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Abstract. Starting from Maclaurin’s series expansions for positive integer powers of analytic functions,
the authors derive an explicit formula for specific values of partial Bell polynomials, present a general term
of Maclaurin’s series expansions for real powers of analytic functions, obtain Maclaurin’s series expansions
of some composite functions, recover Maclaurin’s series expansions for real powers of inverse sine function
and sinc function, recover a combinatorial identity involving the falling factorials and the Stirling numbers
of the second kind, deduce an explicit formula of the Bernoulli numbers of the second kind in terms of
the Stirling numbers of the first kind, recover an explicit formula of the Bernoulli numbers in terms of the
Stirling numbers of the second kind, recover an explicit formula of the Bell numbers in terms of the Stirling
numbers of the second kind, reformulate three specific partial Bell polynomials in terms of central factorial
numbers of the second kind, and present some Maclaurin’s series expansions and identities related to the
Euler numbers and their generating function.

1. Motivations

Let the function f (z) be analytic at z = 0 and let

f (z) =
∞∑

n=0

C1,n
zn

n!
(1.1)
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be Maclaurin’s series expansion of f (z) around z = 0. For fixed positive integer j ∈N0 = {0, 1, 2, . . . }, let

f j(z) =
∞∑

n=0

C j,n
zn

n!
(1.2)

be Maclaurin’s series expansion of f j(z) at z = 0 with assumptions of

C0,0 = 1 and C0,n = 0 (1.3)

for n ∈N. For α ∈ R, if f α(z) is analytic at z = 0, let

f α(z) =
∞∑

n=0

Cα,n
zn

n!
(1.4)

be Maclaurin’s series expansion of f α(z) around z = 0 with assumptions in (1.3). By common knowledge in
mathematical analysis, we know that

C1,n = lim
z→0

d f (z)
d z
, C j,n = lim

z→0

dn f j(z)
d zn , Cα,n = lim

z→0

dn f α(z)
d zn .

Can one obtain an explicit formula for C j,n in terms of C1,n in Maclaurin’s series expansion (1.1)? Can
one obtain an explicit formula for Cα,n in terms of C j,n?

These two problems have been specifically, explicitly, or recursively solved in the papers [5, 6, 8, 13, 16, 19]
and many closely related references therein.

The first problem has been generally and recursively solved by the power series raised to powers( ∞∑
k=0

akxk
)n

=

∞∑
k=0

ckxk,

where c0 = an
0 and

cm =
1

ma0

m∑
k=1

(kn −m + k)akcm−k

for m,n ∈N. See [4, p. 18].
In this paper, we will give a general solution to the second problem. In other words, we will present a

general formula for Cα,n in terms of the sequence C j,n by deriving an explicit formula for specific values

Bn,k

(
f ′(0), f ′′(0), . . . , f (n−k+1)(0)

)
,

where Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0 denotes partial Bell polynomials or the Bell polynomials of the
second kind in [2, Definition 11.2] and [3, p. 134, Theorem A]. Hereafter, we will obtain Maclaurin’s series
expansions of some composite functions, recover Maclaurin’s series expansions for real powers of inverse
sine function and sinc function, recover a combinatorial identity involving the falling factorials and the
Stirling numbers of the second kind, deduce an explicit formula of the Bernoulli numbers of the second
kind in terms of the Stirling numbers of the first kind, recover an explicit formula of the Bernoulli numbers
in terms of the Stirling numbers of the second kind, recover an explicit formula of the Bell numbers in terms
of the Stirling numbers of the second kind, reformulate three specific partial Bell polynomials in terms of
central factorial numbers of the second kind, and present some Maclaurin’s series expansions and identities
related to the Euler numbers and their generating function.
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2. Specific values of partial Bell polynomials

As the first step to reach our aim, we derive an explicit formula for specific values

Bn,k

(
f ′(0), f ′′(0), . . . , f (n−k+1)(0)

)
of partial Bell polynomials Bn,k(x1, x2, . . . , xn−k+1) with xk = f (k)(0) for k ∈N.

Theorem 2.1. Let f (z) is analytic at z = 0. For j ∈ N0, if the series expansion (1.2) is valid, then partial Bell
polynomials Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0 satisfy

Bn,k

(
f ′(0), f ′′(0), . . . , f (n−k+1)(0)

)
=

(−1)k

k!

k∑
q=0

(−1)q
(
k
q

)
f k−q(0)Cq,n (2.1)

and the sequence C j,n satisfies the identity

k∑
q=0

(−1)q
(
k
q

)
f k−q(0)Cq,n = 0, 0 ≤ n < k. (2.2)

Proof. In the last line of [3, p. 133], there exists the formula

1
k!

( ∞∑
m=1

xm
tm

m!

)k

=

∞∑
n=k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!

for k ≥ 0. This means that(
1
t

∞∑
m=1

xm
tm

m!

)k

=

∞∑
n=0

Bn+k,k(x1, x2, . . . , xn+1)(n+k
k
) tn

n!

for k ≥ 0. Therefore, we arrive at

Bn+k,k(x1, x2, . . . , xn+1)(n+k
k
) = lim

t→0

dn

d tn

(
1
t

∞∑
m=1

xm
tm

m!

