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Abstract. The method of Lyapunov is one of the most effective methods for the analysis of the partial
stability of dynamical systems. Different authors develop the problem of partial practical stability based on
Lyapunov techniques. In this paper, we investigate the partial practical stability of linear time–invariant
perturbed systems based on the integral inequalities of the Gronwall type, in particular of Gamidov’s type.
We derive some sufficient conditions that guarantee global practical uniform exponential stability with
respect to a part of the variables of linear time–invariant perturbed systems. Also, we have developed
the local partial practical stability of nonlinear systems. Further, we provide two examples to support our
findings.

1. Introduction

In 1892, Lyapunov, a Russian mathematician, mechanician and physicist, proposed the concept of the
stability of motion. He provided general research methods in his doctoral dissertation [10] “The general
problem of the stability of motion”, in which he set the basis for the theory of stability.

In the study of nonlinear systems, in particular the study of dynamical systems, it is not possible to
study the stability of all variables due to technological difficulties, the limitation of practical conditions, or
it is not necessary to study all variables considering the actual need. In consequence, the study of the partial
stability of differential equations becomes more important. As well, partial stability is used extensively
in science and technology. For instance the absolute stability of famous Lurie adjusting systems can be
changed into a problem of partial stability. In a word, it is of practical significance to study the partial
stability of differential equations.

A. M. Lyapunov [11], the founder of the modern theory of stability, was the first who formulated the
question of partial stability. Later work by V. V. Rumyantsev [12] attracted the attention of numerous
mathematicians in the world to this issue.
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Lyapunov functions are used to prove the partial stability criteria of differential systems. A function is
called a Lyapunov candidate function if it has the possibility to prove the stability of the differential system
as an equilibrium, with the development of Lyapunov’s first and second methods, more and more work
is based on Lyapunov methods to study the stability with respect to a part of the variables of differential
systems, see [13–15].

When origin is not a trivial solution, we can investigate the asymptotic stability of the solution to a small
neighborhood of origin. The objective is to analyze the asymptotic stability of a system whose solution
behavior is a small ball of state space or close to it. It is guaranteed that all state trajectories are bounded and
close to a sufficiently small neighborhood of the origin. In this sense, the limit boundedness of solutions of
systems, or the possibility of convergence of solutions often need to be analyzed on a ball centered on the
origin, which is called “Practical Stability”.

In particular, partial practical stability of differential equations is well developed in [2–4].
Recently, in [8], Ezzine et al. was the first who introduced and developed the concept of partial practical

stability of differential equations via Lyapunov techniques.
Nevertheless, constructing an appropriate Lyapunov function is still a challenging task. The novelty

of what we do is the development of the problem of partial practical stability of perturbed systems based
on the explicit solution formed through integral inequalities of the Gronwall type, in particular Gamidov’s
inequality.

The present article provides a new class of integral inequalities of Gamidov’s type stated by Ben Maklouf
et al. in [1]. Then as an application, the linear time–invariant perturbed systems is considered, and the
partial practical stability criteria is obtained.

The purpose of this paper is to state partial practical stability theorems for linear time–invariant per-
turbed systems. The authors use the method of integral inequality to establish a stability criterion. Also,
the local partial practical stability of nonlinear systems.

The main structure of this paper is as follows: In Section 1, we introduce some needed preliminaries
and definitions related to the partial stability. In Section 2, we present partial practical stability theorems
for linear time–invariant perturbed systems by using the method of integral inequalities. In Section 3, the
problem of local partial practical stability of nonlinear systems is discussed. As a concluding point, two
examples are provided to illustrate the theoretical outcomes.

2. Preliminaries

We consider the following linear time–invariant system:

ẋ(t) = Ax(t), (1)

where

A =

(
A1 0
0 A2

)
, x := (x1, x2) ∈ Rn1 × Rn2 , n1 > 0, n2 ≥ 0, n1 + n2 = n.

• A1 is a constant n1 × n1 matrix.

• A2 is a constant n2 × n2 matrix.

