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On the growth of the modulus of the derivative of algebraic
polynomials in bounded and unbounded domains with cusps

Cevahir Doganay Giin®

®Department of Mathematics and Science Education, Nizip Faculty of Education, Gaziantep University, Gaziantep, Turkey

Abstract. In this present work, we study the behavior of the derivatives of algebraic polynomials in the
bounded and unbounded regions bounded by piecewise smooth curve with interior and exterior cusps.

1. Introduction and main results

Let C denote the complex plane; C := CU {oo}; G € C, 0 € G, be a finite Jordan domain; I' := JG,
Q:=C\G. ForR > 0andt € C, let us set: A(t,R) = {w : |[w— t| > R} (with respect to E). Let w = O(2),
®: QO — A(0, 1), be the univalent conformal mapping with normalization: ®(co) = oo, lim;,« @ > 0. For
any R > 1, wedenoteby I'r := {z: |D(z)| = R}, exterior level curve for the I and let Gg := intI'r, Qg := extI'g.

Denote by g, the class of algebraic polynomials P,(z), deg P, < n,n € N.

For the Jordan domain G and a given weight function / (z), we introduce:

1/p

IPalla,ie = = ffh(Z) IPu(z)lP do.| , 0<p<oo, )
G

IPullacac @ =max|Pu(z)l, p = oo,
zeG

where ¢ is the two-dimensional Lebesgue measure, and when I' is rectifiable:

1/p
Py =Pl = | [ HEIP@PIE| 0 <p <o @
r
1Pl = = WPull oy 3= max|Pu(l; £y(1,T) =: Ly(D).

In the theory of approximation of functions by algebraic polynomials, one of the important auxiliary
results is the so-called Bernstein-Walsh lemma [41], which states that for any P, € ¢,

IPu(2)] < 0@ 1Pl 2z € Q 3)
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is true. Hence, for the points z € Gg from (3), we have:

“Pn < R" “Pn“C(E) . (4)

“C(ER)
This implies that the uniform norm (C—norm ) of the polynomial P,, over the domain G increases by at
most a constant when the domain G is extended to the domain Gi.(1/s).

Further, in 1937, in [31] it was proved that:

1
IPull 2,y < R ¥ IPull £y, p > O. (5)

This shows that if the C—norm of the polynomial P, is replaced by the ”.£,(I')~norm” (2), then this fact
remains valid.

Let us give a weight analogue of (5). For this, we define the weight function h(z) # 1 to be used
throughout the work as follows.

Let {z } €I be a fixed system of distinct points. The generalized Jacobi weight function / (z) is defined
i j=1

as follows:

h(z) = ho(z) H lz-z|", z€Gr, Ro>1, ©)
j=1

where y; > -1, for all j = 1,2,...,m, and hp is uniformly separated from zero in Gg,, i.e., there exists a
constant ¢1(G) > 0 such that for all z € Gg,, ho(z) = c1 (G) > 0.

The weighted analog of the inequality (5) has been proved in [11, Lemma 2.4] for weight function h(z)
as defined in (6) as follows:

Pull,rg < R IPull gy, 7 = max{0;y;: 1< j < m). 7)

The analog of the estimates (3) and (7) for the ”A,(h, G)—norm” for the domains with quasiconformal
boundary (see: Definition 2.1) and the same weight function (6) with y; > -2, j = 1,2,...,m, was given in
[2] as follows:

n+d
* P
IPall, ey < 2 R™ Pl P> 0,

where R* := 1+ c3(R—1) and c3 > 0, ¢z := c2(G, p, c3) > 0, are constants independent from 7 and R. Further,
for arbitrary Jordan domain G, any P, € p,, Ri =1+ %, in [6, Theorem1.1] it was obtained that

n+2
IPall, 6 < R 1IP4l

Ap(GR) — Ap(GR

L P>0

1
is true for arbitrary R > Ry =1+ %, where ¢ = (e,,%l)” [1 + O(%)] , 1 = o0, is asymptotically exact constant.
In [39] N. Stylianopoulos showed that if the curve I' is rectifiable and quasiconformal, then there exists

