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Generalized solutions for time y-fractional heat equation

Abdelmjid Benmerrous?, Lalla saadia Chadli?, Abdelaziz Moujahid?, M’hamed Elomari?®, Said
Melliani?

?Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, PO Box 532, Beni Mellal, 23000,
Morocco

Abstract. This paper focuses on the time fractional heat problem with the use of a new fractional
derivative. Using Banach'’s fixed point theorem and Laplace transforms, we give and prove the integral
solution of the problem. In Colombeau’s algebra, The existence and uniqueness of the solution are
demonstrated using the Gronwall lemma.

1. Introduction

The study on Convolution-type derivatives has evolved a focus area of research for the reason that
some dynamical models could be better precisely described with fractional derivatives compared to
those that have integer-order derivatives [4].

In recent years many researchers have focused on the study of phenomena whose modeling is given
by differential equations with a singularity [3, 5, 8], to do this, it is necessary to define the multiplication
of two distributions in a manner that is consistent with the standard multiplication, the thing that led us
automatically to do the study in Colombeau’s algebra. This algebra which is commutative, associative,
differential in which we can imbed the space of distributions so that the product of the infinitely differ-
entiable functions and the regular derivative are respected [6, 11].

In the last twenty years or more, mathematicians have become increasingly interested in Heat equa-
tions, particularly because of their applicability to optics. In fact, certain Heat equations result from
reduced forms or limits of Zakharov’s system. In particular, the Hartree-Fock theory and quantum field
theory both involve Heat equations. Heat equations, which combine the characteristics of parabolic and
hyperbolic equations [8], seem to be a tricky subject from a mathematical perspective. In fact, it possesses
essentially reversible behavior, conservation laws, and certain dispersive characteristics similar to those
of the Kelin-Gordon equation, but it propagates at an unlimited speed. The time-reversibility, on the
other hand, inhibits the generation of an analytic semigroup by Heat equations, despite the fact that they
share a smoothing effect with parabolic issues. for more details, one can see the papers[1,2,5,12,16]. On
the other hand, the first definition of the fractional derivative was introduced at the end of the nineteenth
century by Liouville and Riemann, but the concept of non-integer derivative and integral, as a general-
ization of the traditional integer order differential and integral calculus was mentioned already in 1695
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by Leibniz and L'Hospital. Recently, fractional differential equations have been proved to be valuable
tools in the modeling of many phenomena in various fields of engineering, physics and economics.
It draws a great application in nonlinear oscillations of earthquakes, many physical phenomena such
as seepage flow in porous media and in fluid dynamic traffic models. Actually, fractional differential
equations are considered as an alternative model to integer differential equations.

In this paper we characterize a new method for solving the fractional Heat problem with initial data
and potential are singular (singular distribution) as we can see in the following

{ Dyx(y, 1) - Ax(y, B) + o(y)x(y, ) = 0, t€[0,T] (L.1)

x(y, 0) = ao(y)

Where gy is singular generalized functions and 1Dy, is p—Caputo derivativeof order o, o €Jn—-1;n] n e IN.

The study is structured as follows: in section 2 we mention some concepts of Colombeau’s algebra,
in section 3 we will give and demonstrate the existence of y—Caputo derivative in Colombeau algebra
G, in section 4 we gave and demonstrate the integral solution of the issue, in section 5, we demonstrated
the existence and uniqueness of the solution in colombeau algebra.

2. Preliminaries

In this section we will introduce basic notations and definitions from Colombeau theory (see also
3, 9D).

Definition 2.1. Ay (R") is a set of functions ¢ in C (R") such that f]Rn ¢(tdt = 1. For g € N, A, (R") =
{peAg: [, Fpt)dt =0,0 < il < q}, where t = £ - £}

In [9] sets .
Ay (R") = @ (x1, .., %) = D (1) D (1) 1 @ () € AR},

are used because of applications to initial value problems. We shall follow the Colombeau original
definition.

Obviously, if ¢ € Ay, q € Ny, then for every ¢ > 0, ¢.(x) = j—n (’—;),x € R", belongs to Aj. If ¢ € Ay,
then its support number d(¢) is defined by

d(¢) = sup{lx| : p(x) # 0}.

