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Abstract. In this work, we present a fixed point result in the context of a double controlled metric-like
space involving its control functions. A matrix equation has been solved via a fixed point technique. We
also give some concrete and numerical examples. Finally, we ensure the existence of a solution of a random
integral equation of Fredholm type.

1. Introduction

The fixed point iteration techniques use the notion of a fixed point in a iterated manner in order to
compute a solution of certain equations. It is known that the Banach contraction principle (BCP) [1] is the
useful and essential tool in solving several concrete applications. Namely, it is arising in the existence of
solutions of integral, differential and difference equations. Variant generalizations and extensions of the
BCP appear in literature, see [2–4]. This principle is an essential result in the fixed point theory. Also, there
are several generalizations of metric spaces, like b-metric spaces [5, 6] and extended b-metric spaces [7].
For related fixed point results, see [8–19]. In a b-metric setting, a coefficient s ≥ 1 appears in the right part
of the triangular inequality. Among the generalizations of a b−metric space, there is the double controlled
metric space X presented first by Abdeljawad et al. [20], where the triangular inequality is extended via
two control functions ϖ, ϵ : X × X −→ [1,∞).

Definition 1.1. Consider a nonempty set X. A function d : X × X −→ [0,∞) is called a double controlled metric
(DCM in abbreviation) with controlled functions ϖ, ϵ : X × X −→ [1,∞) if the following conditions hold for all
x, τ, ς ∈ X,
(µ1): d (x, τ) = 0⇐⇒ x = τ;
(µ2): d(x, τ) = d(τ, x);
(µ3): d(x, τ) ≤ ϖ(x, ς)d(x, ς) + ϵ(ς, τ)d(ς, τ).
The pair (X, d) is called a double controlled metric space (DCMS).
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In 2020, the double controlled metric-like is initiated by Mlaiki [21] where within this new setting, the
distance between two elements in not necessarily equal to zero.

Definition 1.2. [21] Given a nonempty set X. The function d : X × X −→ [0,∞) is termed as a double controlled
metric-like (DCML, in short) with controlled functions ϖ, ϵ : X × X −→ [1,∞) if the following conditions hold for
all x, τ, ς ∈ X,
(d1): d (x, τ) = 0 =⇒ x = τ;
(d2): d(x, τ) = d(τ, x);
(d3): d(x, τ) ≤ ϖ(x, ς)d(x, ς) + ϵ(ς, τ)d(ς, τ).
The pair (X, d) is said to be a double controlled metric-like space (DCMLS).

To illustrate Definition 1.2, we give two examples.

Example 1.3. Let X = [0,∞). Define d : X × X −→ [0,∞) by

d(x, τ) =



0 if x = τ , 0
1
2 if x = 0 and τ = 0
1
x if x ≥ 1 and τ ∈ [0, 1)
1
τ if τ ≥ 1 and x ∈ [0, 1)
1 otherwise.

Consider the following functions ϖ, ϵ : X × X −→ [1,∞) given as

ϖ(x, τ) =

x if x, τ ≥ 1
1 otherwise

and ϵ(x, τ) =

1 if x, τ < 1
max(x, τ) if not.

Here, (X, d) is a DCMLS.

Example 1.4. Let X = [0,∞]. Given d : X × X −→ [0,∞) as

d(x, τ) =


0 if x = τ

x
x+1 if x , 0 and τ = 0
τ
τ+1 if τ , 0 and x = 0
x + τ if 0 , x , τ , 0.

Take ϖ, ϵ : X × X −→ [1,∞) as ϖ(x, τ) = ϵ(x, τ) = 2x + 2τ + 2. Then (X, d) is a DCMLS.

On the other hand, matrix equations have an essential role in variant problems of applied mathematics
and engineering. Several matrix equations arise in control theory [22] and stability analysis [23]. There is
an extensive work dealing with the existence of solutions of nonlinear matrix equations. Among the used
methods to ensure such an existence, the fixed point theory plays an essential tool in this regard. For more
details, see [24–26]. In this manuscript, we first prove a classical fixed point result in a DCMLS. We also
present an application to solve a nonlinear matrix equation of the form

X = Q +
m∑

j=1

A∗jF(X)A j.