The linear time–invariant system (1) might be expressed as the following:
ẋ1(t) = A1x1(t)

ẋ2(t) = A2x2(t),
(2)

with initial condition x0 := (x10 , x20 ) ∈ Rn1 × Rn2 .
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Definition 2.1. [8] The equilibrium point x = 0 of linear time–invariant system (2) is said to be globally uniformly
exponentially stable with respect to x1, if there exists a pair of positive constants ζ1 and ζ2 such that for all x0 ∈ Rn,
the following inequality is:

||x1(t)|| ≤ ζ1||x0||e−ζ2t, ∀t ≥ 0.

Assume that some parameters are excited or perturbed, and the perturbed system has the following
form:

ẋ1(t) = A1(t)x1(t) +G(t, x1(t), x2(t))

ẋ2(t) = A2x2(t),
(3)

with the same initial conditions and G : R+ × Rn1 × Rn2 −→ Rn1 is a continuous function in (t, x1, x2), locally
Lipschitz in x, uniformly in t.

We denote by x(t, t0, x0) := (x1(t, t0, x0), x2(t, t0, x0)) the solutions of the perturbed system (3) with initial
condition x(t0) := x0 := (x10 , x20 ).

Assume that there exists t such that G(t, 0, 0) , 0, i.e., the perturbed system (3) does not have the trivial
solution x ≡ 0.

The study of the stability with respect to a part of the variables of the solutions of the perturbed system
(3) leads back to the study of the stability with respect to a part of variables of a ball centered at the origin:

Br := {x ∈ Rn : ||x|| ≤ r} , r > 0.

Definition 2.2. [8]

i) The ballBr is said to be globally uniformly exponentially stable with respect to x1, if there exists a pair of positive
constants k1 and k2 such that for all x0 ∈ Rn, the following inequality is:

||x1(t)|| ≤ k1||x0||e−k2t + r, ∀t ≥ 0. (4)

ii) The perturbed system (3) is said to be globally practically uniformly exponentially stable with respect to x1, if
there exists r > 0 such that Br is globally uniformly exponentially stable with respect to x1.

Remark 2.3. Eq. (4) implies that x1(t) will be bounded by a small bound r > 0, that is ||x1(t)|| will be small for
sufficiently large t. It means that the solution given in (4) will be uniformly ultimately bounded for sufficiently large
t. This means that solution given in (4) will be uniformly ultimately bounded for sufficiently large t. The factor k2 in
Eq. (4) is called the convergence speed, whereas the factor k1 is called the transient estimate.

It is also worth noticing that in the previous definition if we take r = 0, then we recover the standard concept of the
global uniform exponential stability with respect to a part of the variables of the origin considered as an equilibrium
point.

3. Global partial practical exponential stability

Our objective now is to state sufficient conditions to provide the global practical uniform exponential
stability with respect to a part of the variables of the linear time–invariant perturbed system (3). In fact if
we suppose that the perturbation term is bounded, then the origin is not necessarily an equilibrium point.
For that reason, we will analyze the convergence of the solutions toward a neighborhood of origin.
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Remark 3.1. Different authors are well developed the problem of practical stability with respect to a part of the
variables of differential equations via Lyapunov functions, see [6–8]. The construction of an appropriate Lyapunov
functions is not always possible, which motivates us to look for another method. Our approach in this paper is to
analyze the partial stability by using the explicit solution form and it is based on integral inequalities in particular of
Gamidov’s type.

We suppose that the nominal system is globally uniformly exponentially stable with respect to x1. A
basic result in systems theory is that

σ(A1) ⊂ C−,

where σ(A1) denotes the set of eigenvalues of a the matrixA1. Under the condition, we obtainReλ(A1) < 0,
where Reλ(A1) denotes the real parts of the eigenvalues of matrixA1.

First, we suppose the following assumption required for the stability purposes.

(H1) Assume that Reλ(A1) < 0. Note that the assumption (H1) implies that

||etA1 || ≤ αe−βt, ∀t ≥ 0,

for a certain α > 0 and
β ≤ min

1≤i≤η
|Reλi(A1)|.

(H2) There exists a continuous non–negative known function φ(t) such that

||G(t, x1, x2)|| ≤ φ(t), ∀x = (x1, x2) ∈ Rn1 ×Rn2 , ∀t ≥ 0.

(H3) The non–negative continuous function φ(t) is such that

lim
t→∞

φ(t) = 0.

Theorem 3.2. Under assumptions (H1), (H2) and (H3) the linear time–invariant perturbed system (3) is globally
practically uniformly exponentially stable with respect to x1.

