}}
= α

(
F2

n + F2
n+1

)
= α (F2n+1)
= ℵℵF2n+1

which is the desired result.
6) Similarly, by (6) we get

ℵℵF
.
2
n+1

.
− ℵℵF

.
2
n−1

= ℵℵFn+1
.
× ℵℵFn+1

.
− ℵℵFn−1

.
× ℵℵFn−1

= α (Fn+1)
.
× α (Fn+1)

.
− α (Fn−1)

.
× α (Fn−1)

= α
{
α−1α (Fn+1) × α−1α (Fn+1)

} .
− α

{
α−1α (Fn−1) × α−1α (Fn−1)

}
= α

{
α−1α

{
α−1α (Fn+1) × α−1α (Fn+1)

}
+ α−1α

{
α−1α (Fn−1) × α−1α (Fn−1)

}}
= α

(
F2

n+1 + F2
n−1

)
= α (F2n)
= ℵℵF2n.

It results that ℵℵF
.
2
n+1

.
− ℵℵF

.
2
n−1 = ℵℵF2n.

7) The equation (7) implies that

ℵℵFn
.
× ℵℵFm

.
+ ℵℵFn+1

.
× ℵℵFm+1

= α (Fn)
.
× α (Fm)

.
+ α (Fn+1)

.
× α (Fm+1)

= α
{
α−1α (Fn) × α−1α (Fm)

} .
+ α

{
α−1α (Fn+1) × α−1α (Fm+1)

}
= α

{
α−1α

{
α−1α (Fn) × α−1α (Fm)

}
+ α−1α

{
α−1α (Fn+1) × α−1α (Fm+1)

}}
= α (FnFm + Fn+1Fm+1)
= α (Fn+m+1)
= ℵℵFn+m+1

as desired.

Remark 2.3. 1) If we choose the identity function I instead of α in the definition of non-Newtonian Fibonacci and
non-Newtonian Lucas numbers, then we obtain classical Fibonacci and Lucas numbers. Therefore, Theorem 2.2
generalizes related relations in the literature.

2) Taking α = exp, we obtain some geometric relations as follows:

eFn+Fn+1 = eFn+2 , eLn+Ln+1 = eLn+2 , eFn−1+Fn+1 = eLn , eFn+2−Fn−2 = eLn ,

eF2
n+F2

n+1 = eF2n+1 , eF2
n+1−F2

n−1 = eF2n , eFnFm+Fn+1Fm+1 = eFn+m+1 ,

for n,m ≥ 0.

In the next theorem, we derive the D’Ocagne identity including non-Newtonian Fibonacci numbers.
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Theorem 2.4. The D’Ocagne identity of the non-Newtonian Fibonacci numbers ℵℵFn and ℵℵFm is given as

ℵℵFm
.
× ℵℵFn+1

.
− ℵℵFm+1

.
× ℵℵFn =

( .
−
.
1
) .n .
× ℵℵFm−n

for n,m ≥ 0.

Proof. From the D’Ocagne identity (8) of Fibonacci numbers, we obtain that

ℵℵFm
.
× ℵℵFn+1

.
− ℵℵFm+1

.
× ℵℵFn

= α (Fm)
.
× α (Fn+1)

.
− α (Fm+1)

.
× α (Fn)

= α
{
α−1α (Fm) × α−1α (Fn+1)

} .
− α

{
α−1α (Fm+1) × α−1α (Fn)

}
= α

{
α−1α

{
α−1α (Fm) × α−1α (Fn+1)

}
− α−1α

{
α−1α (Fm+1) × α−1α (Fn)

}}
= α (FmFn+1 − Fm+1Fn)
= α

(
(−1)n Fm−n

)
=

( .
−
.
1
) .n .
× ℵℵFm−n

which is what we wanted to see.

Remark 2.5. 1) If we use the generator α = I in the definition of non-Newtonian Fibonacci and non-Newtonian
Lucas numbers, Theorem 2.4 turns into the D’Ocagne identity for Fibonacci numbers.

2) The generator α = exp yields the identity eFmFn+1−Fm+1Fn = e(−1)nFm−n for n,m ≥ 0 which we call the geometric
D’Ocagne identity. In fact, the equalities

ℵℵFm
.
× ℵℵFn+1

.
− ℵℵFm+1

.
× ℵℵFn = eFm

.
× eFn+1

.
− eFm+1

.
× eFn

= e(ln eFm ln eFn+1 )−(ln eFm+1 ln eFn )

= eFmFn+1−Fm+1Fn

and

( .
−
.
1
) .n .
× ℵℵFm−n =

n times︷         ︸︸         ︷
e−1 .
× ...