)k

, k,n ≥ 0. (2.3)

Substituting specific values xm = f (m)(0) for m = 1, 2, . . . into the formula (2.3) yields

Bn+k,k

(
f ′(0), f ′′(0), . . . , f (n+1)(0)

)
(n+k

k
) = lim

t→0

dn

d tn

[
1
t

∞∑
m=1

f (m)(0)
tm

m!

]k

= (−1)k lim
t→0

dn

d tn

[
1
t

(
f (0) −

∞∑
m=0

f (m)(0)
tm

m!

)]k

= lim
t→0

dn

d tn

[ f (t) − f (0)
t

]k

= lim
t→0

dn

d tn

∑k
j=0(−1)k− j(k

j
)

f k− j(0) f j(t)

tk

for k,n ≥ 0. Further considering the series (1.2) leads to

Bn+k,k

(
f ′(0), f ′′(0), . . . , f (n+1)(0)

)
(n+k

k
) = lim

t→0

dn

d tn

∑k
j=0(−1)k− j(k

j
)

f k− j(0)
∑
∞

ℓ=0 C j,ℓ
tℓ
ℓ!

tk
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= lim
t→0

dn

d tn

∑
∞

ℓ=0
∑k

j=0(−1)k− j(k
j
)

f k− j(0)C j,ℓ
tℓ
ℓ!

tk

= lim
t→0

dn

d tn

∞∑
ℓ=0

∑k
j=0(−1)k− j(k

j
)

f k− j(0)C j,ℓ

ℓ!
tℓ−k.

This must imply that

k∑
j=0

(−1)k− j
(
k
j

)
f k− j(0)C j,ℓ = 0, 0 ≤ ℓ < k

and

Bn+k,k

(
f ′(0), f ′′(0), . . . , f (n+1)(0)

)
(n+k

k
) = lim

t→0

dn

d tn

∞∑
ℓ=k

∑k
j=0(−1)k− j(k

j
)

f k− j(0)C j,ℓ

ℓ!
tℓ−k

= lim
t→0

dn

d tn

∞∑
ℓ=0

∑k
j=0(−1)k− j(k

j
)

f k− j(0)C j,ℓ+k

(ℓ + k)!
tℓ

= lim
t→0

∞∑
ℓ=n

∑k
j=0(−1)k− j(k

j
)

f k− j(0)C j,ℓ+k

(ℓ + k)!
⟨ℓ⟩ntℓ−n

=
n!

(n + k)!

k∑
j=0

(−1)k− j
(
k
j

)
f k− j(0)C j,n+k

for k,n ≥ 0, where the falling factorial of a complex number λ ∈ C is defined by

⟨λ⟩m =
m−1∏
k=0

(λ − k) =

1, m = 0;
λ(λ − 1) · · · (λ −m + 1), m ∈N.

Accordingly, we derive

Bn+k,k

(
f ′(0), f ′′(0), . . . , f (n+1)(0)

)
=

1
k!

k∑
j=0

(−1)k− j
(
k
j

)
f k− j(0)C j,n+k =

k∑
j=0

(−1)k− j f k− j(0)
(k − j)!

C j,n+k

j!

for k,n ≥ 0. Replacing n + k by n results in

Bn,k

(
f ′(0), f ′′(0), . . . , f (n−k+1)(0)

)
=

k∑
j=0

(−1)k− j f k− j(0)
(k − j)!

C j,n

j!

=

k∑
m=0

(−1)m f m(0)
m!

Ck−m,n

(k −m)!
=

(−1)k

k!

k∑
q=0

(−1)q
(
k
q

)
f k−q(0)Cq,n

for n ≥ k ≥ 0. The required results in Theorem 2.1 are thus proved.

Example 2.1. In the papers [5, 6], the following conclusions were proved.

1. For m ∈ N and |t| < 1, the function
(

arcsin t
t

)m
, whose value at t = 0 is regarded as 1, has Maclaurin’s series

expansion(arcsin t
t

)m

= 1 +
∞∑

k=1

(−1)k Q(m, 2k; 2)(m+2k
m

) (2t)2k

(2k)!
, (2.4)



F. Qi et al. / Filomat 37:28 (2023), 9469–9485 9473

where

Q(m, k;α) =
k∑
ℓ=0

(
m + ℓ − 1

m − 1

)
s(m + k − 1,m + ℓ − 1)

(m + k − α
2

)ℓ
(2.5)

for m, k ∈ N, the constant α ∈ R such that m + k , α, and the Stirling numbers of the first kind s(m + k −
1,m + ℓ − 1) are analytically generalized by

[ln(1 + x)]k

k!
=

∞∑
n=k

s(n, k)
xn

n!
, |x| < 1. (2.6)

Maclaurin’s series expansion (2.4) was also recovered in [16, Section 6]. See also [1, Section 1.2].
2. For k,n ≥ 0 and xm ∈ C with m ∈N, we have

B2n+1,k

(
0, x2, 0, x4, . . . ,

1 + (−1)k

2
x2n−k+2

)
= 0. (2.7)

For k,n ∈N such that 2n ≥ k ∈N, we have

B2n,k

(
0,

1
3
, 0,

9
5
, 0,

225
7
, . . . ,

1 + (−1)k+1

2
[(2n − k)!!]2

2n − k + 2

)
= (−1)n+k (4n)!!

