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Abstract. In this paper, the initial-value and the final-value Abelian theorems are presented for the
continuous fractional wavelet transform of functions and distributions. An application of these Abelian
theorems to the continuous fractional wavelet transforms is also investigated by using the Mexican hat
wavelet function.

1. Introduction and Motivation

The fractional Fourier transform, which was studied by Luchko et al. [9] in the year 2008, plays a
significant role for finding fractional derivatives (see, for details, [8]). Later, in the year 2010, Kilbas et al. [7]
discussed the composition of the fractional Fourier transforms with some modified fractional integrals and
fractional derivatives. More recently, the calculus of pseudo-differential operators, which are associated
with the fractional Fourier transform on the Schwartz space, were considered in [10] and [31]. Motivated
by these and other related developments, Srivastava et al. [19] investigated various potentially useful
properties of the continuous fractional wavelet transform.
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The theory of the Hankel transform, which was presented by Haimo [3], was applied by Srivastava et al.
[22] who introduced the fractional Bessel wavelet transform and studied the associated Parseval formula
and the inversion formula, and also considered a discrete version of the aforesaid transform.

Abelian theorems are known to be useful for finding the initial value with the help of the final value and
also for finding the final value by using the initial value by means of several different integral transform
techniques. Many authors have used these integral transform techniques to investigate Abelian theorems
in the classical sense as well as in the distributional sense. For example, in the year 1955, Griffith [2]
proved a theorem concerning the asymptotic behavior of the Hankel transforms. Later, in the year 1966,
Zemanian [36] considered some Abelian theorems for the distributional Hankel transformation and the
K-transformations. Hayek and González [4] established Abelian theorems for the generalized index 2F1-
transform in 1992. Pathak (see [11] and [12]) investigated the Abelian theorems for the wavelet transform
by applying the theory of the Fourier transforms in 2001. More recently, in the year 2020, Upadhyay et al.
[33] established the Abelian theorems for the Bessel wavelet transform. Abelian theorems for the Laplace
transform and the Mehler-Fock transform of general order over distributions of compact support and over
certain spaces of generalized functions were proved by González and Negrı́n [1] in 2020. Subsequently,
in the year 2022, Prasad et al. [13] studied the Abelian theorems for the quadratic-phase Fourier wavelet
transform.

In this sequel to the above-mentioned developments, our main objective is to investigate the Abelian
theorems for the fractional wavelet transform in the classical sense and in the distributional sense. In
our investigation, we apply the techniques which are based upon the fractional Fourier transform. As an
application of the Abelian theorems to the continuous fractional wavelet transform, we make use of the
Mexican hat wavelet function (see, for example, [28]).

2. Definitions, Notations and Preliminaries

In this section, we first present the definitions and notations which we shall need in our present
investigation (see, for details, [7, 9, 10, 12, 19, 34]).

Definition 1. Let α ∈ (0, 1]. The fractional Fourier transform of order α is defined, for a given function ϕ,
by

ϕ̂α(w) = (Fαϕ)(w) =
∫
R

e−i(sgn w)|w|
1
α xϕ(x) dx (∀ w ∈ R), (1)

provided the integral on the right-hand side of Eq. (1) is convergent.

Definition 2. The inverse fractional Fourier transform of Fαϕ of order α is given by

F
−1
α (Fαϕ)(x) =

1
2πα

∫
R

ei(sgn w)|w|
1
α x
|w|

1
α−1(Fαϕ)(w) dw (∀ x ∈ R), (2)

provided the integral on the right-hand side of Eq. (2) is convergent.

Definition 3. The Schwartz space S(R) is the vector space of all complex-valued infinitely differentiable
functions ϕ on R such that, for all indices β, γ ∈N0, we have

γβ,γ(ϕ) = sup
x∈R
|xβ(Dγϕ)(x)| < ∞. (3)

Definition 4. A sequence (ϕ j) of functions in the Schwartz space S(R) is said to converge to zero in S(R)(
denoted by ϕ j → 0 in S(R)

)
if, for all indices β, γ ∈N0, we have

sup
x∈R
|xβ(Dγϕ j)(x)| → 0 ( j→∞).
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Definition 5. A linear functional T on S(R) is said to be continuous if, for any sequence (ϕ j) of functions in
S(R) converging to zero in S(R), we have

T(ϕ j)→ 0 ( j→∞).

Continuous linear functionals on S(R) are called tempered distributions and are denoted by S′ (R). If
T ∈ S′ (R), then T : S(R)→ C is a continuous linear map such that

T(ϕ) = ⟨T, ϕ⟩ for all ϕ ∈ S(R).

Definition 6. A sequence (T j) of functions in S′ (R) is said to converge to zero in S′ (R) if, for any ϕ ∈ S(R),
the sequence ⟨T j, ϕ⟩ converges to zero in C as j→∞, C being the set of complex numbers.

Definition 7. We denote by D(R) the set of all complex-valued infinitely differentiable functions on R
having compact support. Moreover, D

′

(R) is the dual of the space D(R) and its elements are called
Schwartz distributions. The space of all those distributions inD

′

(R) that have compact support is denoted
by Ξ

′

(R).