&E(Q) represents the set of
R: Ay xQ — C,(D,x) — R(D,x),

which are in C*(Q) for every fixed ¢. In the other words elements of & are functions R : Ay — C*. Note
that for any f € C*, the mapping

(@, ) = f(x), (%) € Ag X Q,

defines an element in &(Q2) which does not depend on ¢. Conversely, if an element F in (1) does not
depend on @ € Ay, we have:

F(®,x) =F(V¥,x), x€Q, forevery ®,¥ € Ay,
then it defines a function f € C*(Q),
f(x) = F(®,x),x € Q, for every ¢ € Ay.

In this sense, we identify C*(Q) with the corresponding subspace of &(C2).
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Definition 2.2. A component R € E(Q) is moderate if VL CC Q, o € IN, AN € IN such that for every ® € Ay,
dn > 0and C > 0 such that:

10°R (D, x) || < Ce™ xelL0<e<n.
The ensemble of all mild components is expressed as Ep(€).

Definition 2.3. An element R € E(C) is moderate if AN € N such that for every ¢ € Ay, An > 0, C > 0 such
that:
IR (qbs) <Ce™,0<e<n.

The ensemble of mild components is expressed by Egp(C) (resp. Eom(R) ).

Definition 2.4. A component R € Ep(Q) is named null if for every L cC Q and every a € IN!!, AN € Ny and
{aq} € I such that for every q > N and every ¢ € Ay, An > 0 and C > 0 such that:

R (cpg,x)H < Ce%N xeL0<e<n.
The ensemble of null components is expressed by N(Q).
Definition 2.5. The spaces of generalized functions G(Q) expressed by
G(Q) = Em(Q)/N(Q)
The following description describes what the term “association” means in colombeau algebra.

Definition 2.6. [3] Let f, g € G(R).
We said that f,g are associated if ¥ h(@e, x) and m(@e, x) and arbitrary & € D(R) there is a n € N such that
Yo(x) € A (R), we have:

gglbm@aw—m@awmwwx=o

and we denoted by f = g.

3. Y—Fractional Derivative in colombeau algebra G

Let (fc(t)), be a representative of a Colombeau generalized function f(t) € G(R*) and let ¢ € C"(R™)
be an increasing function with ¢’(t) #0 for all t € R*.

The p-Caputo fractional derivative of (f(t)),, is defined by

s @) — 9 )y ()ds, a €ln—1,m],
£ = 0 = (G SV L), a=n,

neN,ee€(0,1).

D5 fu(t) = { 3.1)

Lemma 3.1. Let (fo(t))c be a representative of f(t) € G(R*). Then, for every a > 0, SUPyef0,7] | Dfp fe(t) | has a
moderate bound.

Proof. Fix e € (0,1).
Letaeln—-1,n],

Then,
SUP;e(0,1] | Df[,fe(t) < m SUP¢efo,1) fot | (¥(t) - ¢(S))n_a_1fg71](s)¢l(s) | ds

up | )| sup | LOZBON

I'(n = a) sepom te[0,T] n-—a
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1 n—-a

sup | ().

B 1q(n_a)n_aseOT
With R = ¢(T) — ¢(0).
Since f(t) € G([0, +0)), as a result sup, o 1 | fe[”](s) | has a moderate bound.

Thus, AM € N, such that

sup | DS fu(t) =0 (™), ¢—0
te[0,T]

Then, SUPyeio,7] | Dfp fe(f) | has a moderate bound, Ya > 0.
[

Lemma 3.2. Let (fie(t)),., (f2(t)), be two distinct representatives of f(t) € G(R"). Then, for every a > 0,
supyepo,7y | Dy fre(t) — Dy fae(t) | is negligible.

Proof. Fixe € (0,1).
Leta€ln—-1,n],
Then,
SUp | DS fult) = DS folt) IS 20—
aon VT -
With R = ¢(T) — (0).
Since (fie(t))e and (f2e(t)), represent the same Colombeau generalized function f(t), so sup S€[0.T] | fl[:](s) -

sup | £i2'6) = ')

N =& 0,1

Z[Z](s) | is negligible, then for all pe IN
sup | Dy fie(t) — Dy fae(t) I= O(™?), -0
te[0,T]
Therefore, sup,( 7 | Dy, fre(t) — Dy, foe(t) | is negligible. [

We may now initiate the i-Caputo fractional derivative of a Colombeau generalized function on R*
after establishing the first two lemmas.

Definition 3.1. Let f(t) € G(R") be a Colombeau function on R*.

The Y—Caputo fractional derivative of f(t), utilizing the notation D" f (t) = [(Dfp fe(t)) ], a > 0, is the element of
€

G(R") satisfying (3.1).