a constant C = C(I') > 0 depending only on I' such that

\/E n+l
IPa(z)| < Cm IPullayc) @@, z€Q,
where d(z,T) := inf{|C—z|: C €T}, holds for every P, € p,. In this paper, firstly we study the following
type estimation for the derivatives |P;,(z)|:
In this work, our goal is to study the behavior of the |Pn (z)) on the whole complex plane. To do this, we

first find estimates for )Pn (z)( in an unbounded domain Q as the following type:

P @)] < nuIPull,, z € O; (8)
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and, on a bounded domain G as the following type:
1Pl < pnllPally, ©)

where 1, := 1n,(T, h,p,z) = coand p, := uu(T, h,p) = o0 asn — oo, are constants depending on the properties
of the I and h.

Estimates analogously to (8) and (9) for arbitrary P, € g, a different weight function & and for some
norms were obtained in [7, 17, 18, 20, 21, 30, 33, 36, 39] for an unbounded domain, and in [2, 5, 16, 19, 24—
28, 30, 32-35, 37, 40] (also reference therein and others) for a bounded domain.

The objects of study in this work will be piecewise smooth regions with interior and exterior zero angles.
For this, we give some definitions and notations that will be used later in the text.

Let S be a rectifiable Jordan curve or an arc and z = z(s), s € [0, |S|], |S| := mes S (linear measure of S),
denote the natural representation of S.

Definition 1.1. We say that a Jordan curve or an arc S € Cy, if S has a continuous tangent 6(z) := 6(z(s)) at
every point z(s).

Throughout this work we denote by c,coc1,cy, ... are positive and ¢, €1, €, ... are sufficiently small
positive constants (in general, different in different relations), which depend on G in general. Let for any
j =1,2,...and sufficiently small ¢; > 0, f;: [0, &1] — R denoted the twice differentiable functions, such that

£i(0) =0, f;k)(x) >0, x>0andk =0,1,2. Forany k > 0 and m > k, notations j = k,_m denotes j =k, k+1, ..., m.

Definition 1.2. We say that a Jordan domain G € Co(A;; f;), 0 < A; <2, i =1,my, fj = fj(x), j =my +1,m,if

I' = JG consists of a union of finite number of Cg-arcs {T ]-};nzo , connecting at the points {z j}m €T such that

I is locally smooth at zy € I'\ {Zj};nzl and:

a) forevery z; € I', i = 1,m1, m; < m, the domain G has exterior (with respect to 5) angles Aim, 0 < A; <
2, at the corner z;;
b) for every z; € I, j = my +1,m, in the local co-ordinate system (x, y) with origin at z; the following
conditions are satisfied .
b1) {z =x+iy:lzl<e, cfjx) Sy <efix), 0<x< 61} cQ,

b,) {z:x+iy:|z|<€1, y)Zezx, OSxSsl}CG,
for some constants —oco < ¢; < ¢y <400, 0<¢;<1,i=1,2.

Thus, Definition1.2 show that each domain G € Cy(A;; fj)) may have exterior non zero angles with

opening A;1t, 0 < A; < 2, interior zero angles for A; = 2 at the points z; € I, i = 1,m, and exterior zero angles
at the points z; € I', j = my + 1,m, at which the boundary arcs are touching with f;(x)—speed. If m = 0, then
the domain G does not have such angles, and in this case we will write: G € Cg; if m; = m > 1, then G has
only Aj;, 0 < A; <2, 0= 1,_ml, exterior angles (when A; = 2 —interior zero angles) and in this case we will
write: G € Cg(A;;0); if my = 0and m > 1, then G has only exterior zero angles and in this case we will write:
G € Co(L; f)).