.
× e−1 .

× eFm−n

= e

n times︷          ︸︸          ︷
ln e−1... ln e−1 ln eFm−n

= e(−1)nFm−n

explain it.

We are ready to give the Honsberger’s identity of the non-Newtonian Fibonacci numbers.

Theorem 2.6. The Honsberger’s identity of the non-Newtonian Fibonacci numbers for n,m ≥ 0 is given as

ℵℵFn+m = ℵℵFn−1
.
× ℵℵFm

.
+ ℵℵFn

.
× ℵℵFm+1.

Proof. Taking into account the Honsberger’s identity (9) of Fibonacci numbers, one can easily reach that

ℵℵFn−1
.
× ℵℵFm

.
+ ℵℵFn

.
× ℵℵFm+1

= α (Fn−1)
.
× α (Fm)

.
− α (Fn)

.
× α (Fm+1)

= α
{
α−1α (Fn−1) × α−1α (Fm)

} .
+ α

{
α−1α (Fn) × α−1α (Fm+1)

}
= α

{
α−1α

{
α−1α (Fn−1) × α−1α (Fm)

}
+ α−1α

{
α−1α (Fn) × α−1α (Fm+1)

}}
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= α (Fn−1Fm + FnFm+1)
= α (Fn+m)
= ℵℵFn+m.

Remark 2.7. 1) Note that for the generator α = I, we obtain the well-known Honsberger’s identity.
2) By putting α = exp, the geometric Honsberger’s identity is derived as follows:

eFn+m = eFn−1Fm+FnFm+1 ,

for n,m ≥ 0.

The following theorem reveals the Binet formulas for a Fibonacci number and a Lucas number with
respect to the non-Newtonian calculus.

Theorem 2.8. Assume that ℵℵFn and ℵℵLn be a non-Newtonian Fibonacci and a non-Newtonian Lucas number,
respectively. For n ≥ 0, the Binet formulas for them are given by

ℵℵFn =

.
γ
.
n .
−
.
β
.
n

.
γ
.
−
.
β
α

and

ℵℵLn =
.
γ
.
n .
+
.
β
.
n

where
.
γ =

.
1
.
+
.
√ .

5
.
2
α and

.
β =

.
1
.
−
.
√ .

5
.
2
α.

Proof. Considering subtraction and division operations in the set of non-Newtonian real numbers and by
virtue of Binet formula (10) for Fibonacci numbers, we get

.
γ
.
n .
−
.
β
.
n

.
γ
.
−
.
β
α = α


α−1

(
.
γ
.
n .
−
.
β
.
n
)

α−1
( .
γ
.
−
.
β
)



= α



α−1


n times︷             ︸︸             ︷(

.
γ
.
×
.
γ
.
× ...

.
×
.
γ
)
.
−

n times︷            ︸︸            ︷( .
β
.
×
.
β
.
× ...

.
×
.
β
)

α−1
( .
γ
.
−
.
β
)


= α


α−1

(
α
[(
α−1

( .
γ
))n
−

(
α−1

( .
β
))n])

α−1
(
α
[
α−1

( .
γ
)
− α−1

( .
β
)])


= α

{
γn
− βn

γ − β

}
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= α (Fn)
= ℵℵFn.

On the other hand, by doing the necessary calculations and using addition operation in the set of non-
Newtonian real numbers and Binet formula (11) for Lucas numbers, one can uncomplicatedly see that

.
γ
.
n .
+
.
β
.
n
= α

α
−1


n times︷             ︸︸             ︷(

.
γ
.
×
.
γ
.
× ...

.
×
.
γ
)
.
+

n times︷            ︸︸            ︷( .
β
.
×
.
β
.
× ...

.
×
.
β
)


= α

[
α−1

(
α
[(
α−1

( .
γ
))n] .
+ α

[(
α−1

( .
β
))n])]

= α
[
α−1

(
α
[
α−1α

[(
α−1

( .
γ
))n]
+ α−1α

[(
α−1

( .
β
))n]])]

= α
(
γn + βn)

= α (Ln)
= ℵℵLn.

