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Abstract. In the present paper, we consider the nonparametric regression and study the integrated square
error for nonparametric estimate of the unknown function. For the case that the errors of the regression
model are martingale differences, the asymptotic normality and consistency of the integrated square error
are established. These results improve the works in Ioannides [5].

1. Introduction
Consider the nonparametric regression
Yn,i = f(xn,i) + gn,i/ Z = 1/ e ,7’[, (11)

where x,,1,- -+, X, are some fixed points, €,1,--- , €, are observational errors with mean 0 and f is an
unknown function to be estimated. We consider the general linear estimate of the form

£ =) Wai()Ya, x€00,1], (1.2)
i=1

where the weight functions W,,;(x) = W,(x,%,), i = 1,--- ,n, depend on the fixed design points &, =
(xn,ll Tty xn,n)'

Hall [2, 3] studied a very general version of weighted integrated square error (ISE) of nonparametric
estimators f;,,

1 A~
=185 = [ (0 - FPW o,
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where W(x) is a weight function with W(x) > 0 for all x € [0,1]. When f; is a kernel estimator of the
unknown function f, Hall [3] proved the laws of large numbers and central limit theorems of I,,. By using
the martingale theory and the central limit theorem of the degenerate U-statistics with variable kernels, Hall
[2] derived the central limit theorems for ISE of multivariate nonparametric density estimators. Nadaraya
[7] proved the asymptotic normality of the ISE in the random design case, which is used to construct a test
for testing the unknown regression function f. When the estimator f, has the general linear form (1.2) and
the errors €1, - - , €n,n are independent identically distributed random variables, Ioannides [5] obtained the
central limit theorem and law of large numbers for I,. Wu et al. [9] studied the asymptotic properties for
ISE of the general linear estimator in nonparametric regression assuming that the error process is a moving
average process.

In the present paper, along with the works in Ioannides [5], we continue to study the asymptotic
properties of I, under the case that the errors are martingale differences. These results improve the works
in Ioannides [5]. In the next section, the main results, the asymptotic normality and consistency for I, are
stated. The proofs of the main results will be given in Section 3. Throughout this paper, the symbol C
denotes a positive constant which is not necessarily the same one in each appearance. In order to simplify
the notation, write x;, ¢;, Y;, W;, h and k; j, instead of x,,i, €u,i, Yni, Wi, hy and k;,; j, respectively. Without
loss of generality, we assume that the weight function W(x) = 1.

2. Main results
Firstly, we give the following assumptions to be used.

(A) Let{(¢;, Fi); 1 <i<n, n>1}bean array of martingale differences with

sup ||E (l&ilP|Fi-1) llo < 00 a.s. for some 2 <p <4
i

and

E(eflﬁ_l) = a? as. and sup al.2 < 00,
i

where {al.z,i > 1} is a sequence of finite positive constants.
(B) Assume that {h,,n > 1} is a sequence of positive constants, such that 0 < h := h, — 0 and nh32 — oo,
(C) The function f(x) satisfies Lipschitz condition with order 1 on [0, 1].
(D) The weight functions {W;(x), i = 1,--- ,n} satisfy the following conditions, for all n > 1:

(i) There exists a constant C > 0 such that

C
sup max |W;(x)| £ —.
XE[Oﬁ] 1<i<n | l( )l Yl]’l

(ii) There exists a constant C > 0 such that

sup Z [Wi(x)| < C.

x€[0,1] i=1

(i) sup Zw,«(x)—l = O 2.

xe[O,l] i=1

(iv) sup )" IWi)- 1f () = FEOll(i = x| > ™20t = O,

x€[0,1] i=1
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(v) There exists a constant 6> > 0 such that

n 2vi-172 2
Zi:z 0; Zj:l k,',]‘aj 5

— (0%, as n — oo,
Uy
where
1
kij = f Wi(x)Wj(x)dx for i,j=1,---,n
0
and
n i-1
_ 2
=) ) K
i=2 j=1

(vi) Assume that the sequence (u,) satisfies

1

T =o0(l), as n — oo.
n

Remark 2.1. From the conditions D(i) and (ii), it is easy to check that for everyn >1,1<1i,j<mn,

C - - C
ki,j < W and ; |ki,]'| = ; |k1‘,]'| < %

Now we start to state our main results as follows.
Theorem 2.2. Let the assumptions (A)-(D) hold, then

L= Bl 4 N0, 40%).