Proof. The solution of the sub–system x1 with initial condition x10 of the linear time–invariant perturbed
system (3) is expressed as follows:

x1(t) = etA1 x10 +

∫ t

0
e(t−s)A1G(s, x1(s), x2(s))ds, ∀t ≥ 0.

Thus, we obtain

||x1(t)|| = ||etA1 || ||x10 || +

∫ t

0
||e(t−s)A1 || ||G(s, x1(s), x2)||ds, ∀t ≥ 0.

Based on assumption (H1), one obtains

||x1(t)|| ≤ αe−βt
||x10 || +

∫ t

0
αe−β(t−s)

||G(s, x1(s), x2(s))||ds

≤ αe−βt
||x10 || +

∫ t

0
αe−β(t−s)

||G(s, x1(s), x2(s))||ds.
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The assumption (H2), yields

||x1(t)|| ≤ αe−βt
||x10 || +

∫ t

0
αe−β(t−s)φ(s)ds

≤ αe−βt
||x10 || + αe−βt

∫ t

0
eβsφ(s)ds.

Assumption (H3) yields that there exists φ̃ > 0 such that

φ(t) ≤ φ̃, ∀t ≥ 0.

Thus, it yields that

||x1(t)|| ≤ αe−βt
||x10 || + αφ̃e−βt

∫ t

0
eβsds

≤ αe−βt
||x10 || +

αφ̃

β
.

That is, we see

||x1(t)|| ≤ αe−βt
||x10 || +

αφ̃

β
, ∀t ≥ 0.

As a consequence, the linear time–invariant perturbed system (3) is practically uniformly exponentially
stable with respect to x1. □

A simple extension can be made if we replace the hypothesis (H3) with the following:

(H ′3) The continuous non–negative function φ(t) satisfies∫
∞

0
φ(t) < ∞,

or
φ(t) ≤ φ < ∞, ∀t ≥ 0.

Theorem 3.3. Under assumptions (H1), (H2) and (H ′3) the linear time–invariant perturbed system (3) is globally
practically uniformly exponentially stable with respect to x1.

Proof. The solution of the sub–system x1 with initial condition x10 of the perturbed system (3) is the
following:

x1(t) = etA1 x10 +

∫ t

0
e(t−s)A1G(s, x1(s), x2(s))ds, ∀t ≥ 0.

Based on assumption (H1), it yields that

||x1(t)|| ≤ αe−βt
||x10 || +

∫ t

0
αe−β(t−s)

||G(s, x1(s), x2(s))||ds.



F. Ezzine et al. / Filomat 37:27 (2023), 9339–9356 9344

Using (H2), we obtain that

||x1(t)|| ≤ αe−βt
||x10 || +

∫ t

0
αe−β(t−s)φ(s)ds

≤ αe−βt
||x10 || + αe−βt

∫ t

0
eβsφ(s)ds.

Indeed, since the non–negative continuous function φ(t) satisfies assumption (H ′3), there exists κ > 0 such
that

e−βt
∫ t

0
eβsφ(s)ds ≤ κ, ∀t ≥ 0,

where κ = min
(
φ

β
, ||φ||1

)
, thus one gets

||x1(t)|| ≤ αe−βt
||x10 || + ακ, ∀t ≥ 0.

As a result, we arrive at

||x1(t)|| ≤ αe−βt
||x0|| + ακ, ∀t ≥ 0.

Hence, the linear time–invariant perturbed system is globally practically uniformly exponentially stable
with respect to x1. □

In the sequel our objective is to prove the practical uniform exponential stability with respect to a part of
the variables of the linear time–invariant perturbed system (3) by using the generalized integral inequality
of the Gamidov type.

In [9], Gamidov has demonstrated the following generalized integral inequality:

Lemma 3.4. [9] Assume that

U(t) ≤ ϕ(t) + ν
∫ t

0
ξ(s)Ud(s)ds,

where all functions are continuous and non–negative on [0, b), 0 < d < 1, and b, ν > 0. Then there exists a constant
ρ > 0 such that

U(t) ≤ ϕ(t) + νρd
(∫ t

0
ξ

1
1−d (s)ds

)1−d

.

Later on Abdellatif et al. [1] improved the previous lemma for b = ∞.