Some nontrivial and numerical examples concerning the iterative algorithm related to this matrix equation
have been provided. At the end, a random integral equation of Fredholm type is investigated.
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2. Main results

Our main classical fixed point result is given as follows:

Theorem 2.1. Let (X, d) be a complete DCMLS and T be a self-mapping on X satisfying the following conditions:

(i) : There exists k ∈ [0; 1) such that d(Tx; Ty) ≤ kϖ(x, y)ϵ(x, y)d(x, y), for all x, y ∈ X;

(ii) : For x0 ∈ X, we have sup
m≥1

lim
i→∞

ϖ(xi+1, xi+2)ϵ(xi, xi+1)ϵ(xi+1, xm) <
1
k

, where x j = T jx0 for all j ∈N;

(iii) : lim
n→∞

ϖ(xn, x) and lim
n→∞

ϵ(xn, x) exist and are finite for any x ∈ X.

Then T has a fixed point x∗. Moreover, assume that for every two fixed points x and y of T in X,

lim sup
n→∞

ϖ(Tnx,Tny)ϵ(Tnx,Tny) <
1
k
, (2.1)

so such a fixed point is unique.

Proof. Let xn = Tnx0 = Txn−1 for all n ≥ 1. By using (i) n-times, we have

d(xn, xn+1) = d(Txn−1,Txn) ≤ kϖ(xn−1, xn)ϵ(xn−1, xn)d(xn−1, xn)

≤ kn
n∏

i=1

ϖ(xi−1, xi)ϵ(xi−1, xi)d(x0, x1).

Let bn = kn ∏n
i=1 ϖ(xi−1, xi)ϵ(xi−1, xi)d(x0, x1), so we have

bn+1

bn
= ϖ(xn, xn+1)ϵ(xn, xn+1).k < 1.

Therefore,

lim
n→∞

d(xn, xn+1) = 0. (2.2)

For m,n ∈Nwith m > n, we have

d(xn, xm) ≤ ϖ(xn, xn+1)d(xn, xn+1) + ϵ(xn+1, xm)d(xn+1, xm)
≤ ϖ(xn, xn+1)d(xn, xn+1) + ϵ(xn+1, xm)[ϖ(xn+1, xn+2)d(xn+1, xn+2)+
ϵ(xn+2, xm)d(xn+2, xm)]
= ϖ(xn, xn+1)d(xn, xn+1) + ϵ(xn+1, xm)ϖ(xn+1, xn+2)d(xn+1, xn+2)
+ ϵ(xn+1, xm)ϵ(xn+2, xm)d(xn+2, xm)
.

.

.

≤ ϖ(xn, xn+1)d(xn, xn+1) +
m−2∑

i=n+1

 i∏
j=n+1

ϵ(x j, xm)

ϖ(xi, xi+1)d(xi, xi+1)

+

 m−1∏
j=n+1

ϵ(x j, xm)

 d(xm−1, xm).
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By using the fact that ϖ(x, y) ≥ 1 and ϵ(x, y) ≥ 1 for all x, y ∈ X, we deduce

d(xn, xm) ≤ ϖ(xn, xn+1)d(xn, xn+1) +
m−1∑

i=n+1

 i∏
j=n+1

ϵ(x j, xm)

ϖ(xi, xi+1)d(xi, xi+1)

≤

m−1∑
i=n

 i∏
j=n+1

ϵ(x j, xm)

ϖ(xi, xi+1)d(xi, xi+1)

≤

m−1∑
i=n

 i∏
j=n+1

ϵ(x j, xm)

ϖ(xi, xi+1)ki

 i∏
j=1

ϖ(x j−1, x j)ϵ(x j−1, x j)

 d(x0, x1).

Choose

ai =

 i∏
j=n+1

ϵ(x j, xm)

ϖ(xi, xi+1)ki

 i∏
j=1

ϖ(x j−1, x j)ϵ(x j−1, x j)

 d(x0, x1),

and Ωp =
∑p

i=1 ai. Then we have

d(xn, xm) ≤ Ωm−1 −Ωn−1. (2.3)

Since ai+1
ai
= ϖ(xi+1, xi+2)ϵ(xi, xi+1)ϵ(xi+1, xm).k, by condition (ii) one gets ai+1

ai
< 1, so we conclude that the real

sequence {Ωp} converges, then it is a Cauchy sequence in R. By (2.3), we conclude that {xn} is a Cauchy
sequence in X. Since X is complete, {xn} converges to some x∗ ∈ X. Next, we show that Tx∗ = x∗. The
triangle inequality of DCMLS implies that

d(x∗, xn+1) ≤ ϖ(x∗, xn)d(x∗, xn) + ϵ(xn, xn+1)d(xn, xn+1).