(2n + k)!

k∑
k=1

(−1)k
(
2n + k
k − k

)
Q(k, 2n; 2), (2.8)

where Q(k, 2n; 2) is given by (2.5).

For t ∈ (−1, 1), let

f (t) =


1, t = 0;
arcsin t

t
, t , 0.

(2.9)

Since

arcsin t
t

=

∞∑
ℓ=0

[(2ℓ − 1)!!]2

2ℓ + 1
t2ℓ

(2ℓ)!
= 1 +

1
3

t2

2!
+

9
5

t4

4!
+

225
7

t6

6!
+ 1225

t8

8!
+ · · · ,

we see that

f (m)(0) =


0, m = 2ℓ + 1;

[(2ℓ − 1)!!]2

2ℓ + 1
, m = 2ℓ,

where ℓ ∈N0 and (−1)!! = 1. On the other hand, the series expansion (2.4) implies that

Cm,n =


0, n = 2k − 1

(−1)k22k Q(m, 2k; 2)(m+2k
m

) , n = 2k (2.10)

for k ∈N. Applying the formula (2.1) in Theorem 2.1 gives

B2ℓ−1,k

(
0,

1
3
, 0,

9
5
, 0,

225
7
, 0, 1225, . . .

)
=

k∑
m=0

(−1)m f m(0)
m!

Ck−m,2ℓ−1

(k −m)!
= 0
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for 2ℓ − 1 ≥ k ≥ 0 and

B2ℓ,k

(
0,

1
3
, 0,

9
5
, 0,

225
7
, 0, 1225, . . .

)
=

k∑
m=0

(−1)m f m(0)
m!

Ck−m,2ℓ

(k −m)!

=

k∑
m=0

(−1)m

m!(k −m)!
(−1)ℓ22ℓQ(k −m, 2ℓ; 2)(k−m+2ℓ

k−m
)

= (−1)ℓ22ℓ
k∑

m=0

(−1)k−m

m!(k −m)!
Q(m, 2ℓ; 2)(m+2ℓ

m
)

= (−1)ℓ+k22ℓ (2ℓ)!
(2ℓ + k)!

k∑
m=0

(−1)m
(
2ℓ + k
k −m

)
Q(m, 2ℓ; 2)

= (−1)ℓ+k (4ℓ)!!
(2ℓ + k)!

k∑
m=0

(−1)m
(
2ℓ + k
k −m

)
Q(m, 2ℓ; 2)

for k, ℓ ∈N with 2ℓ ≥ k. These results coincide with (2.7) and (2.8).

Example 2.2. For z ∈ C, the function

sinc z =


sin z

z
, z , 0

1, z = 0

is called the sinc function [23]. In [19, Theorem 2.1], it was obtained that

sincℓ z = 1 +
∞∑
j=1

(−1) j T(ℓ + 2 j, ℓ)(ℓ+2 j
ℓ

) (2z)2 j

(2 j)!
(2.11)

for ℓ ∈ N0 and z ∈ C, where T(n, ℓ) for n ≥ ℓ ∈ N0 denotes central factorial numbers of the second kind, which can
be explicitly computed [10] by

T(n, ℓ) =
1
ℓ!

ℓ∑
j=0

(−1) j
(
ℓ
j

)(
ℓ
2
− j

)n

(2.12)

with T(0, 0) = 1 and T(n, 0) = 0 for n ∈N. Applying f (z) = sinc z to (1.2) and considering (2.11) acquire that

Cℓ,n =


0, n = 2 j − 1

(−1) j22 j T(ℓ + 2 j, ℓ)(ℓ+2 j
ℓ

) , n = 2 j (2.13)

for j ∈N. From

sinc z =
∞∑
j=0

(−1) j

2 j + 1
z2 j

(2 j)!
, z ∈ C,

it follows that

(sinc z)(2 j)
∣∣∣
z=0
=

(−1) j

2 j + 1
and (sinc z)(2 j−1)

∣∣∣
z=0
= 0, j ∈N. (2.14)
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Employing (2.13) in (2.2) and simplifying lead to

k∑
m=0

(−1)m T(2n + k −m, k −m)
(2n + k −m)!m!

= 0, 0 ≤ 2n < k ∈N.

Letting f (z) = sinc z in (2.1) and utilizing the values in (2.13) and (2.14) give

B2n−1,k

(
0,−

1
3
, 0,

1
5
, . . . ,

(−1)2n−k−1

2n − k + 1
sin

(2n − k − 1)π
2

)
= 0, 2n − 1 ≥ k ≥ 0

and

B2n,k

(
0,−

1
3
, 0,

1
5
, . . . ,

(−1)2n−k

2n − k + 2
sin

(2n − k)π
2

)
= (−1)n+k(4n)!!

k∑
j=0

(−1) j T(2n + j, j)
(2n + j)!(k − j)!

, 2n ≥ k ≥ 0.

These two conclusions recover [19, Theorem 3.1].

3. Maclaurin’s series expansions of real powers of functions

As the second step to reach our aim, by virtue of the explicit formula (2.1) in Theorem 2.1, we will present
a general formula for Cα,n in terms of the sequence C j,n. In other words, we give an explicit expression of
the series expansion (1.4) in terms of the sequence C j,n.