We assume that the points {z]-};n:l € I" defined in (6) and Definition 1.2 are the same. Also we assume

that these points on the curve I' = JG are located in the positive direction such that, G has A i1, 0<A;j<2,

PE— m
j = 1,my, exterior angles (when A j = 2— interior zero angles) at the points {z 7}]‘—11’ my < m, and has exterior
m
zero angles on the points {z j}j .
=n
Before stating our main results, we introduce some notation. For clarity of results, we will consider
m; =1, m = 2, ie. the piesewise smooth curve I' has two singular points z; € I' and z, € I.  The
reasoning for the cases m; > 1, m > 2 is carried out in exactly the same way. For 0 < §; < §p :=

%min{)zi - z]-| 0,j=1,2,., 1, i # ]}, let Q(z;, 6;) :== QN {z : |z - z]" < 6j}; 0 := 1r£1,i<r}6j. For I' = dG, we put:
<j<

" and w; := O(z;).
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N
U(T,0) := CU U(C, 0) - infinite open cover of the curve I'; Un(T,6) := U U;(T, 0) € Uw(T,0) - finite open
er j=1
cover of the curve I'. For any f > 1 we put: 4(0) := Q(I'}, 0) := Qy N UnT}, 0), ﬁt =0\ Q(0).
Now we proceed to the formulation of new results. Throughout this work we will assume that p > 1
and we put:
T = { max{l, A} +¢e, 0< A <2,
k= 2, Ae =2,

y* := max {y’i,vy;}; a.:=min{a, az}; o := max{ag, as}.

k=1,2.; A := max {Xl,Xz}; y = max{y1, )2}, Y} i= max {0, vk},

Theorem 1.3. Assume that G € Co(A1; cx!t92) for some 0 < Ay < 2, ap > 0 and h(z) is defined by (6) for j = 2.
Then, for any P, € p,, n € N,

(10)

P’ <
V@l <o E.,  zeQg),

is true, where c1 = c1(I', p) > 0 is a constant independent of z and n, c is defined as in Definition 1.2;

|q)z(n+1)(z)) - { DY +D?, e Q)
Pyl .

g yatl A
1 n( p” , ylzm_l,y22(1+a2)Al_1l
Yo+ % 1
DE{[) = ) +SI 0< 1 < (1:1::2—)1X1 - 1, V2 > (1 + aZ) /\1 - ]./
n%/‘l, -1<y1 <0, —1<)/2<(1+az)p/{1—1?
JARLAPY —
Al yi>p-1+ 2ty 2p -1,
X1+(7’2+1—1)%+£ _ _ yotrl-p -
Dglz) — n P 1 11 20, p=1l<yi <p 1+(1+a2ﬁ],72>lﬂ 1,
(lnn) _;7, )/]/)/2=P_1/
1, “1<yLy2<p-1
y1+1 .y o+l -
n( 1!7 _1)A1 + n(7zp _1) 1+1a2 +{/ ) Vlf yz > p - 1’
E = 1-1 1fy1=p—1,—1<7/2SP—1r
n (Inn)™7, {or—l<71£P—1,72=P_1r
1, —lI<yLy2<p-1

Let us consider separate cases when the domain G has only one type of singular points on the boundary
I': an exterior non-zero (interior zero) angle or an exterior zero angle. In these cases, from Theorem 1.3 we
get the following:

Corollary 1.4. Assume that G € Cy(A1; Ay), for some 0 < A1, Ay < 2 and h(z) is defined by (6) for j = 2. Then, for
any P, € p,, n € N,

P+l (5 D(l) + D(l) € Or(S
| @ ||Pn||p{ l 2 € 2(0) (11)

P, (z)| < e

't n2’
d(z,T) E.q z € Qr(5),

is true, where c; = co(I', p) > 0 is a constant independent of z and n;

o~ nre, . yi,72>p-1,
DY = a7 D=1 Al nm' { Myl i)
", “1<yLy2<p-1;
n(}%l_l))‘, YLy >p—1,
S LA FAUE P e

1, “l<y,y2<p-1
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Corollary 1.5. Assume that G € Co(cx+%1; cx'*%2), for some a1, ap > 0 and h(z) is defined by (6) for j = 2. Then,
forany P, € p,, n €N,