Remark 3.1. Fora €ln—1,n].
The first derivative of (d/dt)D" fe(t) is (d/dt)D¢ fe(t)

’ 7(0 e . .
1/T(1-a)) [fo (M%ﬂ[”m(s)) ds + W_ﬁ%ﬁ’”l(m] and it is not defined in zero, unless f"™(0) =
Theorem 3.1. Let f(t) € G be a Colombeau function. The y—Caputo fractional derivative D f (t) is a Colombeau
generalized function, if f"(0) = f"0) = f"* ) =--- = 0.

Proof. Leta €]n—1,n].

In Lemma 1, we proved that sup;, 7 | Di fe(t) | has a moderate limit for indefinite Colombeau general-
ized function. To get a moderate limit for the initial derivative (d/d f)D¢ fe(t) we utilize the expression

acquired in Remark 1 and for fe (0) = 0, we obtain

Pr(S)
t) (S))a+1—n

(d/d8)DS fo(t) = (1/T(1 - @) f ( o f 1 (s) | ds

Now in the same way as in Lemma 1 we acquires a moderate limit for sup,, 7 | (d/df)Dy, f€ t) .

Using the conditions, higher-order derivatives can be estimated similarly. f"(0) = "+1](0) 2]
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0)=---=0.
Finally, if fg"](O) = 0, therefore, it follows that for each a > 0, all derivatives of D¢ fe(t) have moderate
representations. [J

Definition 3.2. Let (fc(t)), be a representative of f(t) € G(RY).
The regularized {—Caputo fractional derivative of (fe(t)),, is given by

D = { (DLfe® @) (), achn—1,n] 62

0 = ) = (G ey f®,  a=n,
nelN,e € (0,1).

where DY, fe(t is provided by (3.1).
The convolution in (3.2) is (D, fu(t) * pe) (£) = [[7 D, feB)pe(t — s)ds

4. The integral solution of Heat equation

Definition 4.1. [15] Define the Mittag-Leffler function by:

Eap(x) = Z F(ka +B)

Definition 4.2. [25] Describe the Laplace transform of a function g by

Lwn© = [ o
Proposition 4.1. [25] Let f and g two functions, we have
L((f*9@) (5) = Lf () ()L (g(x)) (s)-
Definition 4.3. [15]
1. The Gamma function is given by

+00
I'(x) = f Ftetdt,¥x > 0
0

2. The B function is described by

1
Vx,y >0, B(x,y) = f £ - pYldt.
0

Proposition 4.2. [15]

* * T'(x)I'
L Vx,y € Ry xRy, By, y) = T

2. Forallx > 0,T(x +1) = x['(x).

Definition 4.4. [23] The Wright type function is represented by

(o)

pa) = Y ——C
n=0

nl'(—an+1-a)

_ i (=x)"T'(a(n + 1)) sin(rt(n + 1))
=0

n!

forae(0,1)and x € C.
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Proposition 4.3. [23] The Wright function ¢, is a complete function with the following characteristics:

() [ $a(0)07d0 = £ forr> -1,
(ii) pa(60) 2 0 for 0 > 0.and [} pa(0)d0 = 1
(iii) [~ $a(0)e20d0 = Eq(~2), z€C;

(iv) a [~ 0¢a(0)e 200 = Eqo(-2), z€C.

Definition 4.5. [23] We proceed with the observed one-sided steady probability density in

pa(0) = %Z(—nk*le*“k*w sin(kra), 6 € (0, c0)
k=1 ’

And we have,
f e‘wpa(e)de = e, where a € (0,1). 4.1
0

Lemma 4.1. Let f : C(J, X) — C(J, X) be continuous.

The issue (1.1) is equal to the mild equation

1 t 1 )
+r<a>fo @ =gy ¥ AxEMs, te] (42)

x(t) = xo
With:
x : D(A) — D(A) offered that the integral in 4.2 exists, and A = v — A.
We will need the following lemma.

Lemma 4.2. Forall o €ln —1,n] n € Nands > 0, and let ¢ € C'(R*) be an increasing function with
¢'(t) #0  forall t € R*. We have,

s (s* = A) " = L f[7 pa(O)T (C522) do)s),
2) (s* — A)_l X(s) = L( (j(‘: j(‘)"o apa(e) (‘T)(77)—6<]Z(5))lH T((‘P(T);(?(S))“)
x(5)¢ (5)d0ds) )(s).