Theorem 3.1. For j ∈N0 and α ∈ R, if the series expansion (1.2) is valid, then

Cα,n =
n∑

k=0

(−α)k

k!

k∑
q=0

(−1)q
(
k
q

)
f α−q(0)Cq,n, (3.1)

that is,

f α(z) =
∞∑

n=0

[ n∑
k=0

(−α)k

k!

k∑
q=0

(−1)q
(
k
q

)
f α−q(0)Cq,n

]
zn

n!
, (3.2)

where

(λ)m =

m−1∏
j=0

(λ + j) =

1, m = 0
λ(λ + 1) · · · (λ +m − 1), m ∈N

(3.3)

denotes the rising factorial of a complex number λ ∈ C.

Proof. For n ∈ N0, the Faà di Bruno formula, see [2, Theorem 11.4] and [3, p. 139, Theorem C], can be
described in terms of Bn,k(x1, x2, . . . , xn−k+1) by

dn

d zn F ◦ f (z) =
n∑

k=0

F(k)( f (z))Bn,k

(
f ′(z), f ′′(z), . . . , f (n−k+1)(z)

)
. (3.4)

Applying (3.4) to F(u) = uα and u = f (z) yields

dn

d zn f α(z) =
n∑

k=0

F(k)(u)Bn,k

(
f ′(z), f ′′(z), . . . , f (n−k+1)(z)

)
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=

n∑
k=0

⟨α⟩kuα−kBn,k

(
f ′(z), f ′′(z), . . . , f (n−k+1)(z)

)
=

n∑
k=0

⟨α⟩k f α−k(z)Bn,k

(
f ′(z), f ′′(z), . . . , f (n−k+1)(z)

)
→

n∑
k=0

⟨α⟩k f α−k(0)Bn,k

(
f ′(0), f ′′(0), . . . , f (n−k+1)(0)

)
as z→ 0 for n ∈N. Employing the formula (2.1) in Theorem 2.1 results in

Cα,n = lim
z→0

dn

d zn f α(z)

=

n∑
k=0

⟨α⟩k f α−k(0)Bn,k

(
f ′(0), f ′′(0), . . . , f (n−k+1)(0)

)
=

n∑
k=0

⟨α⟩k f α−k(0)
k∑

m=0

(−1)m f m(0)
m!

Ck−m,n

(k −m)!

=

n∑
k=0

⟨α⟩k

k∑
m=0

(−1)m f α−k+m(0)
m!

Ck−m,n

(k −m)!

=

n∑
k=0

(−α)k

k!

k∑
q=0

(−1)q
(
k
q

)
f α−q(0)Cq,n.

The proof of Theorem 3.1 is complete.

Example 3.1. Maclaurin’s series expansion (2.4) was generalized in [13, Section 4] as(arcsin t
t

)α
= 1 +

∞∑
n=1

(−1)n
[ 2n∑

k=1

(−α)k

(2n + k)!

k∑
q=1

(−1)q
(
2n + k
k − q

)
Q(q, 2n; 2)

]
(2t)2n (3.5)

for α ∈ R and |t| < 1 by rediscovering a special case of (2.7) and the closed-form formula (2.8), where Q(k, 2n; 2) is
given by (2.5).

In the formula (3.1), taking f (z) as the one in (2.9) and using the expression (2.10) arrive at

Cα,2n−1 =

2n−1∑
k=0

⟨α⟩k

k∑
m=0

(−1)m

m!(k −m)!
Ck−m,2n−1 = 0

and

Cα,2n =

2n∑
k=0

⟨α⟩k

k∑
m=0

(−1)m

m!(k −m)!
Ck−m,2n

=

2n∑
k=1

⟨α⟩k

k−1∑
m=0

(−1)m

m!(k −m)!
Ck−m,2n

=

2n∑
k=1

⟨α⟩k

k−1∑
m=0

(−1)m

m!(k −m)!
(−1)n22n Q(k −m, 2n; 2)(k−m+2n

k−m
)

=

2n∑
k=1

⟨α⟩k

k∑
ℓ=1

(−1)k−ℓ

(k − ℓ)!ℓ!
(−1)n22n Q(ℓ, 2n; 2)(ℓ+2n

ℓ

)
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= (−1)n
2n∑

k=1

(−α)k

(2n + k)!

k∑
ℓ=1

(−1)ℓ
(
2n + k
k − ℓ

)
22n(2n)!
(ℓ + 2n)!

Q(ℓ, 2n; 2)

for n ∈N, where we used the relation (−1)k
⟨α⟩k = (α)k. These results coincide with Maclaurin’s series expansion (3.5).

Example 3.2. In Maclaurin’s series expansion (3.2), taking f (z) = sinc z and applying the formula (2.13) yield

sincα z =
∞∑

n=0

(−1)n22n
[ 2n∑

k=0

(−α)k

k∑
j=0

(−1) j T(2n + j, j)
(2n + j)!(k − j)!

]
z2n,

where (−α)k is defined by (3.3). This conclusion recovers the first Maclaurin’s series expansion in [19, Theorem 4.1].

Example 3.3. Taking f (z) = ez gives

ekz = (ez)k =

∞∑
n=0

kn zn

n!
, k ∈N.

This means that

Ck,n = kn, k ∈N, n ∈N0. (3.6)

Substituting this into (3.2) in Theorem 3.1 arrives at

eαz =

∞∑
n=0

[ n∑
k=0

⟨α⟩k

k∑
m=0

(−1)m

m!
(k −m)n

(k −m)!