Using the condition (iii) and (2.2), we deduce that d(x∗, xn+1) −→n→∞ 0. By triangular inequality and the
condition (i), we get

d(Tx∗, x∗) ≤ ϖ(Tx∗, xn+1)d(Tx∗, xn+1) + ϵ(xn+1, x∗)d(xn+1, x∗)
= ϖ(Tx∗, xn+1)d(Tx∗,Txn) + ϵ(xn+1, x∗)d(xn+1, x∗)
≤ ϖ(Tx∗, xn+1)kϖ(x∗, xn)ϵ(x∗, xn)d(x∗, xn) + ϵ(xn+1, x∗)d(xn+1, x∗).

Letting n → ∞ implies that d(Tx∗, x∗) = 0. That is, x∗ is a fixed point of T. To prove the uniqueness of the
fixed point, let u and v be two distinct fixed points of T. We have

d(u, v) = d(Tu,Tv) ≤ kϖ(u, v)ϵ(u, v)d(u, v)
= kϖ(Tnu,Tnv)ϵ(Tnu,Tnv)d(u, v).

Letting n→∞, one gets using (2.1), 0 < d(u, v) < d(u, v), which is a contradiction. Hence, the fixed point of
T is unique.

Example 2.2. Let (X, d) be the complete DCMLS given as in Example 1.3. Define T : X −→ X by Tx = x
α+αx where

α > 13. We will show that all conditions in Theorem 2.1 hold. First, for x ∈ X, we have

Tnx =
x

αn +
(∑n

k=1 α
k) x

.

It is obvious that xn = Tnx −→ 0 as n −→ ∞, and so for each x ∈ X,

lim
n→∞

ϖ(xn, x) = lim
n→∞

ϵ(xn, x) = 2 + 2x < ∞.

For all x, τ ∈ X, we will show that d(Tx,Tτ) ≤ 1
kϖ(x, τ)ϵ(x, τ)d(x, τ). For this, we consider the following cases:

Case 1: x = τ. we have 0 = d(Tx,Tτ) ≤ 1
kϖ(x, τ)ϵ(x, τ)d(x, τ).
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Case 2: (x , 0 and τ = 0) or (τ , 0 and x = 0). Without loss of generality, we may assume that x , 0 and τ = 0. In
this case, we have

d(Tx,T0) = d(
x

α + αx
, 0) =

x
α+αx
x

α+αx + 1

=
x

α + (α + 1)x

≤
x
α

≤
1
α

(2x + 2)2
( x

x + 1

)
=

1
α
ϖ(x, 0)ϵ(x, 0)d(x, τ).

Case 3: 0 , x , τ , 0. Here, we have 0 , x
α+αx ,

τ
α+ατ , 0. One writes

d(Tx,Tτ) = d(
x

α + αx
,

τ
α + ατ

)

=
x

α + αx
+

τ
α + ατ

≤
x
α
+
τ
α

≤
1
α

(2x + 2τ + 2)2 (x + τ)

=
1
α
ϖ(x, τ)ϵ(x, τ)d(x, τ).

Now, let x ∈ X, then

sup
m≥1

lim
i→∞

ϖ(xi+1, xi+2)ϵ(xi, xi+1)ϵ(xi+1, xm) = sup
m≥1

lim
i→∞

(2 + 2xi+1 + 2xi+2)

(2 + 2xi + 2xi+1) (2 + 2xi+1 + 2xm)
= sup

m
4 (2 + 2xm)

≤ 4
(
2 + 2

x
α + αx

)
≤ 4(2 + 1)
≤ 13.

For x, τ ∈ X, we have

lim sup
n→∞

ϖ(Tnx,Tnτ)ϵ(Tnx,Tnτ) = lim sup
n→∞

(2 + 2xn + 2τn)(2 + 2xn + 2τn)

≤ 4.

Thus, T fulfills all the axioms in Theorem 2.1 with k = 1
13 . Thus, T admits a unique fixed point, which is 0.

3. An application to matrix equations

In the sequel, we need the following notations:
Mn(C) denotes the set of all n × n complex matrices;
H(n) denotes the set of all n × n Hermitian matrices;
P(n) denotes the set of all n × n positive definite Hermitian matrices;
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H+(n) denotes the set of all n × n positive semi definite Hermitian matrices.
We will use the trace norm ∥E∥t =

∑n
ȷ=1 s ȷ(E), where s ȷ(E), ȷ = 1, · · · ,n are the singular values of E ∈ H(n),

which are the roots of the eigenvalues of E∗E. In this direction, let d : H(n)×H(n) −→ [0,+∞) be defined by

d(U,Υ) = (∥U − Υ∥t)
p

for all U,Υ ∈ H(n). Then (H(n), d) is a complete DCMLS, where

ϖ(U,Υ) = ϵ(U,Υ) =
(
2 +

2
1 + tr(U2Υ2)

) p−1
2

.