Definition 8. Let Lp(Rn)(1 ≦ p ≦ ∞) be the space of measurable functions on Rn with the norm ∥ · ∥p.
Suppose also that ψ ∈ L2(R) and 0 < α ≦ 1. Then the fractional wavelet ψα,a,b(t) is defined by

ψα,a,b(t) =
1

|a|
1
α

ψ
( t − b

|a|
1
α

)
(a , 0; b ∈ R). (4)

Definition 9. Let ψ ∈ L2(R). Then the continuous fractional wavelet transform of a given signal ϕ ∈ L2(R)
for 0 < α ≦ 1 is defined by(

Wψαϕ
)
(b, a) = ⟨ϕ,ψα,a,b⟩

=

∫ +∞

−∞

ϕ(t)
1

|a|
1
α

ψ
( t − b

|a|
1
α

)
dt. (5)

From Eq. (1) and Eq. (4), we have

Fα(ψα,a,b(t))(w) = e−i(sgn w)|w|
1
α bψ̂α(aw). (6)

Let ϕ,ψ ∈ L2(R). Then the Parseval formula (see [19]) for the fractional Fourier transform is given by

⟨ϕ,ψ⟩ =
1

2πα

〈
|w|

1
α−1ϕ̂α(w), ψ̂α(w)

〉
. (7)

In view of Eq. (5), Eq. (6) and Eq. (7), we get the following relation:(
Wψαϕ

)
(b, a) =

1
2πα

∫ +∞

−∞

ei(sgn w)|w|
1
α b
|w|

1
α−1ϕ̂α(w)ψ̂α(aw) dw. (8)

3. Abelian Theorems for the Fractional Wavelet Transform of Functions

In this section, we present the initial-value and the final-value theorems for the fractional wavelet trans-
form of functions.

Let us suppose that

ψ̂α(w) = O(|w|µ) (|w| → 0) (9)
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and that

1 +
1
α
< η < µ + 1 +

1
α
.

Then the following integral: ∫
∞

−∞

ψ̂α(w)|w|
1
α−η dw

is convergent.

We now set∫
∞

−∞

ψ̂α(w)|w|
1
α−η dw = F1(α, η). (10)

Theorem 1. (Initial-Value Theorem for the Fractional Wavelet Transform)
Let

1 +
1
α
< η < µ + 1 +

1
α

and µ > 0.

Assume also that
|w|

1
α−ηψ̂α(w) ∈ L1(R),

|ψ̂α(w)| ≦M (M > 0)

and
|w|

1
α−1ϕ̂α(w) ∈ L1(δ,∞) (∀ δ > 0).

If

lim
|w|→0

(2πα)−1
|w|−1+ηϕ̂α(w) = F2(α, η), (11)

then

lim
a→∞

a1−η+ 1
α

(
Wψαϕ

)
(b, a) = F1(α, η)F2(α, η). (12)

Proof. From Eq. (8) and Eq. (10), we have∣∣∣∣a1−η+ 1
α

(
Wψαϕ

)
(b, a) − F1(α, η)F2(α, η)

∣∣∣∣
=

∣∣∣∣a1−η+ 1
α

1
2πα

∫
∞

−∞

ei(sgn w)|w|
1
α b
|w|

1
α−1ϕ̂α(w)ψ̂α(aw) dw

− F2(α, η)
∫
∞

−∞

ψ̂α(aw)|aw|
1
α−ηa dw

∣∣∣∣
= a

∣∣∣∣ ∫ ∞

−∞

(2πα)−1ei(sgn w)|w|
1
α b
|aw|

1
α−1
|aw|1−η|w|−1+ηϕ̂α(w)ψ̂α(aw) dw

− F2(α, η)
∫
∞

−∞

ψ̂α(aw)|aw|1−η|aw|
1
α−1 dw

∣∣∣∣
= a

∣∣∣∣ ∫ ∞

−∞

[
(2πα)−1ei(sgn w)|w|

1
α b
|w|−1+ηϕ̂α(w) − F2(α, η)

]
· |aw|1−η|aw|

1
α−1ψ̂α(aw) dw

∣∣∣∣
≦ a sup

|w|<δ

∣∣∣∣(2πα)−1ei(sgn w)|w|
1
α b
|w|−1+ηϕ̂α(w) − F2(α, η)

∣∣∣∣
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·

∫
|w|<δ
|aw|1−η|aw|

1
α−1
|ψ̂α(aw)| dw

+ a
∫
|w|>δ

∣∣∣∣(2πα)−1ei(sgn w)|w|
1
α b
|w|−1+ηϕ̂α(w) − F2(α, η)

∣∣∣∣
· |aw|1−η|aw|

1
α−1
|ψ̂α(aw)| dw

≦ sup
|w|<δ

∣∣∣∣(2πα)−1ei(sgn w)|w|
1
α b
|w|−1+ηϕ̂α(w) − F2(α, η)

∣∣∣∣ ∫ ∞

−∞

|w|
1
α−η|ψ̂α(w)| dw

+Ma1+ 1
α−η

∫
|w|>δ

∣∣∣∣(2πα)−1ei(sgn w)|w|
1
α b
|w|−1+ηϕ̂α(w) − F2(α, η)

∣∣∣∣|w| 1α−η dw. (13)

Since |w|
1
α−ηψ̂α(w) ∈ L1(R), there exists a positive real number M1 such that∫

∞

−∞

|w|
1
α−η|ψ̂α(w)| dw =M1 < ∞.