With,oo
X(s) = fo e MO0 x(5)¢p’ (5)ds

Proof. 1) Fors >0,

g1 (50 — A)1 = g0t fooo ' T(tydt = a fooo(st)"“le‘(shaT(f“)dt
Where {Tliso is Co—semigroup defined by

Ax =limy_or T2 and (A1 - A)'x = [ exp(—ATt)T(t)xdt

X

Putting F=¢(t)— p0), we have
= o [ (1) — p(0)) e OO S T (((t) — (0))) 0! (D)t
= fo “ -14 (E—<s<¢<t>—¢<0>>>'*) T (((p(t) _ ¢(0))a) dt.
Using (4), we get

= [ [ 0pa(0)e @O0 T (((t) — p(0))¢) ' (H)dOA
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00 —s(ch _ 00 —h(0))* ,
=f0 o=S(@(1)-0(0) (fo pa(e)T((ﬁb(t)Gf( ) )de)l,b(t)dt
= 2( [7 pa(O)T (L2200 46)s)
2) Fors > 0,
(s* — A X(s) = f e TT(7)X(s)dt
0

= a f 247 1e= 6T (79) X(s)dt
0
Where (T}so is Co—semigroup defined by

Ax = lim T(t)x = x
t—0* X

and

(AT - A)lx = f"o exp(—A“H)T(t)xdt
0
Putting f=¢(t)— ¢0), we have
- f " A(7) — b(0))*Le~CBM=00O)"
0
X T((@(t) = $(0)*) ' (D) X(s)dx
= f ) f " a((7) — B (0))* e =00
0 0
T((@(1) = P(0))*) x e~ M=)y (r)! (x)drd,

Using (4), we get

= [ 55 al) - $0)* pu(@)e PO T ((¢(7) ~ (0))")
x e~ OO x(r)p' (1)’ (1)dOdrd
e fooo fo"o qe—S@@+H)-26(0) @(T)‘éw 0a(6)

0
X T (2O () (1)’ (00O

00 00 OO _ _ A=) SN
= [T 7 7 aerso-000p, () LOOI (G000

x (671 ((2) = o(1) + 6(0)))
¢ (V)¢ ()dOddt

00 T (00 _ _ A (0N o
= fo fo fo ae—S@) ¢(O))pa(9)(¢>() ;ba( ) T((#L’()@f( ) )

x(¢7H(@(T) = P(t) + 6(0))) ¢/ (7)
¢ (H)dOdtdt

_ [ so@-oo) [ [T [ GO-00)*" . (GEO-pr)"
= [ st »(fo [ apa(0) Qg0 7 (o)

x(r)¢ (NdOdr) x ¢ (t)d.

= L( (J;)T j(‘)‘x’ O‘Pa(e) (¢(T)_6(i(r))‘H T ( @(T);j)(r))“)
x(r)e (1dodr) )(s)
U

Proposition 4.4. If

£) = 1 t t =Ly (s)Ax(s)d
x()—xwmfo(w()—tp(s» ¥ (Ax(s)ds,

9333
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holds, then we have

x(t) = E(hxo + a [y EO@W(E) — (s)* ()9’ (s)ds.

With(,)o
E@t) = [} a(O)T ((W(t) - $(0))*60) doO

Proof. Since x(t) = xp + Y’(s)Ax(s)ds, using the Laplace transform, we obtain

1t 1
T(@) fO WH-ypE)

L(x(t))6s) = L Y/ ()Ax(1)d7)(s)

1 1
" T fo @) - (o)
L(xo)(s) + £( (@ Ax(D)d)s)

1 1
r(a)fo W) - o)
(1) Ax(1)dT ()

X0

1 1
£(r<a>fo @0 - Py
oy S%AL () (5)

_ X, 1, f MOV 3(6)y (5)ds
0

S s%

We can deduce
L(x(®)s) =71 (¥ = A xg + (5 = A7 X(6).
Now, use the lemma 4.2, then
L(x®)6) = L( [ pa(OT (L5 2) d0)(s)x0 +
((fo fo apa(e) Y- l,U(S))Y ! T ((ll’ T)Q;P(S))“)

x(s)y’ (5)d0ds) )(s)

We can now invert the Laplace transform to obtain the result

Vx € X, characterize operators Si(t, s) and Tf;(t, s) by

53,95 = [ 6,07 (@0 - ) 0) a0

Tyt =a [ 00,07 (@0 - pE)0)xd0
0
forO0<s<t<T. O

Lemma 4.3. Si and T, provide the following characteristics :

(i) The operators Si(t,s) and Tg(t, s) are strongly continuous for all t > s > 0, that is, for every x € X and
0<s<t; <ty <Twehave

| Sy (t2,8) x = Sy, (ta,8) x|l = O and | Ty (t2,8) x = Ty (t1,5) xll = 0
ast; — tz.