Remark 2.9. 1) We draw attention that the Binet formulas for non-Newtonian Fibonacci and Lucas numbers are
generalizations of Binet formulas for Fibonacci and Lucas numbers, respectively which are obtained by putting the
generator α = I.

2) According to geometric arithmetic we obtain the following formulas and call them the geometric Binet formula
for Fibonacci numbers and the geometric Binet formula for Lucas numbers, respectively:

eFn = e
γn
−βn

γ−β , eLn = eγ
n+βn

for n ≥ 0.

The next theorem is non-Newtonian versions of Cassini’s identities for Fibonacci and Lucas numbers.

Theorem 2.10. The followings are the Cassini’s identities for ℵℵFn and ℵℵLn for n ≥ 1 :

1) ℵℵF
.
2
n
.
− ℵℵFn−1

.
×ℵℵFn+1 =

( .
−
.
1
) .n .+ .1
.

2) ℵℵL
.
2
n
.
− ℵℵLn−1

.
×ℵℵLn+1 =

.
5
.
×

( .
−
.
1
) .n
.

Proof. 1) Using Cassini’s identity (15) and making the necessary calculations we get the subsequent result.

ℵℵF
.
2
n
.
− ℵℵFn−1

.
× ℵℵFn+1

= ℵℵFn
.
× ℵℵFn

.
− ℵℵFn−1

.
× ℵℵFn+1

= α (Fn)
.
× α (Fn)

.
− α (Fn−1)

.
× α (Fn+1)

= α
{
α−1α (Fn) × α−1α (Fn)

} .
− α

{
α−1α (Fn−1) × α−1α (Fn+1)

}
= α

{
α−1α

{
α−1α (Fn) × α−1α (Fn)

}
− α−1α

{
α−1α (Fn−1) × α−1α (Fn+1)

}}
= α

(
F2

n − Fn−1Fn+1

)
= α

(
(−1)n+1

)
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= α


n+1 times︷       ︸︸       ︷

(−1) ... (−1)


= α


n+1 times︷                          ︸︸                          ︷

α−1 (α (−1)) ...α−1 (α (−1))


= α (−1)

.
× ...

.
× α (−1)

=

n+1 times︷              ︸︸              ︷( .
−
.
1
) .
× ...

.
×

( .
−
.
1
)

=
( .
−
.
1
) .n .+ .1

2) Using the identity (16) for the proof of 2), we get the results.

Let’s continue with the Catalan identities for Fn and Ln in non-Newtonian sense.

Theorem 2.11. For n, r ≥ 1, the Catalan identities for ℵℵFn and ℵℵLn are as follows:

1) ℵℵF
.
2
n
.
− ℵℵFn−r

.
×ℵℵFn+r =

( .
−
.
1
) .n .− .r .
× ℵℵF

.
2
r .

2) ℵℵL
.
2
n
.
− ℵℵLn−r

.
×ℵℵLn+r =

.
5
.
×

( .
−
.
1
) .n .− .r .
× ℵℵF

.
2
r .

Proof. 1) After some elementary calculations, it can be computed similar to the property 1) in Theorem 2.10
taking it into account (17) and the proof is straightforward.

2) Using Catalan identity (18) and making simple computations we compute the following expression:

ℵℵL
.
2
n
.
− ℵℵLn−r

.
× ℵℵLn+r

= ℵℵLn
.
× ℵℵLn

.
− ℵℵLn−r

.
× ℵℵLn+r

= α (Ln)
.
× α (Ln)

.
− α (Ln−r)

.
× α (Ln+r)

= α
{
α−1α (Ln) × α−1α (Ln)

} .
− α

{
α−1α (Ln−r) × α−1α (Ln+r)

}
= α

{
α−1α

{
α−1α (Ln) × α−1α (Ln)

}
− α−1α

{
α−1α (Ln−r) × α−1α (Ln+r)

}}
= α

(
L2

n − Ln−rLn+r

)
= α

(
5 (−1)n−r F2

r

)
=

.
5
.
×

( .
−
.
1
) .n .− .r .
× ℵℵF

.
2
r

which ends the proof.

Remark 2.12. 1) Notice that Theorem 2.10 and Theorem 2.11 extend the known Cassini’s identity and Catalan
identity, respectively.