Uy

Theorem 2.3. Under the assumptions in Theorem 2.2, let {a,, n > 1} be a sequence of positive constants such that
a, = o(nh3?), then we have

an(I, — EL) 5 0.

Theorem 2.4. Under the assumptions in Theorem 2.2, if

1 1
2, w2y Gyt ) <

n>1

then we have
I, — EI, = 0.

Remark 2.5. In [5], loannides studied the asymptotic normality and consistency for I,, when the errors €,1, -+ , €nn
are independent identically distributed random variables with sup, Ele;|* < co. Hence our results extend the works

in loannides [5] from independent case to martingale difference case and weaken the moment condition.

Remark 2.6. The condition D(vi) is weaker than the condition u, > cn=h™* for some constant ¢ > 0, which was
assumed in loannides [5].

Remark 2.7. Theorem 2.3 gives the convergence rate of I, — EI,.
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3. Proofs of main results

In order to obtain the main results, we examine the following quantity,

1 1
I ~El, = fo (00 — F))PW()dx - fo E(f,(x) - FC)dx
1
- fo () — Ef\(0) + Ef\(3) — f(x) P
1 . . 1 R
- f E(fu(x) = Efa(x))*dx — f (Efu(x) — f(x))*dx
0 0
1 . . 1 . .
- f (F1(x) - Ef, (1) dx - f E(f,(x) - Ef,(x)dx
0 0

1
2 fo (00 — EAGNEL () — F()dx

1( n 2 1 n 2
:fo [; Wi(x)si] dx—~f0 E{; Wi(x)gi] dx
1( n
+2 fo [; W,-(x)e,-] (Efu(x) — F(x))dx
n 1
= Z (f Wiz(x)dx) siz + 21<]<l<n (f Wi(x)W; (x)dx) Ei€j
_Z( f W2 x)dx) (Ee?) -2 Z ( f Wi(x)W; (x)dx) (Eeie))

1<j<isn

+22( f Wix)(Efo(x) - f(x))dx) éi
= (f Wz(x)dx)(s —E82)+2 Z (f Wi(x)W; (x)dx)ee]

1<j<ign

+2 Z ( f Wi(x)(E fo(x) — f(x))dx) €

n i-1
:Zk”( — E(e3(Fi1) + E(e2|Fi1) - Ee2) +2 k,]eg]+22de,

i=2 j=1

:Zk'l<g ~ E(eX(Fi0)) +2£Zk,]ee] 2} die

i=2 j=1 i=1

+ Z ki i (E(Sﬂﬁ_l) - EE?)
i-1

=

= Iln + 212n + 21311 + I4n,
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where
n n i-1
Ly = Zki,i (612 - E(f,zlﬁ—ﬂ), Iy = kijeie;,
i=1 =2 j=1 (3.1)
I3, = Z diei, lgy = Z ki (E(e?Iﬁ_l) - Ef?)
i=1 i=1
and
1
k,‘,]' = f W,-(x)Wj(x)dx, for l,] = 1,' -, n,
’ (3.2)
di = f Wi(x)(Efu(x) — f(x))dx, for i=1,---,n.
0
From the condition (A), we have
Ii, =0 as. (3.3)

Now, we need to recall the following central limit theorem of martingale to prove the asymptotic
normality for I, — EI,.

