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Strong convergence theorems and a projection method
using a balanced mapping in Hadamard spaces

Yasunori Kimura?, Tomoya Ogihara®

®Department of Information Science, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan

Abstract. In this paper, we prove a strong convergence theorem generated iterative of Halpern type using
a balanced mapping of a countable family of nonexpansive mappings. Further, we propose a projection
method with balanced mappings.

1. Introduction

Let H be a Hilbert space, C a nonempty subset of H, and T a nonexpansive mapping of C into itself. The
problem of finding a fixed point of T is one of the most important problems in nonlinear analysis. In 2008,
Takahashi et al. proposed a strong convergence theorem, which is called the shrinking projection method.

Theorem 1.1 (Takahashi et al. [10]). Let H be a Hilbert space, C a nonempty closed convex subset of H, T a
nonexpansive mapping such that ¥ (T) # @, and {a,, | n € N} € [0,a] C [0, 1[. For a point x € H chosen arbitrarily,
generate a sequence {x,} and a sequence {C,} of sets by x; € C, Cy = C and

Yn = Xy + (1 — ay)Txy;
Co={z€Clllz = yull <llz = xall} N Cs;
Xn+1 = PC,,x

for each n € IN, where Py is the metric projection of C onto a nonempty closed convex subset K of C. Then, {x,}
converges strongly to Pryx € C.

On the other hand, as another type of strongly convergent sequence to a fixed point, Kimura et al.
proposed the following projection method in a Hilbert space in 2011. It is called the combining projection
method.

Theorem 1.2 (Kimura et al. [8]). Let C a nonempty closed convex subset C of a Hilbert space and T a nonexpansive
mapping of C into itself for j € {1,2,...,N} such that ﬂ?il F(T;) # @. Put Iy =1{1,2,...,N}. Let {a, | n € N} C
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[0,1], {ﬁi, |jeln,ne ]N} C [0, 1] such that ZjelN ﬁfq =1forn € N, {yux | n,k € N,k < n} such that Y}_; yur =1
forn e IN, and {0, | n € N} C [0,1]. Define a sequence {x,}by u,x; € C and

yfl = apxy + (1 — ay)Tix, for j € In;
Cil = {Z eC | ”Z - ?/il“ < “Z - xn”} fOrj € IN}
virk = Pcixnfork €{1,2,...,n)and j € Iy;

Wnjk = zﬁivifkfork €{1,2,...,n};

jEIN

n
Xpt1 = Oplt + (1 - 6n) Z Vi kW k
k=1

for each n € IN, where Px is the metric projection of H onto a nonempty closed convex subset K of H. Suppose the
following conditions hold:

(@) liminf,ea, <1;

(b) B, > 0forall j€ly;
(¢) limy—seo Yui > 0 forallk € Nand Yy Yoy Wnsik — Vuxl < 00;
(d) lim; 00 6, = 0, 220:1 0y = o0 and Z;T:l [0741 — On| < o0.

Then, {x,} converges strongly to ij_\/: Tyl

We can prove this theorem by using the following result for a countable family of nonexpansive mapping
in a Banach space.

Theorem 1.3 (Aoyama et al. [1]). Let E be a uniformly convex Banach space whose norm is uniformly Gateaux
differentiable, C a nonempty closed convex subset of E, {a,, | n € N} € [0,1], {85 | k,n € N,k < n} C [0, 1] such that
Y X =1 for n € N, and Sy a nonexpansive mapping of C into itself for k € N such that (o F(Sx) # @. Define
{xn} by x1,u € C and

n
Xpe1 = At + (1 — ayy) Z ﬁﬁSk
k=1

for each n € IN. Suppose the following conditions hold:

(a) limyea, =0, 220:1 @y = coand Z;Zozl ZZ:l latns1 — | < oo;
(b) limy e > 0 fork € Nand Yoy Y1, |85, — B5| < oo

n+1

Then, {x,} converges strongly to Qu, where Q is sunny nonexpansive retraction of E onto (i F (Sk).