]
zn

n!

for α ∈ R. Comparing this with

eαz =

∞∑
n=0

αn zn

n!

results in an identity

n∑
k=0

⟨α⟩k
k!

k∑
m=0

(−1)m
(

k
m

)
(k −m)n =

n∑
k=0

⟨α⟩k
(−1)k

k!

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
ℓn = αn, (3.7)

where α ∈ R and n ∈N0. Since the Stirling numbers of the second kind S(n, k) can be analytically computed by

S(n, k) =


(−1)k

k!

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
ℓn, n > k ∈N0;

1, n = k ∈N0,

(3.8)

the identity (3.7) can be written as

n∑
k=0

S(n, k)⟨α⟩k = αn, α ∈ R, n ∈N0.

This is a recovery of the equation (1.27) on page 19 in the monograph [24]. See also Remark 3.2 in the paper [9].
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Example 3.4. The equation (2.6) can be rearranged as Maclaurin’s series expansions of the power function[ ln(1 + x)
x

]k

=

∞∑
n=0

s(k + n, k)(k+n
k
) xn

n!

for |x| < 1 and k ≥ 0. Meanwhile, the Stirling numbers of the second kind S(n, k) for n ≥ k ≥ 0 can be generated [22,
pp. 131–132] by

(ex
−1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!
. (3.9)

The equation (3.9) can be rearranged as Maclaurin’s series expansions of the power function(ex
−1
x

)k

=

∞∑
n=0

S(k + n, k)(k+n
k
) xn

n!
, k ≥ 0.

See also [16, Section 2]. Applying the result (3.2) in Theorem 3.1 yields[ ln(1 + x)
x

]α
=

∞∑
n=0

[ n∑
k=0

(−α)k

k!

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
s(n + ℓ, ℓ)(n+ℓ

ℓ

) ]
zn

n!
(3.10)

and (ex
−1
x

)α
=

∞∑
n=0

[ n∑
k=0

(−α)k

k!

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
S(n + ℓ, ℓ)(n+ℓ

ℓ

) ]
zn

n!
, α ∈ R. (3.11)

Taking α = −1 in (3.10) gives

x
ln(1 + x)

=

∞∑
n=0

[ n∑
k=0

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
s(n + ℓ, ℓ)(n+ℓ

ℓ

) ]
zn

n!
.

Comparing this equation with the generating function

x
ln(1 + x)

=

∞∑
n=0

bnxn

of the Bernoulli numbers of the second kind bn results in

bn =
1
n!

n∑
k=0

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
s(n + ℓ, ℓ)(n+ℓ

ℓ

) (3.12)

for n ≥ 0. The formula (3.12) recovers the first result in [21, Theorem 3].
Interchanging the order of double sums in (3.12) shows that

bn =
1
n!

n∑
ℓ=0

(−1)ℓ
[ n∑

k=ℓ

(
k
ℓ

)]
s(n + ℓ, ℓ)(n+ℓ

ℓ

) =
1
n!

n∑
ℓ=0

(−1)ℓ
(
n + 1
ℓ + 1

)
s(n + ℓ, ℓ)(n+ℓ

ℓ

) . (3.13)

The last formula in (3.13) is not appeared in the papers [11, 12, 14, 17, 20, 21].
Setting α = −1 in (3.11) and interchanging the order of double sums lead to

x
ex −1

=

∞∑
n=0

[ n∑
k=0

k∑
ℓ=0

(−1)ℓ
(
k
ℓ

)
S(n + ℓ, ℓ)(n+ℓ

ℓ

) ]
zn

n!
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=

∞∑
n=0

{ n∑
ℓ=0

(−1)ℓ
[ n∑

k=ℓ

(
k
ℓ

)]
S(n + ℓ, ℓ)(n+ℓ

ℓ

) }
zn

n!

=

∞∑
n=0

[ n∑
ℓ=0

(−1)ℓ
(
n + 1
ℓ + 1

)
S(n + ℓ, ℓ)(n+ℓ

ℓ

) ]
zn

n!
.

Comparing this equation with the generating function

z
ez −1

=

∞∑
n=0

Bn
zn

n!
= 1 −

z
2
+

∞∑
n=1

B2n
z2n

(2n)!
, |z| < 2π

of the classical Bernoulli numbers Bn reveals

B2n =

2n∑
ℓ=0

(−1)ℓ
(
2n + 1
ℓ + 1

)
S(2n + ℓ, ℓ)(2n+ℓ

ℓ

) (3.14)

and

2n+1∑
ℓ=0

(−1)ℓ
(
2n + 2
ℓ + 1

)
S(2n + ℓ + 1, ℓ)(2n+ℓ+1

ℓ

) = 0 (3.15)

for n ≥ 1. The formulas (3.14) and (3.15) recover the last formula in [7, Theorem 1].

4. Maclaurin’s series expansions of composite functions

Under the assumption that the series expansion (1.2) is valid, we now derive a general expression for
Maclaurin’s series expansion of a composite function F◦ f (z) around z = 0. As an example, from this general
expression, we will present some new results of the Bell numbers Bn which are generated by

ee±z
= e

∞∑
n=0

(±1)nBn
zn

n!
. (4.1)

For more knowledge about the Bell numbers Bn, see [1, Section 2.1] and related references therein.