Moreover, for D,E ∈ H(n), consider
D ⪯ E⇐⇒ E −D ∈ H+(n)

and
D ≺ E⇐⇒ E −D ∈ P(n).

Now, consider the matrix equation:

U = Λ +
q∑
ȷ=1

Ω∗ȷF(U)Ω ȷ. (3.4)

Here, Λ is positive definite and the Ω ȷ are arbitrary n × n matrices. Suppose that F is a continuous
order-preserving mapping (with respect to ⪯) from P(n) into P(n). Define the self-mapping G on H(n) by

G(U) = Λ +
q∑
ȷ=1

Ω∗jF(U)Ω ȷ.

Note that G is well-defined. Note that a fixed point of G is also a solution of (3.4). The following lemma is
useful in the next.

Lemma 3.1. Let D,E ∈ H+(n). Then 0 ≤ tr(DE) ≤ ∥D∥ tr(E), where ∥D∥ =
√
λ+(D∗D) is the spectral norm for D.

Here, λ+(D∗D) represents the largest eigenvalue of D∗D and D∗ designs the conjugate transpose of D.

Proof. It is known that tr(DE) ≥ 0. Also, because D ⪯ ∥D∥ In, one writes 0 ≤ tr((∥D∥ In − D)E) = tr(∥D∥E −
DE) = ∥D∥ tr(E) − tr(DE). The proof is ended.

Lemma 3.2. If D ∈ H(n) and D ≺ In, then ∥D∥ ≤ 1.

Theorem 3.3. Assume that there are positive reals M and p ≥ 1 such that:

(i) For all U,Υ ∈ H(n), we have

|tr(F(Υ) − F(U))|p ≤ k

(
2 + 2

1+tr(U2Υ2)

)p−1

Mp |tr(Υ −U)|p

, for some k ∈

0, 1(
2+ 2

1+tr(Λ4)

) 3(p−1)
2

;

(ii)
∑q
ȷ=1Ω ȷΩ

∗
ȷ ≺MIn and 0 ≺

∑q
ȷ=1Ω

∗
ȷF(Λ)Ω ȷ;

(iii) There is U0 ∈ P(n) so that Λ +
∑q
ȷ=1Ω

∗
ȷF(U0)Ω ȷ ⪯ U0.

Then the matrix equation (3.4) has a unique solution. Moreover, the sequence {Un} defined by the iteration Un =
Λ +

∑q
ȷ=1Ω

∗
ȷF(Un−1)Ω ȷ converges to the solution of the matrix equation (3.4).
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Proof. For all U,Υ ∈ H(n), we have

d(G(U),G(Υ)) = (|tr(G(U) − G(Υ))|)p

=


∣∣∣∣∣∣∣∣tr(

q∑
ȷ=1

Ω∗ȷ(F(U) − F(Υ))Ω ȷ)

∣∣∣∣∣∣∣∣


p

=


∣∣∣∣∣∣∣∣

q∑
ȷ=1

tr
(
Ω∗ȷ(F(U) − F(Υ))Ω ȷ

)∣∣∣∣∣∣∣∣


p

=


∣∣∣∣∣∣∣∣

q∑
ȷ=1

tr
(
Ω ȷΩ

∗

ȷ(F(U) − F(Υ))
)∣∣∣∣∣∣∣∣


p

=


∣∣∣∣∣∣∣∣tr(

 q∑
ȷ=1

Ω ȷΩ
∗

ȷ

 (F(U) − F(Υ))

∣∣∣∣∣∣∣∣


p

≤

∥∥∥∥∥∥∥∥
q∑
ȷ=1

Ω ȷΩ
∗

ȷ

∥∥∥∥∥∥∥∥
p (
∥F(U) − F(Υ)∥t

)p

≤ k

∥∥∥∥∑q
ȷ=1Ω ȷΩ

∗
ȷ

∥∥∥∥p

Mp (2 +
2

1 + tr(U2Υ2)
)p−1 (|tr(Υ −U)|)p

= k


∥∥∥∥∑q

ȷ=1Ω ȷΩ
∗
ȷ

∥∥∥∥
q


p

(2 +
2

1 + tr(U2Υ2)
)p−1d(U,Υ)

= kϖ(U,Υ)ϵ(U,Υ)d(U,Υ),

where ϖ, ϵ : (U,Υ) 7−→
(
2 + 2

1+tr(U2Υ2)

) p−1
2 . That is, the first assumption in Theorem 2.1 holds. Recall that G

maps P(n) into the set {U ∈ H(n)/U ⪰ Λ}. So, the solution should be there and so it belongs to P(n).
Under the assumption that G(U0) ⪯ U0 and with the assumption that F is order-preserving, one asserts that
G is order-preserving. Then for any X ∈ [Λ,U0] we have

Λ ⪯ G(Λ) ⪯ G(U) ⪯ G(U0) ⪯ U0.