Huang and Kimura generalized Theorem 1.2 to the setting of Hadamard space [6]. In this result, they
repeatedly use a usual convex combination between two points to construct the convex combination among
three or more points. There is another approach to take a convex combination among such points; a notion
of balanced mapping.

In this paper, we propose a convergence theorem generated by a Halpern type iterative sequence using
a balanced mapping of a countable family of nonexpansive mappings. We apply this result to a new
method using a balanced mapping of nonexpansive mappings in a Hadamard space, which is similar to
[6]. It is different from the method proposed in [7]. In Section 2, we introduce a Hadamard space and a
balanced mapping of nonexpansive mappings. In Section 3, we prove a convergence theorem generated by
a Halpern iterative sequence using a balanced mapping of a countable family of nonexpansive mappings
in a Hadamard space. In Section 4, we propose a projection method using a nonexpansive mapping and
prove a convergence theorem.
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2. Preliminaries

Let (X, d) be a metric space, and T a mapping of X into itself. The set of all fixed points of T is denoted by
F(T). Let {x,} be a bounded sequence of X. An element xq € X is said to be an asymptotic center of {x,} C X
if the following equality holds:

lim sup d(x,, x0) = 1nf lim sup d(x;, x).

n—oo n—oo

A sequence {x,} C X is said to be A-convergent to xy € X if xo is a unique asymptotic center of all subsequences

of {x,}. It is denoted by x, A xo. We say a mapping T is nonexpansive if for x,y € X, it follows that
d(Tx, Ty) < d(x, y). If a mapping T is nonexpansive and ¥ (T) # @, it is closed convex. Further, a mapping
T is called A-demiclised if for every {x,} C X satisfying x, A X0 € X and lim,,_,, d(x;,, Tx,) = 0, it follows that
xo € F(T). We know that if a mapping T is nonexpansive, it is A-demiclosed.

Let x, y € X and y,, a mapping of [0, d(x, y)] into X. A mapping y,, is said to be a geodesic with endpoints
x and y if y,y(0) = x, yxy(d(x, y)) = y and d(yxy(s), yxy(t)) = |s — t| for all s, t € [0,d(x, y)]. X is called a unique
geodesic space if for all x,y € X, there exists a unique geodesic with endpoints x and y. The image of the
geodesic with endpoints x and y is denoted by Im y,,. For x, y € Xand t € [0, 1], there exists z € Im ), such
that d(x, z) = (1 — t)d(x, y) and d(y, z) = td(x, y), which is denoted by z = tx & (1 — f)y.

Let X be a unique geodesic space and x,y,z € X. Then, a geodesic triangle of vertices x, y,z is defined by
Imy,, UImy,, Ulmy,,, which is denoted by A(x, y,z). For x,y,z € X, a comparison triangle to A(x,y,z) C X
of vertices %, 7,z € E? is defined by Imyzy UImyy: UImyz with d(x,y) = dg2(%, §), d(y,z) = dg2(,2) and
d(z, x) = di2(z, %), which is denoted by A(X, 7,2). A point p € Im y¢y is called a comparison point of p € Imy,
if d(x,p) = dg2(%, p). A unique geodesic space X is called a CAT(0) space if for all x, y,z € X, p,q € A(x, y,2)
and their comparison points g, j € A(%, 7, 2), it follows that d(p,q) < dg:(p,3). A complete CAT(0) space is
called a Hadamard space. In a CAT(0) space, the following lemmas hold:

Lemma 2.1 (Bacdk [2]). Let X be a CAT(0) space, x,y,z € X and t € [0,1]. Then the following holds:

d(tx @ (1 - t)y,2)* < td(x,2)* + (1 — t)d(y, z)* — H(1 — t)d(x, y)*.
Lemma 2.2 (He et al. [5]). Let X be a Hadamard space and {x,} a bounded sequence of X such that x, Ayex
Then d(u, x) < liminf, . d(u, x,) for u € X.