Lemma 3.5. [1] Assume that

U(t) ≤ ϕ(t) + ν
∫ t

0
ξ(s)Ud(s)ds,

where all functions are continuous and non–negative on [0,∞), 0 < d < 1, and ν > 0.
Then there exists a continuous non–negative function ρ > 0 such that

U(t) ≤ ϕ(t) + νρd(t)
(∫ t

0
ξ

1
1−d (s)ds

)1−d

.
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In particular for ξ(t) = e(1−d)βt and ϕ(t) ≤ m, they have established the next lemma.

Lemma 3.6. [1] Assume that

U(t) ≤ m + ν
∫ t

0
e(1−d)βs

U
d(s)ds,

whereU is continuous and non–negative on [0,∞), 0 < d < 1, and m, ν > 0.
Then

U(t) ≤ 2
d

1−d m +
(

2dν
β

) 1
1−d

eβt.

A simple extension may be made if we replace (H2) with the following hypothesis about the perturbed
term.

(H ′2) There exists two continuous positive functions Γ1(t) and Γ2(t) such that

||G(t, x1, x2)|| ≤ Γ1(t)||x1||
d + Γ2(t), 0 < d < 1, ∀x = (x1, x2) ∈ Rn1 × Rn2 , ∀t ≥ 0,

where the function Γ1(·) satisfies
Γ1(t) ≤ Γ̃1, ∀t ≥ 0,

and the function Γ2(·) satisfies ∫
∞

0
eβsΓ2(s)ds = Γ̃2 < ∞.

Theorem 3.7. Suppose that assumptions (H1) and (H ′2) are satisfied, then the linear time–invariant perturbed
system (3) is globally practically uniformly exponentially stable with respect to x1.

Proof. The solution of the sub–system x1 with initial condition x10 of the perturbed system (3) is the
following:

x1(t) = etA1 x10 +

∫ t

0
e(t−s)A1G(s, x1(s), x2(s))ds, ∀t ≥ 0.

Based on assumption (H1), it yields that

||x1(t)|| ≤ αe−βt
||x10 || +

∫ t

0
αe−β(t−s)

||G(s, x1(s), x2(s))||ds.

By assumption (H ′2) we obtain that

||x1(t)|| ≤ αe−βt
||x10 || + αe−βt

∫ t

0
eβs

(
Γ1(s)||x1(s)||d + Γ2(s)

)
ds

≤ αe−βt
||x10 || + αe−βt

∫ t

0

(̃
Γ1eβs

||x1(s)||d + eβsΓ2(s)
)

ds.

Multiply each side with eβt, one obtains

eβt
||x1(t)|| ≤ α||x10 || + αΓ̃1

∫ t

0
eβs
||x1(s)||dds + α

∫ t

0
eβsΓ2(s)ds.
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Let set the functionU(t) by eβt
||x1(t)||, we get

U(t) ≤ α||x10 || + αΓ̃1

∫ t

0
e(1−d)βs

U
d(s)ds + α

∫ t

0
eβsΓ2(s)ds.

Since
∫
∞

0
eβsΓ2(s)ds = Γ̃2 < ∞, we have

U(t) ≤ α||x10 || + αΓ̃1

∫ t

0
e(1−d)βs

U
d(s)ds + αΓ̃2.

Accordingly,

U(t) ≤ m̄ + ν
∫ t

0
e(1−d)βs

U
d(s)ds,

where m = α||x10 || + αΓ̃2, and ν = αΓ̃1.

From the Gamidov inequality (Lemma 3.6), it yields that

U(t) ≤ 2
d

1−d m +
(

2dν
β

) 1
1−d

eβt.

We can see that

eβt
||x1(t)|| ≤ 2

d
1−d m +

(
2dν
β

) 1
1−d

eβt.

Then we obtain

||x1(t)|| ≤ 2
d

1−dα||x0||e−βt + 2
d

1−dαΓ̃2 +

2dαΓ̃1

β


1

1−d

, ∀x = (x1, x2) ∈ Rn1 ×Rn2 , ∀t ≥ 0,

thus the linear time–invariant perturbed system (3) is globally practically uniformly exponentially stable
with respect to x1. □

Lastly, for the standard case, we assume that the perturbed term G(t, x) meets the following hypothesis.