Also, for any ϵ > 0, we have

sup
|w|<δ

∣∣∣(2πα)−1ei(sgn w)|w|
1
α b
|w|−1+ηϕ̂α(w) − F2(α, η)

∣∣∣ < ϵ
2M1

,

by choosing δ small enough.

Next, since η > 1 + 1
α , we find that

a1+ 1
α−η → 0 as a→∞

and that the integral in the second term of Eq. (13) is convergent. So, for any ϵ > 0, we can make the second
term in Eq. (13) less than ϵ

2 . Hence, for any ϵ > 0, we have the following consequence:∣∣∣a1−η+ 1
2α

(
Wψαϕ

)
(b, a) − F1(α, η)F2(α, η)

∣∣∣ < ϵ
for sufficiently large a.

Theorem 2. (Final-Value Theorem for the Fractional Wavelet Transform)
Let

1 +
1
α
< η < µ + 1 +

1
α

and µ > 0.

Suppose also that
|w|

1
α−ηψ̂α(w) ∈ L1(R)

and that
|w|µ+

1
α−1ϕ̂α(w) ∈ L1(−X,X) (∀ X > 0).

If

lim
|w|→∞

(2πα)−1ei(sgn w)|w|
1
α b
|w|−1+ηϕ̂α(w) = F3(α, b, η), (14)

then

lim
a→0

a1−η+ 1
α

(
Wψαϕ

)
(b, a) = F1(α, η)F3(α, b, η). (15)
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Proof. In view of the proof of Theorem 1, we find ∀ X > 0 that∣∣∣a1−η+ 1
α

(
Wψαϕ

)
(b, a) − F1(α, η)F3(α, b, η)

∣∣∣
≦ a

∫
|w|<X

∣∣∣(2πα)−1ei(sgn w)|w|
1
α b
|w|−1+ηϕ̂α(w) − F3(α, b, η)

∣∣∣
· |aw|1−η|aw|

1
α−1
|ψ̂α(aw)| dw

+ a
∫
|w|>X

∣∣∣(2πα)−1ei(sgn w)|w|
1
α b
|w|−1+ηϕ̂α(w) − F3(α, b, η)

∣∣∣
· |aw|1−η|aw|

1
α−1
|ψ̂α(aw)| dw

≦ a1−η+ 1
α

∫ X

−X

∣∣∣(2πα)−1ei(sgn w)|w|
1
α b
|w|−1+ηϕ̂α(w) − F3(α, b, η)

∣∣∣
· |w|1−η|w|

1
α−1
|ψ̂α(aw)| dw

+ sup
|w|>X

∣∣∣(2πα)−1ei(sgn w)|w|
1
α b
|w|−1+ηϕ̂α(w) − F3(α, b, η)

∣∣∣
·

∫
∞

−∞

|w|1−η|w|
1
α−1
|ψ̂α(w)| dw.

Thus, by using Eq. (9), there exists a positive constant M2 > 0 such that

|ψ̂α(aw)| ≦M2(a|w|)µ.

Hence we have∣∣∣a1−η+ 1
α

(
Wψαϕ

)
(b, a) − F1(α, η)F3(α, b, η)

∣∣∣
≦M2aµ+1−η+ 1

α

∫ X

−X

∣∣∣(2πα)−1ei(sgn w)|w|
1
α bϕ̂α(w) − F3(α, b, η)|w|1−η

∣∣∣|w| 1α−1+µ dw

+ sup
|w|>X

∣∣∣(2πα)−1ei(sgn w)|w|
1
α b
|w|−1+ηϕ̂α(w) − F3(α, b, η)

∣∣∣
·

∫
∞

−∞

|w|
1
α−η|ψ̂α(w)| dw. (16)

Now, since both of the integrals on the right-hand side of Eq. (16) are convergent and

η < 1 +
1
α
+ µ,

therefore, as a → 0, the first term can be made less than ϵ
2 . Also, for sufficiently large X, the second term,

which is independent of a, can be made less than ϵ
2 . Hence we obtain∣∣∣a1−η+ 1

α

(
Wψαϕ

)
(b, a) − F1(α, η)F3(α, b, η)

∣∣∣ < ϵ
for sufficiently small a.

4. Abelian Theorems for the Fractional Wavelet Transform of Distributions

In this section, Abelian theorems for the fractional wavelet transform of distributions are investigated
and their properties are obtained by exploiting the theory of the fractional Fourier transform.
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Definition 10. Let ϕ ∈ S′ (R). Then the fractional wavelet transform of the distribution:

|w|
1
α−1ϕ̂α(w) ∈ S

′

(R)

is defined by(
Wψαϕ

)
(b, a) =

1
2πα

〈
|w|

1
α−1ϕ̂α(w), ei(sgn w)|w|

1
α bψ̂α(aw)

〉
. (17)

Theorem 3. If ϕ ∈ S′ (R), then the differentiability of the fractional wavelet transform:(
Wψαϕ

)
(b, a)

is exhibited by(
∂
∂a

)m(
∂
∂b

)n(
Wψαϕ

)
(b, a)

=
1

2πα

〈
|w|

1
α−1ϕ̂α(w),

(
i(sgn w)|w|

1
α

)n
ei(sgn w)|w|

1
α b

(
∂
∂a

)m

ψ̂α(aw)
〉

(18)

for a > 0 and for all m,n ∈N0.