2) We say that Theorem 2.10 is a special case of Theorem 2.11 choosing r = 1.
3) Substituting exp for the generator α, the following identities are added to the literature:

eF2
n−Fn−1Fn+1 = e(−1)n

(Geometric Cassini’s identity for Fibonacci numbers),

eL2
n−Ln−1Ln+1 = e5(−1)n

(Geometric Cassini’s identity for Lucas numbers),

eF2
n−Fn−rFn+r = e(−1)n−rF2

r (Geometric Catalan identity for Fibonacci numbers),
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eL2
n−Ln−rLn+r = e5(−1)n−rF2

r (Geometric Catalan identity for Lucas numbers),

for n, r ≥ 1.

In the following theorem, we explore the Gelin-Cesàro identity in non-Newtonian sense.

Theorem 2.13. For n ≥ 0, the Gelin-Cesàro identity of the non-Newtonian Fibonacci numbers ℵℵFn is given as

ℵℵF
.
4
n
.
− ℵℵFn−1

.
× ℵℵFn−2

.
× ℵℵFn+1

.
× ℵℵFn+2 =

.
1.

Proof. In view of (12), we get

ℵℵF
.
4
n
.
− ℵℵFn−1

.
× ℵℵFn−2

.
× ℵℵFn+1

.
× ℵℵFn+2

= ℵℵFn
.
× ℵℵFn

.
× ℵℵFn

.
× ℵℵFn

.
−ℵℵFn−1

.
× ℵℵFn−2

.
× ℵℵFn+1

.
× ℵℵFn+2

= α (Fn)
.
× α (Fn)

.
× α (Fn)

.
× α (Fn)

.
− α (Fn−1)

.
× α (Fn−2)

.
× α (Fn+1)

.
× α (Fn+2)

= α
{
α−1α (Fn) × α−1α (Fn) × α−1α (Fn) × α−1α (Fn)

}
.
−α

{
α−1α (Fn−1) × α−1α (Fn−2) × α−1α (Fn+1) × α−1α (Fn+2)

}
= α

 α−1α
{
α−1α (Fn) × α−1α (Fn) × α−1α (Fn) × α−1α (Fn)

}
−α−1α

{
α−1α (Fn−1) × α−1α (Fn−2) × α−1α (Fn+1) × α−1α (Fn+2)

} 
= α

(
F4

n − Fn−1Fn−2Fn+1Fn+2

)
= α (1)

=
.
1.

The proof is completed.

Remark 2.14. 1) We note that Theorem 2.13 turns into the known Gelin-Cesàro identity when the generator is
chosen as α = I.

2) According to geometric arithmetic, the Gelin-Cesàro identity of the non-Newtonian Fibonacci numbers turns
into

eF4
n−Fn−1Fn−2Fn+1Fn+2 = e

where n ≥ 0.

Now, we derive the Melham’s identity for ℵℵFn’s.

Theorem 2.15. For n ≥ 0, the Melham’s identity of the non-Newtonian Fibonacci numbers ℵℵFn is given by

ℵℵFn+1
.
× ℵℵFn+2

.
× ℵℵFn+6

.
− ℵℵF

.
3
n+3 =

( .
−
.
1
) .n .
× ℵℵFn.

Proof. From (13), it can be seen that

ℵℵFn+1
.
× ℵℵFn+2

.
× ℵℵFn+6

.
− ℵℵF

.
3
n+3

= ℵℵFn+1
.
× ℵℵFn+2

.
× ℵℵFn+6

.
− ℵℵFn+3

.
× ℵℵFn+3

.
× ℵℵFn+3

= α (Fn+1)
.
× α (Fn+2)

.
× α (Fn+6)

.
− α (Fn+3)

.
× α (Fn+3)

.
× α (Fn+3)

= α
{
α−1α (Fn+1) × α−1α (Fn+2) × α−1α (Fn+6)

}
.
−α

{
α−1α (Fn+3) × α−1α (Fn+3) × α−1α (Fn+3)

}
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= α

 α−1α
{
α−1α (Fn+1) × α−1α (Fn+2) × α−1α (Fn+6)

}
−α−1α

{
α−1α (Fn+3) × α−1α (Fn+3) × α−1α (Fn+3)

} 
= α

(
Fn+1Fn+2Fn+6 − F3

n+3

)
= α

(
(−1)n Fn

)
= α

(
α−1α

[
(−1)n]

× α−1α (Fn)
)

= α
[
(−1)n] .

× α (Fn)

=
( .
−
.
1
) .n .
× ℵℵFn,

as desired.