Let X be a Hadamard space and put Iy = {1,2,...,N}. Let T a nonexpansive mapping of X into itself

for k € Iy and {ak |k e IN} c [0,1] with Yy, @ = 1. Then a balanced mapping U of Ty is defined by

Ux = Argmmz a*d(Tex, y)?

yEX kely

for all x € X; see [4].

Theorem 2.3 (Hasegawa and Kimura [4]). Let X be a Hadamard space. Put IN ={1,2,...,N}. Let Ty a
nonexpansive mapping for all k € Iy such that (N, F(Tx) is nonempty and {a* € Iy} C [O 1] such that
Yier, @ = 1. Define U: X — X by

Ux = Argmmz o*d(Tix, y)2
y€X kEIN

forall x € X. Then the following hold:

(a) U is single-valued and nonexpansive;

(b)y F(U) = mkezN F(Tk);
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(c) the inequality

N N
Z aFd(Tex, Ux)? < Z ok d(Tyx, y)2 —d(Ux, y)2
k=1 k=1

holds for x,y € X.

The following lemma is important to prove a convergence theorem generated by a Halpern’s iterative
method using a balanced mapping of a countable family of nonexpansive mappings:

Lemma 2.4 (Aoyama et al. [1]). Let {s,} be a sequence of nonnegative real numbers, {a,} a sequence of [0,1]
with Y ;1 ay = 00, {u,} a sequence of nonnegative real numbers with Y, u, < oo and {t,} a real numbers with
limsup,_, t, < 0. Suppose that s,,1 < (1 — ay)s, + ayt, + uy for all n € N. Then lim, 0 5, = 0.

3. A convergence theorem with balanced mappings

In this section, we generate a Halpern type iterative sequence using a balanced mapping of a countable
family of nonexpansive mappings and prove the convergence theorem. We first show the properties of a
balanced mapping of a countable family of nonexpansive mappings:

Lemma 3.1. Let X be a Hadamard space, Ty a nonexpansive mapping of X into itself for k € N with (o F(Tk) # @,
@ k=1,2,...,n) c[0,1]and (f* | k=1,2,...,n+ 1} C [0,1] such that Y}_, aF = ¥ }*1 = 1. Put

n n+1
Ux = Argmin Z a*d(Tyx, y)* and Vx = Argmin Z Brd(Tyx, y)?
yeX k=1 yeX k=1

for all x € X. Then the inequality
d(Ux, Vx) < 4d(x,z) Z |ﬁk - ak‘
k=1

holds for all x € X and z € (N2, F (Tx).

Proof. Let x € X. If Ux = Vx, we get the result obviously. Suppose Ux # Vx. Lett € ]0,1[. By Lemma 2.1,
we get

n n

Z a*d(Tex, Ux)? < Z a*d(Tix, tUx ® (1 — £)Vx)?
k=1 k=1

n
<Y dFHd(Tex, Ux)? + (1 — Hd(Tix, Vx)? — (1 — Hd(Ux, Vx)?)
k=1

=ty dd(Tix, Ux)*> + (1 -1) Z akd(Tyx, Vx)? = t(1 — t)d(Ux, Vx)?
k=1 k=1
and hence

H1 — Hd(Ux, Va2 < (1 - ) Z ok d(Tix, Vx)? — Z ok d(Tyx, Ux)? |.
k=1 k=1

Dividing 1 — t > 0 and letting t — 1, we get

d(Ux, Vx)?> < Y afd(Tex, Vx)? = Y ok d(Tix, Ux)? = Y a"(d(Tex, Vx)? — d(Tiex, Ux)?). (1)
n
k=1 k=1 k=1
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Similarly, we get