Proof. For h > 0, we have

1
h

[(
Wψαϕ

)
(b, a + h) −

(
Wψαϕ

)
(b, a)

]
−

1
2πα

〈
|w|

1
α−1ϕ̂α(w), ei(sgn w)|w|

1
α b ∂
∂a
ψ̂α(aw)

〉
=

1
2πα

〈
|w|

1
α−1ϕ̂α(w), ei(sgn w)|w|

1
α b

[1
h

(
ψ̂α

(
(a + h)w

)
− ψ̂α(aw)

)
−
∂
∂a
ψ̂α(aw)

]〉
.

Thus, clearly, we have to show that

ei(sgn w)|w|
1
α b

[
1
h

(
ψ̂α((a + h)w) − ψ̂α(aw)

)
−
∂
∂a
ψ̂α(aw)

]
→ 0 in S(R) as h→ 0,

since ∣∣∣∣∣∣wk
(
∂
∂w

)m[
ei(sgn w)|w|

1
α b

{
1
h

(
ψ̂α((a + h)w) − ψ̂α(aw)

)
−
∂
∂a
ψ̂α(aw)

}]∣∣∣∣∣∣
=

∣∣∣∣∣∣wk
m∑

r=0

(
m
r

)[(
∂
∂w

)m−r

ei(sgn w)|w|
1
α b

]

·

[(
∂
∂w

)r{
1
h

(
ψ̂α((a + h)w) − ψ̂α(aw)

)
−
∂
∂a
ψ̂α(aw)

}]∣∣∣∣∣∣
=

∣∣∣∣∣∣wk
m∑

r=0

(
m
r

)[(
∂
∂w

)m−r

ei(sgn w)|w|
1
α b

]

·

{
1
h

(( ∂
∂w

)r
ψ̂α((a + h)w) −

(
∂
∂w

)r

ψ̂α(aw)
)
−
∂
∂a

(
∂
∂w

)r

ψ̂α(aw)
}∣∣∣∣∣∣

=

∣∣∣∣∣∣wk
m∑

r=0

(
m
r

)[(
∂
∂w

)m−r

ei(sgn w)|w|
1
α b

]

·
1
h

[ ∫ a+h

a

{(
∂
∂t

)(
∂
∂w

)r

ψ̂α(tw) −
(
∂
∂a

)(
∂
∂w

)r

ψ̂α(aw)
}

dt
]∣∣∣∣∣∣
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=

∣∣∣∣∣∣wk
m∑

r=0

(
m
r

)[(
∂
∂w

)m−r

ei(sgn w)|w|
1
α b

]

·
1
h

∫ a+h

a

( ∫ t

a

(
∂
∂u

)2(
∂
∂w

)r

ψ̂α(uw)du
)

dt

∣∣∣∣∣∣
≦

∣∣∣∣∣∣wk
m∑

r=0

(
m
r

)[(
∂
∂w

)m−r

ei(sgn w)|w|
1
α b

]∣∣∣∣∣∣
·

h
2

sup
a≦u≦a+h

∣∣∣∣∣∣
(
∂
∂u

)2(
∂
∂w

)r

ψ̂α(uw)
∣∣∣∣. (19)

Now, from [31, p. 535], we can write(
∂
∂w

)m−r

ei(sgn w)|w|
1
α b (20)

= (m − r)!
[ (ib)ei(sgn w)|w|

1
α b

(
1
α

)(
1
α − 1

)(
1
α − 2

)
· · ·

(
1
α − (m − r) + 1

)
1!(m − r)!

· |w|
1
α−(m−r)(sgn w)m−r+1 + · · ·

+
(ib)m−rei(sgn w)|w|

1
α b 1
αm−r

(1!)m−r(m − r)!
|w|

m−r
α −(m−r)(sgn w)2(m−r)

]
= (m − r)!

[
A1(ib)ei(sgn w)|w|

1
α b(sgn w)m−r+1

|w|
1
α−(m−r) + · · ·

+ Am−r(ib)m−rei(sgn w)|w|
1
α b(sgn w)2(m−r)

|w|
m−r
α −(m−r)

]
, (21)

where A1,A2, · · · ,Am−r are constants.

Next, from Eq. (20), we have∣∣∣∣∣∣
(
∂
∂w

)m−r

ei(sgn w)|w|
1
α b

∣∣∣∣∣∣ ≦ (m − r)!
(
|A1||b||w|

1
α−(m−r) + · · · + |Am−r||b|m−r

|w|(m−r)( 1
α−1)

)
. (22)

Hence, by using Eq. (19) and Eq. (22), we obtain∣∣∣∣∣∣wk
(
∂
∂w

)m(
ei(sgn w)|w|

1
α b

[
1
h

(
ψ̂α

(
(a + h)w

)
− ψ̂α(aw)

)
−
∂
∂a
ψ̂α(aw)

])∣∣∣∣∣∣
≦

m∑
r=0

(
m
r

)
(m − r)!