Proposition 3.1. [4, Corollary 3.1] Let {S;, Fin;1 < i < ky,n > 1} be a zero-mean, square integrable martingale
array with difference {X;,; 1 < i < k,,n > 1}. Supposed that the following conditions hold:

(1) The o-fields are nested; that is, Fin € Fis1nfor 1 <i<k,, n>1.
(2) Foralle >0,

n

Y E(X 10Xl > )l i1) = 0

=1

3)
Then we have

Lemma 3.2. [6] Let {(Xi, Fi); 1 < i < n} be a finite sequence of a martingale difference and assume that there exists a
positive constant M such that for all i > 1, E|X;[P < M for some 1 < p < 2. Let x > 0, then we have

1<i<n

]p( 1Si| > )< LEIS |p<b_£iE|X.|P<A_AbP 1-p
max |S;| > nx s bl s oo L =2 e,
1=

where S, = 27:1 X, bp = 18;%]% and q is such that % + % =1

Lemma 3.3. Let {(X;, Fi); 1 < i < n} be a finite sequence of a martingale difference and assume that forall 1 <i <n,
EIXilP < oo for some p > 2. Let x > 0, then we have

i x| < v, [Z E XY
i=1

i1
where b, = 18pq? and q is such that sty =1

p/2
E
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Proof. By the Burkholder’s inequality (cf. Hall and Heyde [4]), we have

n P n p/2
E Z X;| < (18pg"2YE Z X2
i=1 i=1
In addition, by the Minkowski’s inequality, we get
p/2

Z X;
Hence the desired results can be obtained. [

Lemma 3.4. Let the assumptions (A), (B), (D)(i), (D)(ii), (D)(v) and (D)(vi) hold, then we have

2 n
< [ (E1X:P)*P
i=1

\/1%12,1 4 N(0,0?).
Proof. For each 2 <i < n, define
i-1
Zl‘ =& Z ki,ij, (3.4)
j=1

then it is easy to see that Z; is ;-measurable for each i and E(Z;|¥;-1) = 0. Hence {(Z;, Fi);2<i<n, n > 1}
is an array of martingale difference and

n 1 n
\/—271: n;;k]ee, un;zi.

From Proposition 3.1, it is enough to check that for any € > 0,

1 v P
— Y E(Z21(|Zi| > e V)| Fi1) = O 3.5
ung; (22102 > e V)| Fi1) (35)
and
1 v 2 P -
— Y E(ZAFi4) > 0% (3.6)
m iz

For p > 2, from Lemma 3.3, we have

EIZi = [EZKﬁ] |em¢1ﬂ
i-1 i-1 pI2 -1 Y2 G2
<CE Zk,,jej < [Z kﬁj(E|ej|P)2/P] < C[Z kgj] :
=1 j=1 j=1

So, by using Remark 2.1, we get

1 n 1 n i-1 pi2
- 1P - 2

p/2 Z Elzi <C /2 Z Zki,j
Uy =2 Uy =2 =1

n/(nh)*/? . C 9
Ry =
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which implies (3.5). In order to obtain (3.6), since

i=2 j=1
n i—1 i-2 i1
=Y EEAF) ) B +22E(£ Fi) Y Y Kigkisejen
i=2 j=1 j=1 I=j+1
n i-1 n i-2 i-1
_ 2 2 .2 2 e e
= Zal kl.,jg]- +2) o; ki jkije;jer
i=2 j=1 i=2 j=1 I=j+1
=Un +Up a.s.,

it is enough to show

1 1
— U P &% and —Un 5o
Uy Up

For any € > 0, from Lemma 3.2, we have

1 C :
IP(—|U,,1 —EUyl > e) <—FE Zo—f K22 - Zaf K2 Ee?
Uy G2 |4 AVl Ay
n i=2 j=1 =2 j=1
g
-1
C S N 22 o
=—7 o; ki,j(sj —a])
Uy =2 j=1
14
C n i—1 2
_ & 2 2 pe2
e VL MACEECT)
Uy i=2 j=1
P
C n-1( n 2
= —E otk |(e2 - E(e1F 7))
Uy =1 \i=j+1

p/2
E 'g§ - E(g§|¢,«_1)‘

IA IA
|0 |0
N N
g KRN gl
—
1= D=
518 b
—_— :>T\,
N —

3p/2
< n/(nh) < C Lo,
@2yl = 3t
which, together with the condition D(v), implies that

1 P
— U, — o>
n

-1
Ti) = ¢ Zki,jej,
=1

Now for 1 <[ < i< n,define

9397

(3.8)
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then, forevery 1 <i <n, {(Tj;, Fi);2 <1 <n-1, n > 1} is an array of martingale difference, and from Lemma
3.3, we have