Remark 2.16. 1) Notice that if we choose the generator as α = I, the last theorem produces the Melhan’s identity
provided for the Fn’s.

2) The Melham’s identity of the non-Newtonian Fibonacci numbers is

eFn+1Fn+2Fn+6−F3
n+3 = e(−1)nFn

for n ≥ 0 in the geometric arithmetic.

The subsequent theorem introduces some summing formulas of non-Newtonian Fibonacci numbers.

Theorem 2.17. We have the following formulas where the symbol α
n∑

k=0
denotes the finite sum according toα−arithmetic

and n ≥ 0 :

1) α
n∑

k=0
ℵℵFk = ℵℵFn+2

.
−
.
1.

2) α
n∑

k=0
ℵℵF2k = ℵℵF2n+1

.
−
.
1.

3) α
n∑

k=0
ℵℵF2k+1 = ℵℵF2n+2.

Proof. If we use (14), it is obtained that

α

n∑
k=0

ℵℵFk = α

 n∑
k=0

α−1 (ℵℵFk)

 = α
 n∑

k=0

Fk


= α (Fn+2 − 1) = α

(
α−1α (Fn+2) − α−1α (1)

)
= α (Fn+2)

.
− α (1) = ℵℵFn+2

.
−
.
1,

α

n∑
k=0

ℵℵF2k = α

 n∑
k=0

α−1 (ℵℵF2k)

 = α
 n∑

k=0

F2k


= α (F2n+1 − 1) = α

(
α−1α (F2n+1) − α−1α (1)

)
= α (F2n+1)

.
− α (1) = ℵℵF2n+1

.
−
.
1,

α

n∑
k=0

ℵℵF2k+1 = α

 n∑
k=0

α−1 (ℵℵF2k+1)

 = α
 n∑

k=0

F2k+1


= α (F2n+2) = ℵℵF2n+2.

This finalizes the proof of 1), 2) and 3).
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Remark 2.18. 1) Theorem 2.17 generalizes the formulas of sum of the first n terms, sum of the first n even terms,
sum of the first n odd terms of Fibonacci numbers.

2) The generator α = exp produces some new formulas as follows:

e
n∑

k=0
Fk
= eFn+2−1, e

n∑
k=0

F2k
= eF2n+1−1, e

n∑
k=0

F2k+1
= eF2n+2

for n ≥ 0.

After obtaining these famous identities and formulas, in closing of this article, we present generating
functions of the non-Newtonian Fibonacci numbers and non-Newtonian Lucas numbers.

Theorem 2.19. Generating function of the non-Newtonian Fibonacci numbers is

1ℵℵF : Rα → Rα, 1ℵℵF
(
y
)
=

y
.
1
.
− y

.
− y

.
2
α.

Proof. Assume that the generating function of the non-Newtonian Fibonacci number ℵℵFn has the form

1ℵℵF
(
y
)
=α

∞∑
n=0

(
ℵℵFn

.
× y

.
n
)
,

where the symbol α
∞∑

n=0
denotes the non-Newtonian real number series which can be found in [11].

Then, after the needed calculations, we get the following equations:

1ℵℵF
(
y
)
= α

∞∑
n=0

(
ℵℵFn

.
× y

.
n
)

=
.
0
.
+ y

.
+ α

∞∑
n=2

(
ℵℵFn

.
× y

.
n
)

= y
.
+ α

∞∑
n=2

(
ℵℵFn−1

.
× y

.
n
) .
+ α

∞∑
n=2

(
ℵℵFn−2

.
× y

.
n
)
,

y
.
× 1ℵℵF

(
y
)
= α

∞∑
n=1

(
ℵℵFn

.
× y

.
n
.
+
.
1
)
=α

∞∑
n=2

(
ℵℵFn−1

.
× y

.
n
)
,

y
.
2 .
× 1ℵℵF

(
y
)
= α

∞∑
n=0

(
ℵℵFn

.
× y

.
n
.
+
.
2
)
=α

∞∑
n=2

(
ℵℵFn−2

.
× y

.
n
)
.