Thus, [Λ,U0] is mapped into itself, that is, {G ȷ(Λ)} ȷ≥0 is an increasing sequence (with respect to ⪯) and
{G ȷ(U0)} ȷ≥0 is a decreasing sequence.
Moreover, for any ȷ and ı, we have G ȷ(Λ) ⪯ Gı(U0). Also, the sequence {G ȷ(U0)} ȷ≥0 is decreasing and bounded
below, thus both sequences converge to some limit, say U∞. We find that Λ ⪯ U∞ ⪯ U0.
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The function (U,Υ) 7−→
(
2 + 2

1+tr(U2Υ2)

) p−1
2 is continuous. Then

sup
m≥1

lim
i→∞

ϖ(Ui+1,Ui+2)ϵ(Ui,Ui+1)ϵ(Ui+1,Um) = (2 +
2

1 + tr(U4
∞)

)p−1
(
2 +

2
1 + tr(U2

∞Λ2)
)
) p−1

2

≤

(
2 +

2
1 + tr(Λ4)

)
) 3(p−1)

2

<
1
k
.

Hence, the condition (ii) in Theorem 2.1 is checked.

Now, let U and Υ be two fixed points of G, then U,Υ ∈ [Λ,U0]. Also,

lim sup
n→∞

ϖ(Gn(U),Gn(Υ))ϵ(Gn(U),Gn(Υ)) =
(
2 +

2
1 + tr(U2Υ2)

)p−1

≤

(
2 +

2
1 + tr(Λ4 )

)p−1

<
1
k
.

Thus, all conditions of Theorem 2.1 are fulfilled. Therefore, the matrix equation (3.4) has a unique solution
in [Λ,U0]. Moreover, the sequence {Un} defined by the iteration Un = Λ +

∑q
ȷ=1Ω

∗
ȷF(Un−1)Ω ȷ converges (in

the sense of DCMLS) to the solution of the matrix equation (3.4).

In this part, we illustrate Theorem 3.3 by some numerical examples and some illustrated curves.

Example 3.4. Consider

Λ =


7 3 0 0
3 7 3 0
0 3 7 3
0 0 3 7

 , Ω1 = 10−4
×


−588 64 0 −2069
−6 −21 0 0
201 0 0 1201

1212 3131 3 424


Ω2 = 10−4

×


0 121 666 1301

341 141 1201 2004
11 0 0 11
114 541 1111 511

 , Ω3 = 10−4
×


14 21 −421 −1158
0 1471 −451 112

125 1214 1142 2999
1254 −1010 1241 0

 .
Define F : H(n) −→ H(n) by F(U) = U. The equation (3.4) becomes

U = Λ +Ω∗1UΩ1 +Ω
∗

2UΩ2 +Ω
∗

3UΩ3. (3.5)

After calculations, we get

3∑
ȷ=1

Ω ȷΩ
∗

ȷ =


0.0830 0.0352 −0.0652 −0.0045
0.0352 0.0352 0.0163 0.0036
−0.0652 0.0163 0.1327 0.0111
−0.0045 0.0036 0.0111 0.1739

 . (3.6)

Note that the eigenvalues of matrix
∑3
ȷ=1Ω ȷΩ

∗
ȷ are λ1 = 0.0153, λ2 = 0.1017, λ3 = 0.1647 and λ4 = 0.1876, and

therefore we have
∑3
ȷ=1Ω ȷΩ

∗
ȷ ⪯

1
2 I3.

Thus, all assertions in Theorem 3.3 hold with M = 1
2 , k = 0.3 and p = 2. Take the iterative algorithmU0 = αΛ (α > 1)

Un = Λ +Ω
∗

1Un−1Ω1 +Ω
∗

2Un−1Ω2 +Ω
∗

3Un−1Ω3, n ≥ 1.
(3.7)
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By considering α = 2, after 6 successive iterations, we obtain the following positive definite solution (the limit of the
convergent sequence {Un})

U6 =


7.3365 3.3336 0.2600 0.4450
3.3336 8.2911 3.0693 0.5684
0.2600 3.0693 7.6810 3.8390
0.4450 0.5684 3.8390 8.9171

 .
While, by considering α = 3, after 7 successive iterations, we obtain the following positive definite solution (the limit
of the convergent sequence {Un})

U7 = U6 =


7.3365 3.3336 0.2600 0.4450
3.3336 8.2911 3.0693 0.5684
0.2600 3.0693 7.6810 3.8390
0.4450 0.5684 3.8390 8.9171

 .
The graphical view of convergence for α = 2 and α = 3 is shown in Figure 1.