(
|A1| · |b| · |w|

1
α−(m−r) + · · · + |Am−r||b|m−r

|w|(m−r)( 1
α−1)

)

·
h
2

sup
a≦u≦a+h

∣∣∣∣∣∣wk
(
∂
∂u

)2(
∂
∂w

)r

ψ̂α(uw)

∣∣∣∣∣∣. (23)

By substituting uw = z into Eq. (23), we get∣∣∣∣∣∣wk
(
∂
∂w

)m

ei(sgn w)|w|
1
α b

[
1
h

(
ψ̂α

(
(a + h)w

)
− ψ̂α(aw)

)
−
∂
∂a
ψ̂α(aw)

]∣∣∣∣∣∣
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≦
m∑

r=0

(
m
r

)
(m − r)!

(
|A1||b|

∣∣∣∣ z
u

∣∣∣∣ 1
α−(m−r)

+ · · · + |Am−r||b|m−r
∣∣∣∣ z
u

∣∣∣∣(m−r)( 1
α−1)

)

·
h
2

sup
a≦u≦a+h

∣∣∣∣∣∣zk+2ur−2−k
(
∂
∂z

)r+2

ψ̂α(z)

∣∣∣∣∣∣
≦

m∑
r=0

(
m
r

)
(m − r)!

h
2

[
|A1||b| sup

z∈R

∣∣∣∣∣∣zk+2+ 1
α−(m−r)

(
∂
∂z

)r+2
ψ̂α(z)

∣∣∣∣∣∣
· sup

a≦u≦a+h
|u|r−2−k− 1

α+(m−r) + · · · + |Am−r||b|m−r

· sup
z∈R

∣∣∣∣∣∣zk+2+(m−r)( 1
α−1)

(
∂
∂z

)r+2

ψ̂α(z)

∣∣∣∣∣∣
· sup

a≦u≦a+h
|u|r−2−k−(m−r)( 1

α−1)
]

≦
h
2

m∑
r=0

(
m
r

)
(m − r)!

[
|A1||b| sup

a≦u≦a+h
|u|m−2−k− 1

α

· γk+2+ 1
α−(m−r),r+2(ψ̂α) + · · · + |Am−r||b|m−r

· sup
a≦u≦a+h

|u|r−2−k−(m−r)( 1
α−1)

· γk+2+(m−r)( 1
α−1),r+2(ψ̂α)

]
→ 0 as h→ 0.

Hence, finally, we find that

lim
h→0

(Wψαϕ
)
(b, a + h) −

(
Wψαϕ

)
(b, a)

h

=
1

2πα

〈
|w|

1
α−1ϕ̂α(w), ei(sgn w)|w|

1
α b ∂
∂a
ψ̂α(aw)

〉
.

Similarly, we can prove the differentiability with respect to the variable b and, in general, we can find
Eq. (18).

Theorem 4. Let
(
Wψαϕ

)
(b, a) be the fractional wavelet transform of the following distribution:

|w|
1
α−1ϕ̂α(w) ∈ S

′

(R).

Then, for large k and a > 0, it is asserted that(
Wψαϕ

)
(b, a) = O

(
a−k− k

α |b|k
)

(a→ 0); (24)

= O
(
a2k− k

α

)
(a→∞); (25)

= O
(
a−

k
α (1 + a2)k

)
(|b| → 0); (26)

= O
(
a−k− k

α (1 + a2)k
|b|k

)
(|b| → ∞). (27)

Proof. In view of the boundedness property of generalized functions (see [35, p. 111]), there exists a constant
C > 0 and a non-negative integer k depending on |w|

1
α−1ϕ̂α(w) such that∣∣∣(Wψαϕ

)
(b, a)

∣∣∣ ≦ C sup
w

∣∣∣∣∣∣(1 + w2)k
( ∂
∂w

)k[
ei(sgn w)|w|

1
α bψ̂α(aw)

]∣∣∣∣∣∣



H. M. Srivastava et al. / Filomat 37:28 (2023), 9453–9468 9462

= C sup
w

∣∣∣∣∣∣(1 + w2)k
k∑

s=0

(
k
s

)[( ∂
∂w

)s
ei(sgn w)|w|

1
α b

]
·

[( ∂
∂w

)k−s
ψ̂α(aw)

]∣∣∣∣∣∣
= C sup

w

∣∣∣∣∣∣ k∑
s=0

k∑
r=0

(
k
s

)(
k
r

)
w2r

[( ∂
∂w

)s
ei(sgn w)|w|

1
α b

]
·

[( ∂
∂w

)k−s
ψ̂α(aw)

]∣∣∣∣∣∣.
On the other hand, in view of Eq. (22), there exist positive constants A1,A2, · · · ,As such that

|

(
Wψαϕ

)
(b, a)| ≦ C sup

w

∣∣∣∣∣∣ k∑
s=0

k∑
r=0

(
k
s

)(
k
r

)
w2r s!

[
A1|b| · |w|

1
α−s + · · ·

+ As|b|s · |w|
s
α−s

]
·

[( ∂
∂w

)k−s
ψ̂α(aw)

]∣∣∣∣∣∣.
Thus, upon setting z = aw, we can find that

∣∣∣(Wψαϕ
)
(b, a)

∣∣∣ ≦ C sup
z

∣∣∣∣∣∣ k∑
s=0

k∑
r=0

(
k
s

)(
k
r

)
ak−s−2rz2r s!