Theorem 4.1. For j ∈N0 and α ∈ R, if the series expansion (1.2) is valid and the composite function F◦ f is defined,
then

F ◦ f (z) =
∞∑

n=0

[ n∑
k=0

(−1)k F(k)( f (0))
k!

k∑
q=0

(−1)q
(
k
q

)
f k−q(0)Cq,n

]
zn

n!
, (4.2)

where, if f (0) = 0, we regard 00 as 1.

Proof. From the formulas (2.1) and (3.4), it follows that

lim
z→0

dn

d zn F ◦ f (z) =
n∑

k=0

lim
z→0

F(k)( f (z)) lim
z→0

Bn,k

(
f ′(z), f ′′(z), . . . , f (n−k+1)(z)

)
=

n∑
k=0

F(k)( f (0))Bn,k

(
f ′(0), f ′′(0), . . . , f (n−k+1)(0)

)
=

n∑
k=0

F(k)( f (0))
k∑

m=0

(−1)m f m(0)
m!

Ck−m,n

(k −m)!
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=

n∑
k=0

(−1)k F(k)( f (0))
k!

k∑
q=0

(−1)q
(
k
q

)
f k−q(0)Cq,n.

The proof of Theorem 4.1 is complete.

Example 4.1. We can regard the generating function eez of the Bell numbers Bn as a composite of the functions
f (z) = F(z) = ez. Combining this with the formula (3.6) in Example 3.3 and applying the series (4.2) in Theorem 4.1
yield

eez
= e+

∞∑
n=1

[ n∑
k=0

ee0
k∑

m=0

(−1)m

m!
(k −m)n

(k −m)!

]
zn

n!
= e+ e

∞∑
n=1

[ n∑
k=0

k∑
m=0

(−1)m

m!
(k −m)n

(k −m)!

]
zn

n!
.

Comparing this series with (4.1) gives B0 = 1 and

Bn =

n∑
k=0

k∑
m=0

(−1)m

m!
(k −m)n

(k −m)!
=

n∑
k=0

1
k!

k∑
m=0

(−1)m
(

k
m

)
(k −m)n =

n∑
k=0

S(n, k)

for n ∈N, where we used the formula (3.8). Consequently, we recover an explicit formula for the Bell numbers Bn in
terms of the Stirling numbers of the second kind S(n, k). For new properties of the Bell numbers Bn, please refer to [1,
Section 2.1] and the paper [15].

Example 4.2. We now consider Maclaurin’s series expansion of the function sin(sin z). For this, we write the series
expansion (2.11) as

(sin z)ℓ = ℓ!
∞∑
j=0

(−1) j22 jT(ℓ + 2 j, ℓ)
z2 j+ℓ

(2 j + ℓ)!
.

This means that

Cℓ,n =


0, n < ℓ
0, n = ℓ + 2 j − 1

(−1) jℓ!22 jT(ℓ + 2 j, ℓ), n = ℓ + 2 j

for j ∈N0. Substituting this result into the series (4.2) in Theorem 4.1 and simplifying arrive at

sin(sin z) =
∞∑

n=0

(−1)n22n
[ n∑

k=0

T(2n + 1, 2k + 1)
22k

]
z2n+1

(2n + 1)!
. (4.3)

Alternatively, by virtue of the formula (3.4), we have

dn sin(sin z)
d zn =

n∑
k=0

(sin u)(k)Bn,k

(
(sin z)′, (sin z)′′, . . . , (sin z)(n−k+1)

)
=

n∑
k=0

sin
(
u +

kπ
2

)
Bn,k

(
sin

(
z +
π
2

)
, sin

(
z +

2π
2

)
, . . . , sin

[
z +

(n − k + 1)π
2

])
→

n∑
k=0

sin
kπ
2

Bn,k

(
sin
π
2
, sin

2π
2
, . . . , sin

(n − k + 1)π
2

)
, z→ 0,

where u = sin z→ 0 as z→ 0. Further making use of the formula

Bn,k

(
1, 0,−1, 0, . . . , sin

(n − k)π
2

, sin
(n − k + 1)π

2

)
= (−1)n−k2n−k

[
cos

(n − k)π
2

]
T(n, k), (4.4)
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which is a variant of the formula (1.15) in [18, Section 1.6], we arrive at

lim
z→0

dn sin(sin z)
d zn =

n∑
k=0

(
sin

kπ
2

)
(−1)n−k2n−k

[
cos

(n − k)π
2

]
T(n, k)

=



m−1∑
k=0

(−1)k22m−2k−1
[
cos

(2m − 2k − 1)π
2

]
T(2m, 2k + 1), n = 2m

m∑
k=0

(−1)k22m−2k
[
cos

(2m − 2k)π
2

]
T(2m + 1, 2k + 1), n = 2m + 1

=


0, n = 2m

(−1)m22m
m∑

k=0

T(2m + 1, 2k + 1)
22k

, n = 2m + 1

for m ∈N0. As a result, the series expansion (4.3) is derived once again.