This figure illustrates the convergence curve of the iterative method (3.7). Note that the curves are perfect lines
for α = 2 (resp. α = 3), i.e., the algorithm (3.7) converges to the theoretical solution of (3.5) after 6 iterations (resp.
7 iterations). Following Figure 1, remark that the speeds of convergence for the case α = 2, or α = 3 are slightly the
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Figure 1: The Convergence curve.

same. This explains the above numbers of iterations corresponding to obtention of convergence (N = 6 for α = 2 et
N = 7 for α = 3).

Example 3.5. Take Λ = I3 and U0 = αI3 with α > 2. Choose

Ω1 =

 0.3 0.01 0.01
0 0.28 −0.02

0.02 0.03 0.34

 Ω2 =

 −0.34 0 0
0 −0.34 0

0.01 0.01 −0.32

 .
Define F : H(n) −→ H(n) by F(U) = U. The equation (3.4) becomes

U = Λ +Ω∗1UΩ1 +Ω
∗

2UΩ2. (3.8)

By a calculation, one gets

2∑
ȷ=1

Ω ȷΩ
∗

ȷ =

 0.2058 0.0026 0.0063
0.0026 0.1944 −0.0018
0.0063 −0.0018 0.2195

 . (3.9)
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Note that the eigenvalues of the matrix
2∑
ȷ=1

Ω ȷΩ
∗

ȷ are λ1 = 0, 221976, λ2 = 0, 204297 and λ3 = 0, 193427. Thus, one

asserts that
2∑
ȷ=1

Ω ȷΩ
∗

ȷ ⪯ 023I3.

Let p = 2. The number 1(
2+ 2

1+tr(Λ4)

) 3(p−1)
2

is equal to 1

(2+ 2
1+3 )

3
2
= 0, 2529. It remains to check the last condition. Since U0 =

α.I3, the eigenvalues of the matrix Λ+
∑2
ȷ=1Ω

∗
ȷF(U0)Ω ȷ = I3 + α

∑2
ȷ=1Ω

∗
ȷΩ ȷ are δ1 = 1+ αλ1 = 1+ 0.221976α < α,

δ2 = 1 + αλ2 = 1 + 0.204297α < α and δ3 = 1 + αλ3 = 1 + 0.193427α < α. Thus,

Λ +

2∑
ȷ=1

Ω∗ȷF(U0)Ω ȷ ⪯ U0.

All assertions in Theorem 3.3 hold with M = 0.23 and k = 0.25. We will consider the iterative algorithmU0 = αΛ (α > 2)
Un = Λ +Ω

∗

1Un−1Ω1 +Ω
∗

2Un−1Ω2.
(3.10)

By considering α = 3, after N = 6 successive iterations, we obtain the following positive definite solution (the limit
of the convergent sequence {Un})

U6 =

 1.2597 0.0017 0.0106
0.0017 1.2423 0.0025
0.0106 0.0025 1.2796

 .
Example 3.6. Take

Λ =


5 2 0 0
2 5 2 0
0 2 5 2
0 0 2 5

 , Ω1 =


0.01 0.005 0.012 0.023
0.005 0.02 0.011 0.019
0.012 0.011 0.031 0.013
0.023 0.019 0.013 0.044

 ,

Ω2 =


0.015 0.01 0.027 0.04
0.01 0.03 0.01 0.016

0.027 0.01 0.025 0
0.04 0.016 0 0.017

 , Ω3 =


0.01 0 0 0

0 0.04 0 0
0 0 0.07 0
0 0 0 0.08

 .
Choose F(U) = U. The equation (3.4) becomes

U = Λ +Ω∗1UΩ1 +Ω
∗

2UΩ2 +Ω
∗

3UΩ3. (3.11)

We have

3∑
ȷ=1

Ω ȷΩ
∗

ȷ =


0.003552 0.002079 0.002026 0.002933
0.002079 0.003863 0.001688 0.002626
0.002026 0.001688 0.007749 0.0027
0.002933 0.002626 0.0027 0.01154

 . (3.12)

The eigenvalues of the matrix
3∑
ȷ=1

Ω ȷΩ
∗

ȷ are λ1 = 0, 0152804, λ2 = 0, 00641319, λ3 = 0, 00343146 and λ4 =

0, 00157896. Consequently,
∑3
ȷ=1Ω ȷΩ

∗
ȷ ⪯ 0.2I4. Let p = 2. Also, the number 1(

2+ 2
1+tr(Λ4)