[
A1|b|

∣∣∣∣za ∣∣∣∣ 1
α−s
+ · · ·

+ As|b|s
∣∣∣∣za ∣∣∣∣ s

α−s]
·

[( ∂
∂w

)k−s
ψ̂α(z)

]∣∣∣∣∣∣
≦ C sup

z

∣∣∣∣∣∣ k∑
s=0

k∑
r=0

(
k
s

)(
k
r

)
s!

[
A1|b|ak− 1

α−2r
|z|2r+ 1

α−s + · · ·

+ As|b|s ak− s
α−2r
|z|2r+ s

α−s
]
·

[( d
dz

)k−s
ψ̂α(z)

]∣∣∣∣∣∣
≦ C

k∑
s=0

k∑
r=0

(
k
s

)(
k
r

)
s!

[
A1|b|ak− 1

α−2r sup
z

∣∣∣z2r+ 1
α−s

( d
dz

)k−s

· ψ̂α(z)
∣∣∣ + · · · + As|b|sak− s

α−2r sup
z

∣∣∣z2r+ s
α−s

( d
dz

)k−s
ψ̂α(z)

∣∣∣]
≦ C

k∑
s=0

k∑
r=0

(
k
s

)(
k
r

)
s!

[
A1|b|ak− 1

α−2rγ2r+ 1
α−s,k−s

(
ψ̂α(z)

)
+

· · · + As|b|sak− s
α−2rγ2r+ s

α−s,k−s

(
ψ̂α(z)

)]
,

that is, that

∣∣∣(Wψαϕ
)
(b, a)

∣∣∣ ≦ C
k∑

s=0

k∑
r=0

(
k
s

)(
k
r

)
s!

[
A1|b|ak− 1

α−2rγ2r+ 1
α−s,k−s

(
ψ̂α(z)

)
· · · + As|b|sak− s

α−2rγ2r+ s
α−s,k−s

(
ψ̂α(z)

)]
= C

k∑
s=0

k∑
r=0

s∑
l=1

(
k
s

)(
k
r

)
s! Al|b|lak− l

α−2rγ2r+ l
α−s,k−s

(
ψ̂α(z)

)
≦ C

′

k∑
s=0

k∑
r=0

(
k
s

)(
k
r

)
s! As|b|sak− s

α−2rγ2r+ s
α−s,k−s

(
ψ̂α(z)

)
≦ C

′′

k∑
r=0

(
k
r

)
a−2rak− k

α (a + |b|)k
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= C
′′

(1 + a−2)kak− k
α (a + |b|)k. (28)

Thus, from Eq. (28), we are led to the assertions given by Eq. (24), Eq. (25), Eq. (26) and Eq. (27).

We now state and prove our next result (Theorem 5 below) which is useful to obtain Abelian theorems
for the distributional fractional wavelet transform. For this purpose, we assume that

Dsψ̂α(w) = O(|w|µ), |w| → 0 (∀ s ∈N0) (29)

for some real number µ.

Theorem 5. Let ψ ∈ S(R) and ϕ ∈ S′ (R) be distributions of compact support in R. Then(
Wψαϕ

)
(b, a) =

1
2πα

〈
|w|

1
α−1ϕ̂α(w), ei(sgn w)|w|

1
α bψ̂α(aw)

〉
is a smooth function on R ×R+ and satisfies the following condition:(

Wψαϕ
)
(b, a) = O

(
aµ(1 + a + |b|)k

) (
|a| → 0; k ∈N

)
. (30)

Proof. Let ϕ ∈ S′ (R). Then, from Theorem 2.3 of [31], we have ϕ̂α ∈ S′ (R). We assume that ϕ̂α is of compact
support K ⊂ R. We also let λ(w) ∈ D(R), the space of all C∞-functions of compact support such thatλ(w) = 1
in a neighborhood of K. Therefore, we get(

Wψαϕ
)
(b, a) =

1
2πα

〈
|w|

1
α−1ϕ̂α(w), ei(sgn w)|w|

1
α bψ̂α(aw)

〉
=

1
2πα

〈
|w|

1
α−1ϕ̂α(w), λ(w)ei(sgn w)|w|

1
α bψ̂α(aw)

〉
.

So, by Theorem 3,
(
Wψαϕ

)
(b, a) is infinitely differentiable with respect to the variables b and a. Thus, by the

boundedness property of generalized functions as used in Theorem 4, we have∣∣∣(Wψαϕ
)
(b, a)

∣∣∣ = 1
2πα

∣∣∣∣∣〈|w| 1α−1ϕ̂α(w), ei(sgn w)|w|
1
α bψ̂α(aw)

〉∣∣∣∣∣
≦ C max

r
sup
w∈K

∣∣∣∣∣Dr
w

[
λ(w)ei(sgn w)|w|

1
α bψ̂α(aw)

]∣∣∣∣∣
≦ C max

r
sup
w∈K

r∑
n=0

(
r
n

)∣∣∣∣∣(Dr−n
w λ(w)

)
Dn

w

(
ei(sgn w)|w|

1
α bψ̂α(aw)

)∣∣∣∣∣
≦ C max

r
sup
w∈K

r∑
n=0

(
r
n

)∣∣∣∣∣(Dr−n
w λ(w)

) n∑
s=0

(
n
s

)(
Dn−s

w ei(sgn w)|w|
1
α b

)(
Ds

wψ̂α(aw)
)∣∣∣∣∣.