n+1
d(Vx, Ux)? < Z B (d(Tyx, Ux)* — d(Tyx, Vx)?).
k=1

Then we have

d(Vae, Ux)? = Y BH@(Tix, U)? = d(Texr, V) + B (@d( T, Ux)? = d(Tpar, V)
k=1

= ) B (T, U = d(Tex, V) + (1 - /3"] (AT, Up)® = d(Tr, Uperx)’)

k=1 k=1

=Y BHd(Tex, Ux)> — d(Tix, Vx)?) + Z(ak = ) (A(Tirx, Ux)? — d(Tyiax, V)?)
k=1 k=1

=

n

< Y B d(Tex, Ux)* — d(Tix, Vo)) + Z |8 = | [d(Tys1x, Ux)? = d(T 1%, V)|

k=1 k=1
and hence
n n
d(Ux, Vx)? < Z BH(d(Tex, Ux)? — d(Tix, Va)?) + 2 |8 = a!| [d(T 1%, Ux)? — d(Tyu1x, V). )
k=1 k=1

Adding (1) and (2), we get

2d(Ux, Vx)* < Z aF(d(Tix, V)2 — d(Tex, Ux)?) + Z BH(d(Tx, Ux)? — d(Tix, Vx)?)
k=1 k=1

+ Z )ﬁk - ka| |d(Tn+1X, Ux)? — d(T 2, Vx)2|

k=1
< Y |8 - o] (Jd(Tix, U)? - d(Tix, V@) + Y [B* = o] (Jd(Tax, Ux)? = d(T i, Vi)
k=1 k=1

< Y | - o] @(Tix, U) + d(Tyx, Va)d(Ux, V)
k=1
n
+ Z |8 = & (@(Ts1x, Ux) + d(Tyarx, Va)d(Us, V).
k=1
Dividing 2d(Ux, Vx) > 0, we get

d(Ux, Vx) < % ka |B* = o] ((d(Tix, Ux) + d(Tyx, Vix)) + % ; |B" = | (@d(T a1, Ux) + d(Tinx, V).

Letz € N2, F(Ty) € N2 F(Ti) € Ny F(T1). By (a) of Theorem 2.3, mappings U and V are nonexpansive.
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Then we get
d(Ux, Vx) < % |B* = a*| (@d(Tix, Ux) + d(Tix, V) + % Z |B* = | (@d(T,ri1x, Ux) + d(Tiax, V)

k=1 k=1

1 - k k

<5 Z |B* - | (d(Tix, 2) + d(z, Ux) + d(z, Vx) + d(Tps1x, 2))

k=1
1 n

+s |B* — | (@d(Ti1x, 2) + d(z, Ux) + d(z, Vx) + d(T1x, 2))

k=1

< 4d(x,z) Z |ﬁk - ak)
k=1

and thus we get desired result. [

Lemma 3.2. Let X be a Hadamard space, C a nonempty bounded subset of X, Ty a nonexpansive mapping of X into
itself for k € N with (o, F (Tx) # @ and, {ak | n,k € N,k < n} € [0,1] such that Y}, aX =1 forn € N. Let

n
U,x = Argmin Z a’,‘ld(Tkx, y)2
yeX k=1

forallx € Xandn € N. If Yoly Yy |ak | — ak| < oo, then

n+l
(o]

Z sup d(Uy+1x, Uyx) < oo.

n=1 x€C

Proof. Let x € C. By Lemma 3.1, we get
n n
d(Ux, Upirx) < 4d(x,2) ) Jab, ) — [ <am ) ok, - o
k=1 k=1

for all z € (N2, F (Tk), where M = sup, . d(x, z). Since Y721 Y.p_y |a’:l+1 - ak| < oo, we get

)

Z sup d(U,x, Uy41x) < oo.

n=1 Xx€C
Consequently, we complete the proof. [J
By Lemma 3.2, we can prove the following corollary easily.