(ii) For any fixed t > s > 0, Si(t, s) and Tz(t,s) are bounded linear operators with

Syt $))Il < Mllx|| and

3690 < g = g
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forallx € X.

Proof. Similar demonstration existe in [27] O

5. Existence and Uniqueness of the Solution in colombeau algebra G

In this section consider the following fractional Heat problem:

{ ,Dfpx(y, t) = Ax(y,t), te[0,T]
x(y,0) = ao(y)

withag(y) e D’(R") and A=A-v.

Now we will transform the problem in the Colombeau algebra.

D x.(y, 1) = Acx(y, t eR", t>0
{t oxe(y, ) Wt y 51)

x:(y,0) = a0,(y)

with a4 (y) is the regularizetion of a¢(y), and A = [(A;)] = [(A — v¢)] is the infinitesimal generator of
{Te(t)} Co — semigroup.

Theorem 5.1. If the generalized operators SH and Ty verify the Lemma (4.3). Then the problem (5.1) has a unique
solution in G (R" X R™).

Proof. Existence
The integral solution of the problem (5.1) is given through the previous section:

x(t) = fo Gea(O)T (De(t) — 0.(0))*6) x0d0

t o
— a-1 _ o
+ajo‘£ Qbs,a(g)(llbe(t) l,be(S)) T((¢g(t) l,llg(O)) 9)
xe(s)ﬁb:»(S)dedS.

t
= 539+ [ () = O T I ids

Which implies that:
llxe(t, Il < (1S5, (¢t O)xeo | + |(¢é.(t) - ¢g(s))“-1T“,£(t,s)xe(s)wé(s)H ds
< M|xeol + et = 9e)™ T3t s)xeo)]| wis)es

Then

M (! _ )
llxe(t, I < M |[xeol| + =— f We(®) = Pe(s)* ™ lIxe(s, N Pi(s)ds
I'(a) Jo
By the Granwall’s inequality
et Mpoqrey < M ||l x exp L(I’D\(i’) — . (0))%].
e\ly L= (rr) = g, T(@+1) € €
Since Y. € G(R"), ape € G(R") there exist K € IN such that
sup [|xe(t, Mpomn = O(S_K), >0
te[0,T]

So
Xe € G(R* X R")
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Uniqueness

Let’s say there are two solutions x;¢(¢, .), X2¢(t, .) to the problem (5.1), consequently :

yeR", t>0

{ Dfpxl,e(]// t) + Aexl,e(yr t) - Dfpxle(]/r t) — Aexz,e(y/ =0
x1,6(y,0) = x2,6(y, 0) = Noe(y)

Then:

D, (x1,e(y, £) = x2,6(y, 1) + Ac (x1,6(y, 1) = X26(y, 1)) = 0
yeR", t20 (5.2)
xl,e(yr 0) - x2,e(yr 0) = NO,e(y)

With (Np), € N (RY).
The integral solution of the problem (5.2) is:
xe(t) = [~ 9ea(O)T (e(t) = 1p:(0))*0) No.(y)dO
+a [§ 17 hea(@)We(t) = Pe(s)* 1T ((e(t) — 1e(0)*0)
X (41,e(5) = X2.(8)) Y;(5)dOds.
= S3(t, INoe(y) + [y We()) = () TG, 8) X (x1,6(5) = x2,6(5)) Pids.
Then

et ) = ot M| gy < |55, ONo )|

4 @e® = o) TG 05) (o1, 6) = 22(5)) i) s

< M[NocOf| + [ @e®) = o)y ||T5,.(4,5) (1166) = x2.6))|

X1l (s)ds

< M[NocOl + 25 J; @e®) = e() [|(e1,605) = 22D X 9 (s)ds

Using the Granwall’s inequalit
et ) = Xa.et Mooy < MNoc Q)] X exp (s (0e(T) = $:(0)?)

Since
Y. € G(RY), (Noe)e € N(R"), then for every g € N such that:

sup ”xl,e(t, D) — xoe(t, .)HLm =0(7) -0
te[0,T]

So,

X1,e ® X2

6. Conclusions

In this work, first we give and demonstrated the existence of i)—fractional caputo derivative in
colombeau algebra and secondly we have solved the frational Heat equation and then proved the exis-
tence and uniqueness of this solution in colombeau algebra.
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