In view of Eq. (22), there exist positive constants A1, · · · ,An−s such that

∣∣∣(Wψαϕ
)
(b, a)

∣∣∣ ≦ C max
r

sup
w∈K

r∑
n=0

n∑
s=0

(
r
n

)(
n
s

)∣∣∣(Dr−n
w λ(w)

)∣∣∣
· (n − s)!

(
A1|b||w|

1
α−(n−s) + · · · + An−s|b|n−s

|w|(n−s)
(

1
α−1

))∣∣∣(Ds
wψ̂α(aw)

)∣∣∣
≦ C

′

max
r

sup
w∈K

r∑
n=0

n∑
s=0

(
r
n

)(
n
s

)∣∣∣(Dr−n
w λ(w)

)∣∣∣[ n−s∑
l=1

Al|b|l|w|
l
α−(n−s)

]∣∣∣(Ds
wψ̂α(aw)

)∣∣∣
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≦ C
′′

max
r

sup
w∈K

r∑
n=0

n∑
s=0

(
r
n

)(
n
s

)
|b|n−s

|w|(n−s)
(

1
α−1

)
as+µ
|w|µ

≦ C
′′

max
r

r∑
n=0

(
r
n

)( n∑
s=0

(
n
s

)
|b|n−s

)
as+µ

≦ C
′′

max
r

r∑
n=0

(
r
n

)(
a + |b|

)n
aµ

= C
′′

max
r

(
1 + a + |b|

)r
aµ,

where C′′ is a positive constant. Hence we have∣∣∣(Wψαϕ
)
(b, a)

∣∣∣ ≦ C
′′

max
r

(
1 + a + |b|

)r
aµ.

For the distributional fractional wavelet transform given by Eq. (17), we have the following initial-value
theorem.

Theorem 6. Let ϕ̂α ∈ S′ (R) which can be decomposed into

ϕ̂α = ϕ1 + ϕ2,

where ϕ1 is an ordinary function and ϕ2 ∈ Ξ
′

(R \ {0}) is of order k. Also let the real numbers µ and η be such that

1 +
1
α
+ 2k −

k
α
< η < µ + 1 +

1
α
.

Suppose also that
|w|

1
α−ηψ̂α(w) ∈ L1(R)

and
|w|

1
α−1ϕ1(w) ∈ L1(δ,∞) (∀ δ > 0),

and assume that (
Wψαϕ

)
(b, a)

is the distributional wavelet transform of
|w|

1
α−1ϕ̂α,

which is defined by Eq. (17). Then

lim
a→∞

a1−η+ 1
α

(
Wψαϕ

)
(b, a) = F1(α, η) lim

|w|→0
(2πα)−1

|w|−1+ηϕ̂α(w). (31)

Proof. By Theorem 3, we see that(
Wψαϕ2

)
(b, a) =

1
2πα

〈
|w|

1
α−1ϕ2(w), ei(sgn w)|w|

1
α bψ̂α(aw)

〉
is an infinitely differentiable function on R ×R+. Furthermore, by Theorem 4,(

Wψαϕ2

)
(b, a) = O(a2k− k

α ) (a→∞).

Hence there exists a constant C > 0 such that∣∣∣∣a1−η+ 1
α

(
Wψαϕ2

)
(b, a)

∣∣∣∣ ≦ Ca1−η+ 1
α+2k− k

α . (32)
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Since
1 − η +

1
α
+ 2k −

k
α
< 0,

the right-hand side of Eq. (32) tends to 0 as a→∞. Also, since the support of ϕ2 ∈ Ξ
′

(R \ {0}) is a compact
subset of R − {0}, we get

lim
w→0

ei(sgn w)|w|
1
α b
|w|−1+ηϕ2(w) = 0.

The result asserted by Theorem 6 follows by an application of Theorem 1 with ϕ̂α(w) replaced by
ϕ1(w).

The following result is the final-value theorem for the distributional fractional wavelet transform given
by Eq. (17).

Theorem 7. Let
1 +

1
α
< η < µ + 1 +

1
α

(µ > 0).

Assume thet ϕ̂α ∈ S′ (R) can be decomposed into ϕ̂α = ϕ1 + ϕ2, where ϕ1 is an ordinary function satisfying the
following condition:

|w|µ+
1
α−1ϕ1(w) ∈ L1(−X,X) (∀ X > 0)

and ϕ2 ∈ Ξ
′

(R \ {0}). If
(
Wψαϕ

)
(b, a) is the distributional wavelet transform of |w|

1
α−1ϕ̂α defined by Eq. (17), then

lim
a→0

a1−η+ 1
α

(
Wψαϕ

)
(b, a) = F1(α, η)(2πα)−1 lim

w→∞
ei(sgn w)|w|

1
α b
|w|−1+ηϕ̂α(w). (33)

Proof. By Theorem 3 and Theorem 5, we observe that(
Wψαϕ2

)
(b, a) =

1
2πα

〈
|w|

1
α−1ϕ2(w), ei(sgn w)|w|

1
α bψ̂α(aw)

〉
,

is an infinitely differentiable function on R ×R+ and(
Wψαϕ2

)
(b, a) = Caµ(1 + |b|)k as a→ 0,

C being a large constant. Since

1 − η +
1
α
+ µ > 0,

we have

a1−η+ 1
α

∣∣∣(Wψαϕ2

)
(b, a)

∣∣∣ ≦ Ca1−η+ 1
α+µ (1 + |b|)k

→ 0 as a→ 0.