) 3(p−1)
2

is equal to 0.35346956.
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Moreover, the eigenvalues of the matrixΛ+
3∑
ȷ=1

Ω∗ȷF(U0)Ω ȷ = Λ+10
3∑
ȷ=1

Ω∗ȷΩ ȷ are δ1 = 8.36216 < 10, δ2 = 6.2811 <

10, δ3 = 3.81817 < 10 and δ4 = 1.80561 < 10. Thus, by choosing U0 = 10I3, one writes

Λ +

3∑
ȷ=1

Ω∗ȷF(U0)Ω ȷ ⪯ U0.

Hence, all assertions in Theorem 3.3 hold with M = 0.2 and k = 0.3. We will consider the iterative algorithmU0 = 10I4

Un = Λ +Ω
∗

1Un−1Ω1 +Ω
∗

2Un−1Ω2 +Ω
∗

3Un−1Ω3.
(3.13)

After N = 3 successive iterations, we obtain the following positive definite solution (the limit of the convergent
sequence {Un})

U3 =


10.0361 0.0211 0.0206 0.0298
0.0211 10.0390 0.0172 0.0267
0.0206 0.0172 10.0782 0.0275
0.0298 0.0267 0.0275 10.1168

 .
Remark 3.7. The graphical view of convergence for Example 3.5 and Example 3.6 is shown in Figure 2. Note that
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Figure 2: The Convergence curve.

we get the convergence faster in Example 3.6. To get convergence, we just need 3 iterations, while in Example 3.5 we
require 6 iterations. That is, the convergence in Example 3.6 is speeder than as in Example 3.5. We see this fact in
Figure 2. Indeed, the slope of the curve of convergence for Example 3.6 equal to 4.3093, that it is greater than as in
Example 3.5, which is equal to 1.5125.
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4. An application to a random Fredholm type integral equation

Probabilistic fundamental analysis is an essential concept of mathematics, which is applied to resolve
diverse problems. An equation needing a mathematical tool to model its phenomena is characterised as
a random equation. Fixed point techniques for stochastic functions have been investigated in 1950 by the
Prague School of Probability. It appears due to the importance of fixed point results in probabilistic func-
tional analysis and probabilistic models along with variant applications. Related issues to measurability of
probabilistic, solutions, and statistical concepts of random solutions have arisen because of the initiation
of randomness. Observe that random fixed point results are considered as stochastic generalizations of
classical fixed point results which are described as deterministic results. For more related results, see [27–30].

Now, we apply Theorem 3.3 to guarantee the existence of a unique solution to the following nonlinear
random Fredholm integral equation of the second kind of the form:

U(ϖ, t) =
∫ 1

0
G(ϖ, t, s,U(ϖ, t))ds (4.14)

where
(i) ϖ ∈ Ω is a supporting set of (Ω, β, µ) a probability measure space;

(ii) U(ϖ, t) is a valued random variables for each t ∈ [0, 1];
(iii) G(ϖ, t, s,U(ϖ, t)) is real stochastic kernel for t, s ∈ [0, 1] and measurable in t on [0, 1].

Let X = C([0, 1],R) be the set of all continuous functions defined on [0, 1]. Consider

∥U(ϖ)∥∞ =: ∥U(ϖ, .)∥∞ = sup
t∈[0,1]

|U(ϖ, t)| , ϖ ∈ Ω.

Now, define
d(U(ϖ),V(ϖ)) = ∥U(ϖ) − V(ϖ)∥∞ for all U(ϖ),V(ϖ) ∈ X.

Note that (X, d) is a complete DCMLS with controlled functions

ϑ(U(ϖ),V(ϖ)) = 1 and ϵ(U(ϖ),V(ϖ)) = e∥U(ϖ).V(ϖ)∥∞ for all U(ϖ),V(ϖ) ∈ X.

Theorem 4.1. Assume that for all U(ϖ),V(ϖ) ∈ X and ϖ ∈ Ω:
(h1) |G(ϖ, t, s,U(ϖ, t)) − G(ϖ, t, s,V(ϖ, t))| ≤ k.esupt∈[0,1] |U(ϖ,t)||V(ϖ,t)|

|U(ϖ, t) − V(ϖ, t)|

for some k ∈
[
0, 1

e2.(supt,s∈[0,1] |G(ϖ,t,s,U(ϖ,t))|)2

)
;

(h2) G(ϖ, t, s,
∫ 1

0 G(ϖ, t, r,U(ϖ, t))dr)) < G(ϖ, t, s,U(ϖ, t)) for all t, s ∈ [0, 1].

Then the above Fredholm integral equation (4.14) has a unique solution.