Similar to the formula (4.4), in terms of central factorial numbers of the second kind T(n, k) defined by (2.12),
another two formulas in [18, Section 1.6] can be rewritten as

Bn,k

(
1, 0, 1, 0, . . . ,

1 − (−1)n−k

2
,

1 − (−1)n−k+1

2

)
= 2n−kT(n, k)

and

Bn,k

(
0, 1, 0, 1, . . . ,

1 + (−1)n−k

2
,

1 + (−1)n−k+1

2

)
=

(2k)!
(2k)!!

T(n, 2k).

Finally, we notice that the formula

Bn,k

(
0,−1, 0, 1, . . . , cos

(n − k)π
2

, cos
(n − k + 1)π

2

)
=

(
cos

nπ
2

) (−1)k

k!

k∑
ℓ=0

(−1)ℓ

2ℓ

(
k
ℓ

) ℓ∑
q=0

(
ℓ
q

)
(2q − ℓ)n

deduced in [18, Section 1.6] seemingly cannot be represented in terms of central factorial numbers of the second kind
T(n, k).

Example 4.3. At the website https://math.stackexchange.com/a/4249446, the author Feng Qi gave an
answer to a problem as follows.

The hyperbolic secant function is defined by

sech z =
2

ez + e−z =
2 ez

1 + e2z .

https://math.stackexchange.com/a/4249446
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Then, when setting u = u(z) = 1 + e2z, by virtue of the Leibnitz rule and the Faà di Bruno formula (3.4), we obtain

dn sechα z
d zn = 2α

dn

d zn
eαz

(1 + e2z)α

= 2α
n∑

k=0

(
n
k

)
(eαz)(n−k)

[(
1 + e2z

)−α](k)

= 2α
n∑

k=0

(
n
k

)
αn−k eαz

k∑
ℓ=0

(u−α)(ℓ)Bk,ℓ

(
u′,u′′, . . . ,u(k−ℓ+1)

)
= 2α

n∑
k=0

(
n
k

)
αn−k eαz

k∑
ℓ=0

⟨−α⟩ℓ
uα+ℓ

Bk,ℓ

(
2 e2z, 22 e2z, . . . , 2(k−ℓ+1) e2z

)
= 2α

n∑
k=0

(
n
k

)
αn−k eαz

k∑
ℓ=0

⟨−α⟩ℓ
(
1 + e2z

)−α−ℓ
2ke2ℓzBk,ℓ(1, 1, . . . , 1)

=

n∑
k=0

(
n
k

)
αn−k

k∑
ℓ=0

S(k, ℓ)⟨−α⟩ℓ
2α+k e(α+2ℓ)z

(1 + e2z)α+ℓ

= sechα z
n∑

k=0

(
n
k

)
αn−k

k∑
ℓ=0

S(k, ℓ)⟨−α⟩ℓ2k−ℓ(1 + tanh z)ℓ

(4.5)

for any real number α , 0 and any integer n ∈N0. In particular, for n ∈N0, taking α = 2 in the above formula (4.5)
yields

dn

d zn sech2 z = 2n sech2 z
n∑

k=0

(
n
k

) k∑
ℓ=0

(−1)ℓ
(ℓ + 1)!S(k, ℓ)

2ℓ
(1 + tanh z)ℓ.

Now we continue to cultivate the above derivatives. From the above derivatives, we arrive at

lim
z→0

dn

d zn sechα z =
n∑

j=0

(
n
j

)
αn− j

j∑
ℓ=0

⟨−α⟩ℓ2 j−ℓS( j, ℓ)

for n ∈N0 and α , 0. In other words, the series expansion

sechα z =
∞∑

n=0

αn
[ n∑

j=0

(
n
j

)( 2
α

) j j∑
ℓ=0

⟨−α⟩ℓ
2ℓ

S( j, ℓ)
]

zn

n!
(4.6)

is valid for |z| < π2 and α , 0. In particular, letting α = 1, 2 in (4.6), we deduce

sech z =
∞∑

n=0

[ n∑
j=0

(
n
j

)
2 j

j∑
ℓ=0

(−1)ℓ
ℓ!
2ℓ

S( j, ℓ)
]

zn

n!
, |z| <

π
2

(4.7)

and

sech2 z =
∞∑

n=0

2n
[ n∑

j=0

(
n
j

) j∑
ℓ=0

(−1)ℓ
(ℓ + 1)!

2ℓ
S( j, ℓ)

]
zn

n!
, |z| <

π
2
.

In [4, p. 42], it was listed that

sech x = 1 −
x2

2
+

5x4

24
−

61x6

720
+ · · · = 1 +

∞∑
k=1

E2k

(2k)!
x2k, |x| <

π
2
, (4.8)
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where En denotes the classical Euler numbers with E2n+1 = 0 for n ∈ N0. When comparing (4.7) with (4.8), we find
two identities

2n−1∑
j=0

(
2n − 1

j

)
2 j

j∑
ℓ=0

(−1)ℓ
ℓ!
2ℓ

S( j, ℓ) = 0, n ∈N

and

E2n =

2n∑
j=0

(
2n
j

)
2 j

j∑
ℓ=0

(−1)ℓ
ℓ!
2ℓ

S( j, ℓ), n ∈N0. (4.9)

The identity (4.9) gives an explicit formula for the Euler numbers E2n in terms of the Stirling numbers of the second
kind S(n, k).