P, (Z)| R ]

QA1) (z) D? +D%, zeQr(®
| “wm ”E ny %€ Q) (12)

d(z,T) w2 2€0R0),

is true, where c3 = c3(I', p) > 0 is a constant independent of z and n, c is defined as in Definition 1.2;

7+1

o N T . Y y2>p—1,
D? .= pitett D@ .o ) e (. mEpml sy spol

n1 nr r P " Emn) n or =1<y1<p-1,7,=p-1,

nmﬂl -1 <7/1,y2<p—1;
L}
n( )““ , ’ yuy2>p-1,
E.p = -1 fyi=p-1 -1<y2<p-1,
" (Inm)=, {or—1<715P—1/72=P_1'
1, -1<y,y2<p-1

Now we give a theorem that gives an estimate for

P} (z)| on G.

Theorem 1.6. Assume that G € Cg(Aq; cx1t%2), for some 0 < Ay < 2, ap > 0 and h(z) is defined by (6) for j = 2.
Then, for any P, € 9,,, n € N,

is true, where cy = c4(I', p) > 0 is a constant independent of z and n, c is defined as in Definition 1.2;

P,

o < callPully [Fun + Fual, (13)

75+1

2" +A1+a
(1+ ) (l+ )
G nparag) * pltay l<p<2+ 3 1+0z2
E = ( g +1)A1.F = Ai+l-
nl; =N ;2 =9 n P(lnn) P, p=2+ 1+a2
Ai+1-1
nt e, p>2+ 1+a2

Accordingly, as in Theorem 1.3, from here we will write out the consequences related to individual
cases.

Corollary 1.7. Assume that G € Cg(A1; Ay), for some 0 < Ay, Ay < 2 and h(z) is defined by (6) for j = 2. Then, for
any P, € p,, n €N,

is true, where cs = c5(I', p) > 0 is a constant independent of z and n.

(A2 Py
MS%JP‘”Wmm, (14)

P,

Corollary 1.8. Assume that G € Colcx*ar; cxlta), for some aq, o > 0 and h(z) is defined by (6) for j = 2. Then,
forany P, € p,, n €N,

741

71 P +p(1+0t) 1<p<2+ l+a ’
|P;l o < C6||Pn||p 7’1 P(h‘li’l) _’7’; p= 2+ 1+a2 = 2+ 1+0tz (15
2-1 v
n p/ p > 2 + 1+a2

is true, where c¢ = c¢(I', p) > 0 is a constant independent of z and n, c is defined as in Definition 1.2.
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Remark 1.9. The estimates (13) and, consequently, (14), (15) are sharp.

Therefore, combining Theorems 1.3, 1.6, we obtain an estimation of the growth of |P;, (z)| on the whole

complex plane:

Theorem 1.10. Assume that G € Cg(Ay; cx'*%2), for some 0 < Ay <2, ap > 0 and h(z) is defined as in (6). Then,
forany P, € p,, n €N,

22| { DV +D?, zeQg®),
P, @)| < c7lIPall,{ &0 E,,  z€Qg®),
Fn,l +F71,2/ VAS GR/

is true, where c; = c7(G, p) > 0 is the constant independent of z and n; c is defined as in Definition 1.2; fo), Eu; Fuk,
k =1,2, are defined as in (10) and (13), respectively.

Also combining the Corollaries 1.4-1.7 and 1.5-1.8, we can give estimates separately for the cases
G € Cg(A1;A2), 0 < A1, Ay <2, and G € Co(ex1; cx!*92), ay, ap > 0, in the whole plane.

2. Some auxiliary results

For the nonnegative functions a > 0 and b > 0, we shall use the notations “a < b” (order inequality),
if a < cb and “a < b” are equivalent to c1a < b < cpa for some constants ¢, c1, ¢; (independent of a and b)
respectively.