By taking ϕ̂α(w) to be ϕ2(w), the final result follows from Theorem 2.

5. Application

As an application of the theory presented in this article, we consider the fractional wavelet transform
defined by the Mexican hat wavelet function (see, for details, [28]).

The Mexican hat wavelet function ψ(x) is given by

ψ(x) = (1 − x2)e−
1
2 x2
. (34)
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Also, from Example 1.6.4 of [12], the Fourier transform ψ̂(w) of the function ψ(x) in Eq. (34) is given by

ψ̂(w) =
√

2π|w|2e−
|w|2

2 .

Now, by Remark 5 of [7], the fractional Fourier transform of Eq. (34) is given by

ψ̂α(w) = ψ̂(sgn (w)|w|
1
α )

=
√

2π|w|
2
α e−

1
2 |w|

2
α . (35)

Furthermore, the following asymptotic order of ψ̂α(w) holds true:

ψ̂α(w) = O
(
w

2
α

)
(|w| → 0). (36)

Hence, in view of Eq. (8) and Eq. (35), we have the following fractional wavelet transform:

(
Wψαϕ

)
(b, a) =

1
√

2πα

∫
∞

−∞

ei(sgn w)|w|
1
α b
|w|

1
α−1ϕ̂α(w)|aw|

2
α e−

1
2 |aw|

2
α dw. (37)

Thus, from Eq. (10) and Eq. (35), we find the following expression of F1(α, η):

F1(α, η) =
∫
∞

−∞

√

2π|w|
2
α e−

1
2 |w|

2
α
|w|

1
α−η dw

=

∫
∞

−∞

√

2π|w|
3
α−ηe−

1
2 |w|

2
α dw,

which, in view of the following familiar Gamma-function result:∫
∞

0
xµe−λxν dx =

1

νλ
(
µ+1
ν

) Γ
(
µ + 1
ν

) (
ℜ(µ) > −1; min{ℜ(ν),ℜ(λ)} > 0

)
,

can be rewritten as follows:

F1(α, η) = απ
1
2 2

1
2 (4+α−αη)Γ

(
3 − αη + α

2

) (
η <

3
α
+ 1

)
. (38)

Therefore, by a modification of the proof of Theorem 1, for

η <
3
α
+ 1

and
e−

1
2 |w|

2
α
|w|

1
α−1ϕ̂α(w) ∈ L1(δ,∞) (∀ δ > 0),

and, by using Eq. (38), we find that

lim
a→∞

a1−η+ 1
α

(
Wψαϕ

)
(b, a) = π−

1
2 2

1
2 (2+α−αη)Γ

(
3 − αη + α

2

)
lim
|w|→0

|w|−1+ηϕ̂α(w). (39)

Furthermore, by applying Theorem 2, for

η <
3
α
+ 1

and
|w|

3
α−1ϕ̂α(w) ∈ L1(−X,X) (∀ X > 0),
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and, by using Eq. (38), we get

lim
a→0

a1−η+ 1
α

(
Wψαϕ

)
(b, a) = π−

1
2 2

1
2 (2+α−αη)Γ

(
3 − αη + α

2

)
· lim
|w|→∞

ei(sgn w)|w|
1
α b
|w|−1+ηϕ̂α(w). (40)

Finally, upon taking into account the fact that the kernel ψ̂α(w) is exponentially decreasing, the conditions
of validity of the initial-value and final-value results are relaxed in this example. By using Eq. (39) and Eq.
(40), we can obtain the corresponding results derivable from Theorem 6 and Theorem 7, respectively.

6. Conclusion

In several earlier developments (see, for example, [7, 9, 10, 19, 31]), one can find that the fractional
wavelet transform has a rich theory and extensive mathematical background. This theory presents a study
of Abelian theorems in the classical sense as well as in the distributional sense. In our investigation herein,
we have established several Abelian theorems of the fractional wavelet transform. Moreover, with the
help of an example, we have shown that the Mexican hat function is a fractional wavelet function, which
contains adquate time and frequency localizations and justifies Abelian theorems involving the fractional
wavelet transform. Upon a systematic survey of the existing literature on Abelian theorems for many
different integral transforms, we conclude that the Abelian theorems associated with the fractional wavelet
transform provide potentially useful information about the initial and final values of the fractional wavelet
transform which we have investigated herein.

We choose to conclude our investigation by referring to several recent developments on the Fourier,
Hankel and several other integral transforms, function spaces, distributional analysis, wavelet analysis, et
cetera (see, for example, [5], [6], [14], [16], [17], [18], [20], [21], [23], [24], [25], [26], [27], [29], [30] and [32]), in
each of which the reader can find some other presumably novel directions of further researches along the
lines which we have developed in the present article.
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