Setting α = m ∈N in (4.6) gives

sechm z =
∞∑

n=0

[ n∑
j=0

(
n
j

)
mn− j

j∑
ℓ=0

(−1)ℓ(m)ℓ2 j−ℓS( j, ℓ)
]

zn

n!
, |z| <

π
2
.

This means that

Cm,n =

n∑
j=0

(
n
j

)
mn− j

j∑
ℓ=0

(−1)ℓ(m)ℓ2 j−ℓS( j, ℓ) (4.10)

for m ∈N and n ∈N0. Considering the formula (2.1) in Theorem 2.1 reveals

B2n−1,k(0,E2, 0,E4, . . . ,E2n−k−1,E2n−k) =
(−1)k

k!

k∑
q=1

(−1)q
(
k
q

)
Cq,2n−1

=
1
k!

k∑
q=1

(−1)k−q
(
k
q

) 2n−1∑
j=0

(
2n − 1

j

)
q2n− j−1

j∑
ℓ=0

⟨−q⟩ℓ2 j−ℓS( j, ℓ)

(4.11)

for 2n − 1 ≥ k ≥ 0 and

B2n,k

(
0,E2, 0,E4, . . . ,E2n−k,E2n−k+1) =

(−1)k

k!

k∑
q=1

(−1)q
(
k
q

)
Cq,2n

=
1
k!

k∑
q=1

(−1)k−q
(
k
q

) 2n∑
j=0

(
2n
j

)
q2n− j

j∑
ℓ=0

⟨−q⟩ℓ2 j−ℓS( j, ℓ)

(4.12)

for 2n ≥ k ≥ 0 and n ∈N.
Comparing (4.11) with (2.7) results in

k∑
q=1

(−1)q
(
k
q

) 2n−1∑
j=0

(
2n − 1

j

)
q2n− j−1

j∑
ℓ=0

⟨−q⟩ℓ2 j−ℓS( j, ℓ) = 0, 2n − 1 ≥ k ≥ 0.

Substituting (4.10) into the formula (3.2) in Theorem 3.1 shows

sechα z = 1 +
∞∑

n=1

[ n∑
k=1

(−α)k

k!

k∑
q=1

(−1)q
(
k
q

) n∑
j=0

(
n
j

)
qn− j

j∑
ℓ=0

⟨−q⟩ℓ2 j−ℓS( j, ℓ)
]

zn

n!
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for |z| < π2 and α , 0. Comparing this series expansion with (4.6) leads to

n∑
k=1

(−α)k

k!

k∑
q=1

(−1)q
(
k
q

) n∑
j=0

(
n
j

)
qn− j

j∑
ℓ=0

⟨−q⟩ℓ2 j−ℓS( j, ℓ) =
n∑

j=0

(
n
j

)
αn− j

j∑
ℓ=0

⟨−α⟩ℓ2 j−ℓS( j, ℓ)

for n ∈N and α ∈ R.
Generally, the formula (4.10) and the series expansion (4.2) in Theorem 4.1, or the formula (4.12) together

with (2.7), can be applied to derive Maclaurin’s series expansions of the composite function F(sech z) around z = 0,
only if the derivatives F(n)(1) for n ∈N0 are computable. Now we discuss Maclaurin’s series expansion of the function
sech(sech z) around z = 0 as follows.

Letting α = 1 in (4.5) and taking the limit z→ 1 lead to

lim
z→1

dk sech z
d zk

=

k∑
j=0

(
k
j

) j∑
ℓ=0

(−1)ℓℓ!2 j−ℓ(1 + tanh 1)ℓ(sech 1)S( j, ℓ), k ∈N0.

Combining this with (4.10) and (4.2), we obtain

sech(sech z) = sech 1 + (sech 1)
∞∑

n=1

( n∑
k=1

(−1)k

k!

[ k∑
j=0

(
k
j

) j∑
ℓ=0

(−1)ℓℓ!2 j−ℓ(1 + tanh 1)ℓS( j, ℓ)
]

×

[ k∑
q=1

(−1)q
(
k
q

) n∑
j=0

(
n
j

)
qn− j

j∑
ℓ=0

(−1)ℓ(q)ℓ2 j−ℓS( j, ℓ)
])

zn

n!

for | sech z| < π2 . Since sech(sech z) is an even function, we acquire

sech(sech z) = sech 1 + (sech 1)
∞∑

n=1

( 2n∑
k=1

(−1)k

k!

[ k∑
j=0

(
k
j

) j∑
ℓ=0

(−1)ℓℓ!2 j−ℓ(1 + tanh 1)ℓS( j, ℓ)
]

×

[ k∑
q=1

(−1)q
(
k
q

) 2n∑
j=0

(
2n
j

)
q2n− j

j∑
ℓ=0

(−1)ℓ(q)ℓ2 j−ℓS( j, ℓ)
])

z2n

(2n)!

for | sech z| < π2 and

2n−1∑
k=1

(−1)k

k!

[ k∑
j=0

(
k
j

) j∑
ℓ=0

(−1)ℓℓ!2 j−ℓ(1 + tanh 1)ℓS( j, ℓ)
]

×

[ k∑
q=1

(−1)q
(
k
q

) 2n−1∑
j=0

(
2n − 1

j

)
q2n− j−1

j∑
ℓ=0

(−1)ℓ(q)ℓ2 j−ℓS( j, ℓ)
]
= 0

for n ∈N.
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