Definition 2.1. ([38]) The Jordan curve (orarc)I'is called K—quasiconformal (K > 1), if there is a K—quasicon-
formal mapping f of the domain D O I such that f(I') is a circle (or line segment). Let F(I') denote the set
of all sense preserving plane homeomorphisms f of the domain D D T such that f(T') is a line segment (or
circle) and let

Ky := inf{K(f) : f € F()},

where K(f) is the maximal dilatation of a such mapping f. Then I is a quasiconformal curve, if Kr < o, and
I' is a K—quasiconformal curve, if Kr < K.

According to [29], there exists quasiconformal curves which are not rectifiable. Also, according to the
“three-point” criterion [22, p.100], every piecewise smooth curve (without cusps) is is quasiconformal.
On the other hand, from [38], we have:

Corollary 2.2. If S € Cg, then S is (1 + €)-quasiconformal for arbitrary small € > 0.
Corollary 2.3. If S is an analytic curve or an arc, then S is 1—quasiconformal.

Lemma 2.4. ([1]) Let T be a K—quasiconformal curve, z1 € T, z3,z3 € QN {z : |z—z1| < d(z1,T)}; w; =
D(z)), (z2,23 € GN{z |z —z1] < d(z1, TR} wj = @(z))), j =1,2,3. Then,

a) The statements |z1 — zp| < |21 — z3| and [wy — wy| < [w1 — w3 are equivalent.

50 |z1 — za| = |21 — z3| and |wy — wa| < [w1 — ws| also are equivalent;

b) If |z1 — zo| < |z1 — z3], then
2 2
< Z1 — 123 < w1 — W3

w1 — Wy

wl—ZU3K
w1 — W2

21— 23

1

where 0 <rg <1, Ro :=ry" are constants, depending on G.
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Corollary 2.5. Under the assumptions of Lemma 2.4, if z3 € I'g,, then
w1 — Wl < |zt — 2ol < fwy — w7
Corollary 2.6. If T € Cy, then
lwi — wol' ™ < |21 — 2] < fwy —ws|'F,
forall e > 0.

Recall thatfor0 < 6; < ¢ := imin“zi - zj( 1,j=1,2,..,m, i # j},weput Q(zj, 6j) == Qﬂ{z : |z — z]-| < 6]~};
0 := mino;, Q(0) := U Q(z;, 0), Q:=Q \ Q(6). Additionally, let A; := ®(Q(z;, 9)), A(6) := U D(Qzj, 9)),
m =1 =1

1<j<
K(é) := A\A(0). Let w;:= ®(z;) and for ¢; := argw;, j=1,2,..., m, we put

A= {t =R :R>1, 2% <9< —q)7+;/+1}, where Qo = Qu, Q1 = Que1; Qj = ‘IJ(A;.), I':=InQ,, i=

m : —7 . . — . . -
1,2,..., m.Clearly, Q = | Q]-.I“f{ = I’ROQ].FZ =00 =A;N{t: |t =1}, Fp :i=O(I%) =A; N{t:|t| =R}, i =
=1

1, m.

Lemma 2.7. ([9]) Let G € Co(A1, ..., Am), 0<A; <2, j=1,2,..,m, Then
i) for any w € Aj, [w — wil e < [W(w) — P(w))] < [w —wi|V¢, [w— w7 < W (w)] < [w - w1

ii) for any w € Z\Aj, (Jw] = D™ < d(W(w), T)| < (Jw| = D7, (w| = 1)° < |V (w)| < (Jw| - 1)7°.
Recall that, {z j};il be a fixed system of the points on I and the weight function  (z) is defined as in(6).

Lemma 2.8. ([9]) Let I be a rectifiable Jordan curve; h(z) as defined in (6). Then, for arbitrary P,(z) € 9, any R > 1
and n € IN, we have

T4yx
IPull 2,100 < R IPull £ 01y > O, (16)

where y* = max{y, : k< m}.