Corollary 3.3. Let X be a Hadamard space, Ty a nonexpansive mapping of X into itself with oy F(Tx) # @ and,
{af | n,k € N,k <n} c[0,1]suchthat Y}_; af =1 forn € N. Let

U,x = Argmin Z ald(Tyx, y)*
yeX =1

forallx e Xandn € N. If Yooy Yy |ak | — ak| < oo, then

n+l

Z A(Upsr1x, Upx) < 0

n=1

and {U,x} is a Cauchy sequence for each x € X.
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By Corollary 3.3, there exists a limit of {U,x}. In the following lemma, we consider the properties of it.

Lemma 3.4. Let X be a Hadamard space, C a nonempty bounded subset of X, Ty a nonexpansive mapping of X into
itself for k € N with (2, F(Tx) # @ and, {ak | n,k € N,k < n} C [0,1] such that Y}_, a& =1 forn € N. Let

U,x = Argmin Z o/,‘ld(Tkx, y)2
S =
forall x € X and n € IN. Suppose the following conditions hold:
(@) lim,eak >0fork e N;
(b) Loy Liet la,, —ajl < co.
Put Ux = limy—,e Uyx for each x € X. Then, the following conditions hold:
(i) limy e sup, .- d(U,x, Ux) = 0;
(ii) U is nonexpansive ;
(i) 7(U) = N, F(TY.
Proof. (i) Let m,n € N such that n < m and x € X. Then, we get

d(Uyx, Uyx) < d(Uyx, Upix) + d(Upsax, Upyx)

< d(Uyx, Uyipx) + d(Uy0x, Upy1x) + d(Upp1x, Uyx)
1 o0
<) d(Ux, Upx) < Z d(Ux, Upqx)

n I=n

3

and hence

A(Uyx, Uy2) < ) (Ui, Ura). ©)

I=n

By (3) and Corollary 3.3, letting m — oo, we get

sup d(Ux, U,x) < Z sup d(Ujx, Upy1x).

xeC I=n x€C

Letting n — oo, we get lim,,_,, sup .~ d(Ux, U,x) = 0.
(ii) Let x, y € X. Since U, is nonexpansive for n € IN, we get

d(Ux, Uy) = lim d(U,x, Uyy) < lim d(x, y) = d(x, y)

and hence U is a nonexpansive mapping of X into itself.
(iii) Let z € Moy F(Tk) € Ny F(Tx) = F (Uy) for n € N. Then, we get

Uz=1limU,;z=limz=z2

n—oo n—oo

and thus z € F(U). On the other hand, let z € ¥ (U) and w € (N2, F (Tx) € Ny F (Tx) = F(U,) for n € N.
By (c) of Theorem 2.3, we get

Y akd(Tiz, Upz? < ) abd(Tiz, Uyw)? = d(Uyz, U)?
k=1 k=1
n
= Z ok d(Tiz, w)? — d(Uyz, W)
k=1

< d(z,w)* - d(U,z, w)>.
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Fix j € IN arbitrarily. Then, we have

0< azld(sz, U,z)* < Z aﬁd(Tkz, U,z)* < d(z,w)? — d(U,z, w)*
k=1

By (a), letting n — oo, we get lim,,_,« d(Tz, U,z) = 0. Then, it follows that
d(Tjz,z) = d(Tjz,Uz) = lim d(T}z,U,z) = 0
n—o0o

and hence z € ¥(T;). Since j € N is arbitrary, we get z € (;2; ¥ (Tx). Therefore we get 7 (U) = N2, F (Tk)
and complete the proof. [

The following result was mentioned in [3] without proof. For the sake of completeness, we give the
proof.