Proof. Define the random self operator on X given as TU : Ω × [0, 1] −→ R, where for all (ϖ, t) ∈ Ω × [0, 1],

TU(ϖ, t) =
∫ 1

0
G(ϖ, t, s,U(ϖ, t))ds.

Now, for ϖ ∈ Ω and t ∈ [0, 1], we have

|TU(ϖ, t) − TV(ϖ, t)| =

∣∣∣∣∣∣
∫ 1

0
(G(ϖ, t, s,U(ϖ, t)) − G(ϖ, t, s,V(ϖ, t))) ds

∣∣∣∣∣∣
≤

∫ 1

0
|G(ϖ, t, s,U(ϖ, t)) − G(ϖ, t, s,V(ϖ, t))| ds

≤ k.esupt∈[0,1] |U(ϖ,t)||V(ϖ,t)|
∫ 1

0
|U(ϖ, t) − V(ϖ, t)| ds

≤ k.esupt∈[0,1] |U(ϖ,t)||V(ϖ,t)| sup
s∈[0,1]

|U(ϖ, t) − V(ϖ, t)| ds

= k.ϑ(U(ϖ),V(ϖ))ϵ(U(ϖ),V(ϖ))d(U(ϖ),V(ϖ)).
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Thus,

d(TU(ϖ),TV(ϖ)) ≤ k.ϑ(U(ϖ),V(ϖ))ϵ(U(ϖ),V(ϖ))d(U(ϖ),V(ϖ)).

For all n ∈N∗ and U(ϖ) ∈ X, we have

TnU(ϖ, t) = T(Tn−1U)(ϖ, t)

=

∫ 1

0
G(ϖ, t, s,Tn−1U(ϖ, t))ds

=

∫ 1

0
G(ϖ, t, s,T(Tn−2U)(ϖ, t))ds

=

∫ 1

0
G(ϖ, t, s,

∫ 1

0
G(ϖ, t, r,Tn−2U(ϖ, t))dr)ds

<

∫ 1

0
G(ϖ, t, s,Tn−2U(ϖ, s))ds

= Tn−1U(ϖ, t).

Thus, for all t ∈ [0, 1], we find that {Un}n = {TnU(ϖ, t)}n is a bounded below increasing sequence,
and so it is convergent, say to l. Since {Tn

}n is monotone, it by the Dini theorem it follows that for all
ϖ ∈ Ω, supt∈[0,1] |T

nU(ϖ, t)| converges to some σ(ϖ) ≤ supt,s∈[0,1] |G(ϖ, t, s,U(ϖ, t))|. Observe that

lim
n,m→∞

ϵ(TnU(ϖ),TmU(ϖ)) = lim
n,m→∞

esupt∈[0,1] |T
nU(ϖ,t)||TmU(ϖ,t)|

→eσ(ϖ)2

≤e(supt,s∈[0,1] |G(ϖ,t,s,U(ϖ,t))|)2
.

Thus,

sup
m≥1

lim
i→∞

ϖ(Ui+1,Ui+2)ϵ(Ui,Ui+1)ϵ(Ui+1,Um) ≤ sup
m≥1

e(σ(ϖ))2
eσ(ϖ) supt∈[0,1] |Um(ϖ,t)|

= e(σ(ϖ))2
eσ(ϖ) supt∈[0,1] |U0(ϖ,t)|

≤ e2.(supt,s∈[0,1] |G(ϖ,t,s,U(ϖ,t))|)2

≤
1
k
.

All the axioms of Theorem 2.1 hold, and hence there is a unique solution of the equation (4.14).

5. Conclusion

In this work, we established a fixed point result involving the control functions in the right-hand side
of the contraction mapping. We also gave an application on matrix equations and some investigations
on numerical parts have been considered and studied. Namely, some convergence results for a class of
matrix equations have been derived. Working on stochastic fixed point results for generalized contractive
mappings in the framework of variant generalized metric spaces is an interesting subject. The last part of
our paper goes with this direction by giving a solution of a random integral equation. It would be better to
study random fixed point theory in DCMLKs via sevral contraction mappings. We keep it for next papers.

Data Availability

No data is associated with this study.



H. Aydi, H. Hammouda / Filomat 37:27 (2023), 9299–9313 9312

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors Contributions

All authors contributed equally and significantly in writing this article.

Funding

This research does not receive any external funding.

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math. 3 (1922),
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