(A2) There exists a continuous non–negative known function ψ(t) such that

||G(t, x1, x2)|| ≤ ψ(t)||x1||, ∀x = (x1, x2) ∈ Rn1 × Rn2 , ∀t ≥ 0,

where ψ(t) is bounded and satisfies

sup
t≥0

ψ(t) ≤ Θβ, 0 < Θ <
1
α
.

Theorem 3.8. Suppose that assumptions (H1) and (A2) are satisfied, then the linear time–invariant perturbed sys-
tem (3) is globally uniformly exponentially stable with respect to x1.
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Proof. Similar to the previous theorem, we have

x1(t) = etA1 x10 +

∫ t

0
e(t−s)A1G(s, x1(s), x2(s))ds, ∀t ≥ 0.

Combining (H1) and (A1), one obtains

||x1(t)|| ≤ αe−βt
||x10 || +

∫ t

0
αe−β(t−s)

||G(s, x1(s), x2(s))||ds

≤ αe−βt
||x10 || +

∫ t

0
αe−β(t−s)ψ(s)||x1(s)||ds.

Multiplying both sides by eβt, one gets

||x1(t)||eβt
≤ α||x10 || +

∫ t

0
αeβsψ(s)||x1(s)||ds.

We suppose that η(t) = ||x1(t)||eβt, one gets

η(t) ≤ α||x10 || + α

∫ t

0
ψ(s)η(s)ds.

Applying Gronwall’s lemma [5], we get

η(t) ≤ α||x10 ||e
α
∫ t

0 ψ(s)ds
≤ α||x10 || exp(αΘβt).

Thus, we deduce that

||x1(t)|| ≤ α||x0|| exp
(
−β(1 − αΘ)t

)
, ∀x = (x1, x2) ∈ Rn1 × Rn2 , ∀t ≥ 0.

Hence the linear time–invariant perturbed system (3) is globally uniformly exponentially stable with respect
to x1. □

In the sequel we will consider the following linear time–invariant perturbed system associated to the
system (3):

ẋ1(t) = A1(t)x1(t) +G(t, x1(t), x2(t)) + λ(t, x1(t), x2(t))

ẋ2(t) = A2x2(t),
(5)

where λ : R+ × Rn1 × Rn2 → Rn1 is a continuous function in (t, x1, x2), Lipschitz in x, uniformly in t.

(A3) There exists a non–negative constant Λ such that

||λ(t, x1, x2)|| ≤ Λ||x1(t)||, ∀x = (x1, x2) ∈ Rn1 × Rn2 .

Theorem 3.9. Suppose that assumptions (H1), (H ′2) and (A3) are satisfied, then the linear time–invariant perturbed
system (5) is globally practically uniformly exponentially stable with respect to x1.
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To prove the previous theorem, we need to recall a generalized integral inequality of the Gamidov type,
proved in [1].

Lemma 3.10. [1] Assume that

U(t) ≤ m +
∫ t

0

(
νe(1−d)βs

U
d(s) + ιU(s)

)
ds,

whereU is continuous and non–negative on [0,∞), 0 < d < 1, and m, ν > 0, and β, ι such that 0 ≤ ι < β.

Then

U(t) ≤ 2
d

1−d meιt +
(

2dν
β − ν

) 1
1−d

eβt.

Proof of Theorem 3.9. The solution of the sub–system x1 with initial condition x10 of the perturbed system
(5) has the following form:

x1(t) = etA1 x10 +

∫ t

0
e(t−s)A1 (G(s, x1(s), x2(s)) + λ(s, x1(s), x2(s))) ds, ∀t ≥ 0.

Since the unperturbed nominal system is globally uniformly exponentially stable, one obtains

||x1(t)|| ≤ αe−βt
||x10 || +

∫ t

0
αe−β(t−s)

||G(s, x1(s), x2(s)) + λ(s, x1(s), x2(s))||ds.

Based on assumption (A3), for Λ =
Θβ

α
, 0 < Θ < 1, it follows that

||λ(t, x1, x2)|| ≤
Θβ

α
||x1(t)||, ∀x = (x1, x2) ∈ Rn1 × Rn2 , ∀t ≥ 0. (6)

Applying assumption (H ′2) and Eq. (12), we see that

||x1(t)|| ≤ αe−βt
||x10 || + αe−βt

∫ t

0
eβs

(
Γ1(s)||x1(s)||d +

Θβ

α
||x1(s)|| + Γ2(s)

)
ds.