Theorem 3.5. Let X be a Hadamard space, Ty a nonexpansive mapping of X into itself for k € IN such that
Miey F(Tx) # @, {ak | n,k € N,k < n} C [0,1] such that Yj_, ok =1 foralln € N, and {5, | n € N} C [0,1]. Let

n
U,x = Argmin Z al,‘ld(Tkx, y)2
yeX k=1

forall x € X and n € N. Define a sequence {x,,} by u,x; € X and
Xp+1 = Ouu ® (1 — 6,)U,xy,

for each n € IN. Suppose the following conditions hold:

(@) limywak > 0forke Nand Yooy Y lak | — ak| < oo;

(b) lim, e 6, =0, 220:1 Op = oo and Z.Zoﬂ 6141 — O] < 00.
Then, {x,} is convergent to Pr= g u, where Pn= g,y is the metric projection of X onto (\;Z; F (Ty).
Proof. Letz € Moy F(Tk) € M=y F (Tx) = F (U,,) for n € N. Then, we get

d(xp41,2) < 0,d(u, z) + (1 = 6,)d(U,x,, 2)
< 6,d(u,z) + (1 — 04)d(xy, 2)
< max{d(u, z), d(x,, z)}
< max{d(u, z), d(x1,z)}.

and hence {x,} and {U,x,} are bounded for all n € IN. Put M = max{d(u, z), d(x1,z)}. Let C be a bounded
subset of X including {x,}. Then, we get

A(Xn12, Xnv1) = d(Ops1u & (1 = Opr1) U1 %41, 05ut ® (1 = 0,)Upxy)
< d(6p1u ® (1 = Ons1) U1 Xp41, 6utt ® (1 = 05) Upg1X041)
+d(0nu & (1 = 6p)Un+1Xn+1, 65t & (1 = 04)Unxn)
< 6nr1 = Ould(Uns12n41, 4) + (1 = 60)d(Un+1Xn+1, UnXn)
< 10n+1 = Onld(Uns1Xn+1, 1) + (1 = 8p)(@d(Un+1Xn+1, UnXna1) + d(UnXns1, UnXn))
< 6n+1 = Ould(Uns12n41, u) + (1 = 60)d(xXn41, X0) + (1 = 8)d(Un+1X41, UnXn41)
< 6u+1 = Ould(Ups1xns1, u) + (1 = 6,)d(xXu41, Xn) + d(Ups1Xn+1, UnXns1)
< (1= 06,)d(Xps1, Xn) + 10041 = Opld(Ups1Xps1, 1) + sup d(Uy1x, Upx)

xeC

< (1= 0u)d(xp41, Xn) + 2M|Op11 — 04l + sup A(Uy41x, Uyx)

xeC
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for all n € N. By Lemma 3.2, we get Y., , sup, .- d(Uyx, Uy1x) < oo. Using Lemma 2.4, we get
limy 00 A(Xy+1, x,) = 0. Further, we get

A(x, Unxn) < d(xy, Xni1) + d(Xne1, Unxn) = d(xn, Xpi1) + d(0,u @ (1 = 8,)Upx, Uyxy)
= d(xy, Xp41) + 0nd(u, Uyxy)

for all n € IN. Letting n — oo, we get lim,_,co d(x,, Uyx,) = 0. By Corollary 3.3, we get {U,x} is a Cauchy
sequence for each x € X. Put Ux = lim,_,.c U,x. By Lemma 3.4, U is nonexpansive and F (U) = (N~ F (Tx)-
Put

2
Vn = d (u, Pm;oﬂ f(Tk)u) -(1- 6,,)d(u, unxn)2'
We next show limsup,_, . 7» < 0. We can take a subsequence {y,,} of {y,} such that

lim y,, = limsup y,.
i—o0 00

Further, since {x,,} is bounded, there exists a subsequence {xn,-,} of {x,,} such that X, A xg € X. We get
0<d (xn,-// an,.j) <d (xnij_, lln,.j xn,.j) +d (Un,.j X, s an,.j) <d (xnij_, Llnl.j x,,,.j) + sxl:g d (U,,,j X, Ux) .