-1

EITy =E e,Z ej| = [ka (1|71 1)]

j=1

p/2 -1 p/2
<CE Zkl,é] <C[Zk (E|eif) 2/p] SC[Zk,%j] ,

=1
which, by the Minkowski mequahty and Lemma 3.3, 1mphes

n i-2 i1 P n i-1 -1
EZG?Z kijkiiejer| = Zo Zélkz[Zkljé
=2 =1 =+l 1=2 j=1
noicl i3 AN
=F Z 61-2 kz,lTi,l < Z [ 11T,1
i=2 =2

n i—1 1/2\F
<C (Z(E|k1,T,l|p) ] ]
2 \ =2

n i-1 -1 1/2y? P
<C K, <C——.
[ =2 j=1 ]] (Tlh)?’p

Hence we have

1 n? [(nh)3
- |— 7 =
P E|un2| - 0( 1/n2ph3p - 0(1)/

which implies

1
—Up Do
n
From the above discussions, Lemma 3.4 can be obtained. [
Lemma 3.5. Let the assumptions (A), (B) and (D) hold, then

1

P
I, — 0.
Vi "
If, in addition, the assumption (C) holds, then
1 P
I3n — 0.
Un
Proof. For any € > 0, by using Lemma 3.2, we have
P )-JP( Y kel - E@F )| > un]
E
<— M Zk,l(e ~ E(e2|Fi1))
C v :
<~ . 1 kLE|e? - E(e1Fi)|
n 1=

n ) p-1 1-£
szg B VI

4
”iM =1 W (2RI T b

IA

— 0.
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Next we consider the term I5,,. From the conditions (C), D(ii), D(iii) and D(iv), we have

Y Wi f(xi) - £x)
i=1

) = F@U(xi = x| > n™ 21T

) = f@)U(xi = x| < n™'2R71)

i W,-(x) -1
i=1

=0(n™"?h™).

+ f(%)

Hence, for any € > 0, from Lemma 3.3, we have

1 n
Pl|—|z, > €| =P | >eu
(\/u—n|3n| 6) [1-_1 i n]

n 1 P
EY e [ WER - fds
i=1

C
<L —
2

n

C (v 1 2\P/2
<—7 Z(El&IP)Z/P ([) Wi(x)(E f(x) —f(x))dx) ]

Uy i=1

(fmeMfwﬂTZ
C n p/2
?mZUWWWEMfW%
(

, P2
=% Z f W x)dx)[ {ZW(x)f(x) f(x)] ]]

S% g‘(j: Wf(x)dx)] (%)m

My
)

=o(1).

From the above discussions, the desired results can be obtained. O

Proof. [Proof of Theorem 2.2] From the decomposition I, — EI,, = I1,, + 2Ip, + 213, + I4,, Lemma 3.4, Lemma
3.5 and (3.3), Theorem 2.2 can be proved. [

Proof. [Proof of Theorem 2.3] Let {Z;,2 < i < n} be defined in (3.4). For any € > 0, we have

n 2
P (ayln| > €) <Ca2E [Z zi}

i=2
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n i—

2
1

=CaﬁZE Zki,ij E(¢71Fi1)
1

i=2 j=

2
K= o( O ) = o(h).

n i

<Ca? Z

-1
i=2 j=1

(nh)*

From Lemma 3.5, for any € > 0, we have

n
4 4
]P(anllln| > 6) <Ca;} kizi =0
i=1

((nhs/z)p/2

iy )zo(l)

and

p/2

P (a,|I3,] > €) <Cd, ( f Wf(x)dx) (—2)
- 0 nh

1

=1
a
~0(Grigy) = 0>

From the above discussions, the desired results can be obtained. O

Proof. [Proof of Theorem 2.4] Let {Z;,2 < i < n} be defined in (3.4). For any € > 0, from Lemma 3.3 and
(3.7), we have

n 2 n p/2
P (Ll > €) <CE |} Z| <C|} EIZY"
i=2 i=2
noi-1 Y
C
2
S\ LLE| =y
i=2 j=1

From the proof of Theorem 2.3, we have

C
P (14| > €) < Gyt

and

P (34| > €) < TR

O
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