Multiply each side with eβt, yields

||x1(t)||eβt
≤ α||x10 || + α

∫ t

0
eβs

(
Γ1(s)||x1(s)||d +

Θβ

α
||x1(s)||

)
ds + α

∫ t

0
eβsΓ2(s)ds.

LetU(t) = eβt
||x1(t)||, and with the assumption (H ′2), we arrive at

U(t) ≤ α||x10 || +

∫ t

0

(
e(1−d)βsαΓ̃1U

d(s) + ΘβU(s)
)

ds + α
∫
∞

0
eβsΓ2(s)ds

≤ α||x10 || +

∫ t

0

(
e(1−d)βsαΓ̃1U

d(s) + ΘβU(s)
)

ds + αΓ̃2.

Thus,

U(t) ≤ m +
∫ t

0

(
νe(1−d)βs

U
d(s) + ιU(s)

)
ds,
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where m = α||x10 || + αΓ̃2, ν = αΓ̃1, and ι = Θβ.

By applying the Gamidov lemma 3.10, one gets

U(t) ≤ 2
d

1−d meιt +
(

2dν
β − ι

) 1
1−d

eβt.

As a result, we have

eβt
||x1(t)|| ≤ 2

d
1−d meιt +

(
2dν
β − ι

) 1
1−d

eβt.

That is,

||x1(t)|| ≤ 2
d

1−dα||x0||e−(1−Θ)βt +

 2dαΓ̃1

(1 −Θ)β


1

1−d

+ 2
d

1−dαΓ̃2, ∀x = (x1, x2) ∈ Rn1 × Rn2 , ∀t ≥ 0.

Consequently the perturbed system (5) is globally practically uniformly exponentially stable with respect
to x1. □

Example 3.11. Let us consider the following system:


ẋ1(t) = A1x1(t) +G(t, x1(t), x2(t)

ẋ2(t) = A2x2(t),
(7)

where x = (x1, x2) ∈ R4, x1 = (z1, z2) ∈ R2, x2 = (z3, z4) ∈ R2.

A1 =

(
−2 0
−2 −2

)
, A2 =

(
0 −1
1 0

)
, G(t, x1, x2) =


√
|x1|

1 + t2 cos2(z3) + e−ϑt

0

 , ϑ > 2,

with initial condition x0 = (x10 , x20 ), x10 = (z10 , z20 ), and x20 = (z30 , z40 ).

Notice that, with the perturbed term G, the fact that the function
√
|x1| is not Lipschitzian around zero is not

problematic for the uniqueness of the solutions because the concept of practical stability is based on the convergence of
solutions towards a neighborhood of the origin.

The solution of the sub–system with respect to the variable x2 of the perturbed system (7), is provided by the next:

x2(t) =
(

z30(t,w) cos(t) − z40(t,w) sin(t)
z30(t,w) sin(t) + z40(t,w) cos(t)

)
.

That is,
∥x2(t)∥ = ∥x20∥

. Hence, for all t ≥ 0, and all x20 ∈ R2 with ||x20 || ≤ m′, one obtains||x2(t)|| ≤ m′. Thus, the state x2(t) is globally
uniformly bounded as can seen from the Figure. 1.
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Figure 1: Time evolution of the states z3(t) and z4(t) of the system (7)

The system (7) can be considered as a perturbed system of the following linear time–invariant system:
ẋ1(t) = A1x1(t)

ẋ2(t) = A2x2(t),
(8)

The nominal system is globally uniformly exponentially with respect to x1, since the sub–system ẋ1(t) = A1x1(t)
satisfies Reλ(A1) < 0. Figure 2 shows the trajectories of the sub–system x1 of the linear time–invariant system (8).

Otherwise, we have

||G(t, x1, x2)|| ≤
√
|x1|

1 + t2 + e−ϑt.

Consequently assumption (H ′2) is satisfied with Γ1(t) =
1

1 + t2 , Γ2(t) = e−ϑt.

Applying Theorem 3.8 we deduce that the linear time–invariant perturbed system (7) is globally practically
uniformly exponentially stable with respect to x1. For visual simulation, we select ϑ = 3. Figure 3 shows the
trajectories of the sub–system x1 of the perturbed system (7).