So, it follows that( .
1
.
− y

.
− y

.
2
)
.
× 1ℵℵF

(
y
)

= 1ℵℵF
(
y
) .
−

(
y
.
× 1ℵℵF

(
y
)) .
−

(
y
.
2 .
× 1ℵℵF

(
y
))

=

y
.
+ α

∞∑
n=2

(
ℵℵFn−1

.
× y

.
n
) .
+ α

∞∑
n=2

(
ℵℵFn−2

.
× y

.
n
)

.
−

α ∞∑
n=2

(
ℵℵFn−1

.
× y

.
n
) .−

α ∞∑
n=2

(
ℵℵFn−2

.
× y

.
n
)

= y.

Hereupon, we derive that the function 1ℵℵF
(
y
)
=

y
.
1
.
−y

.
−y
.
2
α as the desired result.
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Theorem 2.20. Generating function of the non-Newtonian Lucas numbers is

1ℵℵL : Rα → Rα, 1ℵℵL
(
y
)
=

.
2
.
− y

.
1
.
− y

.
− y

.
2
α.

Proof. Suppose that the generating function of the non-Newtonian Lucas number ℵℵLn has the form

1ℵℵL
(
y
)
=α

∞∑
n=0

(
ℵℵLn

.
× y

.
n
)
.

Thus, with some computations, we get 1ℵℵL
(
y
)
, y

.
× 1ℵℵL

(
y
)

and y
.
2 .
× 1ℵℵL

(
y
)
, as follows:

1ℵℵL
(
y
)
=

.
2
.
+ y

.
+ α

∞∑
n=2

(
ℵℵLn

.
× y

.
n
)

=
.
2
.
+ y

.
+ α

∞∑
n=2

(
ℵℵLn−1

.
× y

.
n
) .
+ α

∞∑
n=2

(
ℵℵLn−2

.
× y

.
n
)
,

y
.
× 1ℵℵL

(
y
)
= α

∞∑
n=0

(
ℵℵLn

.
× y

.
n
.
+
.
1
)

=
.
2
.
× y

.
+ α

∞∑
n=1

(
ℵℵLn

.
× y

.
n
.
+
.
1
)

=
.
2
.
× y

.
+ α

∞∑
n=2

(
ℵℵLn−1

.
× y

.
n
)
,

y
.
2 .
× 1ℵℵL

(
y
)
= α

∞∑
n=0

(
ℵℵLn

.
× y

.
n
.
+
.
2
)
=α

∞∑
n=2

(
ℵℵLn−2

.
× y

.
n
)
.

So, one can easily see that( .
1
.
− y

.
− y

.
2
)
.
× 1ℵℵL

(
y
)

= 1ℵℵL
(
y
) .
−

(
y
.
× 1ℵℵL

(
y
)) .
−

(
y
.
2 .
× 1ℵℵL

(
y
))

=
.
2
.
+ y

.
+ α

∞∑
n=2

(
ℵℵLn−1

.
× y

.
n
) .
+ α

∞∑
n=2

(
ℵℵLn−2

.
× y

.
n
)

.
−

 .2 .
× y

.
+ α

∞∑
n=2

(
ℵℵLn−1

.
× y

.
n
) .−

α ∞∑
n=2

(
ℵℵLn−2

.
× y

.
n
)

=
.
2
.
− y.

It results that 1ℵℵL
(
y
)
=

.
2
.
−y

.
1
.
−y

.
−y
.
2
α. The proof is completed.

Remark 2.21. 1) The generating functions 1ℵℵF and 1ℵℵL are analogues of the generating functions of Fn’s and Ln’s
defined by 1F

(
y
)
=

y
1−y−y2 and 1L

(
y
)
=

2−y
1−y−y2 , respectively. In fact, it is enough to write α = I.

2) Geometric generating functions of Fibonacci and Lucas numbers are

1ℵℵGF
(
y
)
= e

ln y

1−ln y−(ln y)2
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and

1ℵℵGL
(
y
)
= e

2−ln y

1−ln y−(ln y)2
,

respectively.

3. Conclusion and Future Works

The aim of this article is to derive Fibonacci and Lucas numbers in the non-Newtonian sense and to
construct some important properties and identities of them such as Binet’s formula, summing formulas,
ngenerating functions, Cassini’s identity and Catalan’s identity. The study fills the gap here by introducing
non-Newtonian Fibonacci and non-Newtonian Lucas numbers to the most existing literature by combining
the definitions of Fibonacci numbers, Lucas numbers and non-Newtonian real numbers. Due to the fact
that Fibonacci numbers are used in encryption theory, we believe that our findings contribute to researchers
for future works as a new perspective.
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