By (i) of Lemma 3.4, letting j — oo, we obtain lim; d(x,,,.j, an,j) = 0. Since U is A-demiclosed, we have
xo € F(U) = Moy F (Tk). It follows that

Vn — (d (u/ Pﬂ;‘;l 7’(Tk)u)2 —d(u, xn)z)‘ = |d(u/ xn)z —d(u, unxn)2 + 0nd(u, unxn)2|

< |d(u, xn)? —d(u, Ll,,x,,)2| + Opd(u, Uyx, )
< (d(u, x,) + d(u, Upx,)d(xn, Uyxy) + 6,d(u, Upx,)? — 0.

By Lemma 2.2, letting n — oo, we get

. . . . 2 2
imaup y, = lim o, = fim =l (4(0 P ) = (15, )

= d (1, Py, ) - lim d (0, )’

2 2
< d(u,P N f(Tk)“) — d(u, xo)
0.

IA

By Lemma 2.1, we have
2 2 2 9
d (Xn+1, Pm;il 77(Tk)1/l) < (Snd (M, Pm;il T(Tk)u) + (1 - 67,)61 (Unxn, Pﬂlil T(Tk)u) - 6n(1 - 6n)d(u, U,,x,,)
2
= (1= 8u)d (¥, Pz, 1y 1) + Oun.

Using Lemma 2.4, we get lim;, o 4 (xn, Pre, (,r(Tk)u) = 0. Consequently, we get the desired result. [J

4. New type of the projection method

In this section, we propose the combining projection method of balanced type and prove a strong convergence
theorem using Theorem 3.5.
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Theorem 4.1. Let X be a Hadamard space. Let T a nonexpansive mapping of X into itself such that ¥ (T) is nonempty,
{ay |ne N} C[0,1], {BX | n,k € N,k < n} C[0,1] such that Y.}_, B5 = 1 forall n € N, and {5, | n € N} C [0, 1].
Define sequences {x,} and {y,} of X, a sequence {C,} of subset of X, and mappings {U,} by u € X, x; € X and

Yn = Xy @ (1 - an)Txn}

Co = {z € X[ d(yn,2) < d(xn,2)};

U,x, = Argmin Z ﬁﬁd (Pc,xn, y)2 ;
yexX 43

Xn1 = 0t @ (1 = 6,)Upxy

for each n € IN, where P is the metric projection of X onto a nonempty closed convex subset K of X. Suppose the
following conditions hold:

(@) {z€ X |d(z,v) <d(z,v")} is convex forall v,v" € X;
(b) liminf, . a, <1;
() limyeo By > 0 fork € N, Xoly Yy I,y — Bil < 00

n+1

(d) hmn—»oo 0, =0, 220:1 Op = 00 and Z.Zozl |6n+1 - 5n| < 00.

Then, {x,} is convergent to PguL.
Proof. Letz € F(T). Since T is nonexpansive, we get
A(Yn, 2) < ayd(xy,2) + (1 — a,)d(Txy, z) < d(xy, 2)

and hence ¥ (T) c C, for all n € N. Since C, is a nonempty closed convex set, the metric projection Pc, is
well-defined for n € IN. Then, we get

(FPe) =[G F(D) % 2.
k=1 k=1

Since Pc, isnonexpansive for all k € IN, we obtain U, is nonexpansive. By Theorem 3.5, we get x,, — Pa= c,u.
Put xo = P> c,u. Since xg € (-1 Cn, letting n — oo, we get y, — xo. By (b), there exists a subsequence
{an,} of {a,} such that lim;_,« a;, € [0, 1[. Then, we get

1 1
d(xni/ Txn,') = 1-a vd(xﬂir y”i) < m (d (xnirxo) + d(xOr y”i))‘

Letting i — oo, we get lim,_, d (X, Txy,) = 0. Further, we get
d(xo, Txo) < d(xo, Xy,) + d(xp,, Txp,) + d(Txy,, Txo)
and hence x € F(T). Therefore we get x, — Ps(7)u and complete the proof. O

If we consider Theorem 1.2 with N = 1, we obtain a convergence theorem for a single mapping. This result
is a special case of Theorem 4.1.
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