Remark 3.12. We remark that we cannot prove the global practical uniform exponential stability in the standard
sense, i.e., with respect to all the variables, since the sub–system with respect to the variable x2 is globally uniformly
bounded.

Remark 3.13. Note that we cannot prove the practical uniform exponential stability for the previous example with
respect to all the variables, since the solutions of the sub–system with respect to the variables y3 and y4 are periodic,
which implies that are globally uniformly bounded.
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Figure 2: Time evolution of the states z1(t) and z2(t) of the nominal system (8)

Figure 3: Time evolution of the states z1(t) and z2(t) of the perturbed system (7)

4. Local partial practical stability of nonlinear system

We consider the following nonlinear system:
ẋ1(t) = F1(x1(t))

ẋ2(t) = F2(x2(t)),
(9)
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where x = (x1, x2) ∈ Rn1 × Rn2 is the state vector, F1, F2 are two smooth functions defined respectively on
Rn1 , Rn2 , with F1(0) = 0, F2(0) = 0.

We may use a linear approximation to explore the partial stability problem for such systems, since F1
and F2 are smooth functions, locally on a certain neighborhood of the origin V(0), thus we may write F1
and F2 as follows:

F1(x1(t)) = Ã1x1(t) + φ1(x1(t)),

and
F2(x2(t)) = Ã2x2(t) + φ2(x2(t)),

where Ã1 =
∂F1(0)
∂x1

, Ã2 =
∂F2(0)
∂x2

, with lim
x1→0

||φ1(x1)||
||x1||

= 0, and lim
x2→0

||φ2(x2)||
||x2||

= 0.

Next we prove the local partial uniform exponential stability with respect to a small ball for nonlinear
system. We will investigate the asymptotic behavior of the solutions with respect to a part of the variables
in the sense that the trajectories converge to a small ball centered at the originB(0, r), r > 0 small enough in
such away B(0, r) ⊂ B(0, τ) and for all solutions starting from B(0, τ) \ B(0, r), will approach partially expo-
nentially to B(0, r) for t large enough. We consider the nonlinear system in the presence of the perturbation
term G(t, x).

Theorem 4.1. Suppose that (H1) and (H ′2) are satisfied, then there exists r > 0 such that Br is partially uniformly
exponentially stable with respect to system:

ẋ1(t) = F1(x1(t)) +G(t, x1(t), x2(t))

ẋ2(t) = F2(x2(t)).
(10)

Proof. The perturbed system (10) may be expressed as the following for all x ∈ V(0):
ẋ1(t) = Ã1x1(t) + φ1(x1(t)) +G(t, x1(t), x2(t))

ẋ2(t) = Ã2x2(t) + φ2(x2(t)).

The solution of the sub–system x1 with initial condition x10 of the above system is given by the following:

x1(t) = etÃ1 x10 +

∫ t

0
e(t−s)Ã1

(
G(s, x1(s), x2(s)) + φ1(x1(s))

)
ds, ∀t ≥ 0.

Similar to the the proof of Theorem (3.7) and based on assumption (H1), one obtains

||x1(t)|| ≤ αe−βt
||x10 || +

∫ t

0
αe−β(t−s)

||G(s, x1(s), x2(s)) + φ1(x1(s))||ds.

Since,

lim
x1→0

||φ1(x1)||
||x1||

= 0,
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then for a given constant l > 0, there exists l0 > 0, such that ∀x ∈ B(0, l0) ⊂ B(0, l), for all t ≥ 0, we obtain

||φ1(x1)|| ≤ l||x1||.

For l =
Θβ

α
, it follows that

||φ1(x1)|| ≤
Θβ

α
, 0 < Θ < 1.

By AssumptionH ′2, it follows immediately that

||x1(t)|| ≤ αe−βt
||x10 || +

∫ t

0
αe−β(t−s)

(
Γ1||x1(s)||d + Γ2(s) +

Θβ

α
||x1(s)||

)
ds.

Multiplying both sides by eβt, one see

eβt
||x1(t)|| ≤ α||x10 || +

∫ t

0
αeβs

(
Γ1(s)||x1(s)||d +

Θβ

α
||x1(s)||

)
ds + α

∫ t

0
eβsΓ2(s)ds.

LetU(t) = eβt
||x1(t)||, then we obtain

U(t) ≤ α||x10 || +

∫ t

0

(
αe(1−d)βsΓ1(s)Ud(s) + ΘβU(s)

)
ds + α

∫
∞

0
eβsΓ2(s)ds.

By assumption (H ′2), we find that

U(t) ≤ α||x10 || +

∫ t

0

(
e(1−d)βsαΓ̃1U

d(s) + ΘβU(s)
)

ds + αΓ̃2. (11)

Thus, one obtains

U(t) ≤ m +
∫ t

0

(
νe(1−d)βs

U
d(s) + ιU(s)

)
ds,

where m = α||x10 || + αΓ̃2, ν = αΓ̃1, and ι = Θβ.

Using the Gamidov lemma 3.10, it follows from Eq. (11) that

U(t) ≤ 2
d

1−d meιt +
(

2dν
β − ι

) 1
1−d

eβt.

As a result, we have

eβt
||x1(t)|| ≤ 2

d
1−d meιt +

(
2dν
β − ι

) 1
1−d

eβt.

That is,

||x1(t)|| ≤ 2
d

1−dα||x0||e−(1−Θ)βt +

 2dαΓ̃1

(1 −Θ)β


1

1−d

+ 2
d

1−dαΓ̃2, ∀x = (x1, x2) ∈ Rn1 × Rn2 , ∀t ≥ 0.

As a result the ball Br with r =

 2dαΓ̃1

(1 −Θ)β


1

1−d

+ 2
d

1−dαΓ̃2 is uniformly exponentially stable with respect to the

nonlinear system (10) with respect to x1. □
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Example 4.2. We consider the following nonlinear system:
ẋ1(t) = F1(x1(t)) +G(t, x1(t), x2(t))

ẋ2(t) = F2(x2(t)),
(12)

where x = (x1, x2) ∈ R4, x1 = (z1, z2) ∈ R2, x2 = (z3, z4) ∈ R2,

F1(x1) =


z1 cos(z1) − 2 sin(z1)

−z1 − sin(z2) cos(z2)
, F2(x2) =


cos(z4)

− cos(z3)
, G(t, x) =


η
√
|y1| + e−2t, η > 0

0.

with initial condition x0 = (x10 , x20 ), x10 = (z10 , z20 ), and x20 = (z30 , z40 ).

The state x2 of the system (12) is globally uniformly bounded as we have already explained in example 3.11, the
nonlinear system (12) can be regarded as a perturbed system of the following form:

ẋ1(t) = F1(x1(t))

ẋ2(t) = F2(x2(t)).
(13)

The linear approximation for the associated unperturbed system is the following:
ẋ1(t) = Ã1x1(t)

ẋ2(t) = Ã2x2(t),

(14)

where

Ã1 =

(
−1 0
−1 −1

)
, Ã2 =

(
0 −1
1 0

)
.

Notice that, the previous approximation can be done in a small neighborhood of the origin, i.e., there exists τ > 0, such
that for all x ∈ B(0, τ) the passage from nonlinear system to linear system is possible. The point is to find a constant
r > 0 small enough in such away B(0, r) ⊂ B(0, τ) and all solutions starting from B(0, τ) \ B(0, r), will approach
partially exponentially to B(0, r) for t large enough.

Indeed, sinceReλ(Ã1) < 0, then the unperturbed nominal linear time–invariant system (14) is globally uniformly
exponentially with respect to x1, as appears from Figure 5.
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Figure 4: Time evolution of the states z1(t) and z2(t) of the unperturbed nominal linear system (14)

In addition, we have

||G(t, x)||2 = η
√
|x1| + e−2t.

where Γ1(t) = η and Γ2(t) = e−2t, which satisfy both conditions of assumption (H ′2).
Hence by applying Theorem 4.1, the nonlinear system is practically uniformly exponentially stable with respect

to x1, as can be seen in Figure 5, for η = 3.

Figure 5: Time evolution of the states z1(t) and z2(t) of the nonlinear system (12)
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5. Conclusion

In this article, we use the method of integral inequalities to establish partial practical stability criteria for
certain classes of linear time–invariant perturbed systems. The proof procedure is explained in details by
using integral inequalities of the Gronwall type, in particular of Gamidov’s type. At the same time, we also
develop the problem of local partial stability of nonlinear systems. We also give two examples to illustrate
our theoretical results.
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