3. Proofs

Proof. [Proof of Theorem 1.3] Suppose that G € Cg(A; f2), for some 0 < Ay <2, fo(x) = cxl*2 g, > 0 and
h(z) is defined as in (6). Let us put:

~ D@
Tn (Z) = @Tl(z)’ z e Q. (17)
Hence, we obtain:
P, (2) = &"(2) [T; (2) = Pu (2) (q,%(z)) ] zeQ. (18)
By Cauchy integral representation for the unbounded domain Q, for T,(z) and (qnn+1(z)), , respectively, we

have:

, v_ 1 [ P(@© dC 1) 1 1 dC
L@ = 2m'f (@) (C—zf’(@"“(z)) - 2nif Pr+1(() (c—z)Z’ZGQR'

r r
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Putting them in (18), we find:

P, (0) |dC| |ac]
rf ol '””'f o] z|}

P @1 i
q)n+l 19
| (7‘)'! =P )'f|c—z|2} )

1 [P, (O IdCI |dC]|
d(z,T) J IC - * 1P “'f C—A’

P o)< 20

IA

IA

|(Dn+1(z)

since | ®(C)| =1, for CeT.
Denoted the last integrals by

— [P, _= dC|
An(2) ._F o B.(z): JIC—zlz' 20)

and start evaluating them separately.

Multiplying the numerator and denominator of the first integral by hr () and applying Holder inequality,
we obtain:

1

ag |11
Au(2) < P, f¢ S Y 1)
J n©Qlc-z2) P4
Denote by J,(z) the last integral, we get:
l4c|
7 .=
@F rf WO~ 2F =

< f |dC| N f |dC|
1=z [T |C = 2ff IC = 2| T2 |C = 2ff
I I2
= ]:,,1(2) + ]ﬁz(z)
To make the following calculations easier, we put: z; = =1,z = 1; (-1,1) C G and let local coordinate
axis in Definition 1.2 be parallel to natural axis OX and OY in the coordinate system XOY; ' = I'* UT'", where
I*:={zel:Imz>0},T :={zeT:Imz < 0}; w* := {w =¢?:0= @}, z* € W(w*) and let I'f (z;, 2*)—

denoted the arcs, connected the points z; which z*, respectively; l"f| = mesT¥(z;,z%),i =1,2. Let zo € I'" be
taken as an arbitrary point (or zyp € I'” subject to the chosen direction). Then, from (21) and (22), we have:

Ante) < Il {1, ] + [2:00] ) 23)

Let us introduce some notations: R = 1+ 1; d;g = d(z;, FR)'7:1’+ : {C el |-z < ady R} 7-21,1 =
{CeT: adip <10z <|TH|}, 72* = {c€r2 IC— 20l < cadar), F2* = {CET?: cador < IC— 2l < | T3]}

Y (2) = f v'”lCl' ;i k=1,2.
" ) JC—z @D |-z
7:1,1

k
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Then, under the these notations, (23) can be written as:

2 1
A = P Y [YE@ + Yis@], i=1,2 (24)
=1

Let us start to estimate the integrals Y;i foreach i,k =1,2.
1. Let z € Qr(6). Denote by

(7%),

[vis@],

{Ceri®: -zl <1t (7),= 7" \ (F),;

Al ryien] l4c|
f (= Zil)’i(q_l)‘”il [Yn/k(z)]z - |C — zp@D+a’

(), (7).

1.1. Let y1,y2 2 0. We get:

c1dir
ds - _
1,+ (n+1(g-1),
[Yn,l (Z)]l = f sy1(g=1)+g = dl,R ’ (25)
0
+ —[O1+D)+ S+ —~(1+1)(g-1
[Yiﬁ-(z)]z < dLLyl q] . mes (7_‘11 +) < dlr(gl"‘ )('1 ),

Y@ =[i@)], + V@], <d gt

Al 1
[ T3 P
1,+ S ~(r1+1)@-1), 1,4+ -(n+hH@g-1),
[Yn,z (Z)]l = s (g-1)+q = dl,R 4 [Yn,Z (Z)]2 = dl,R s
c1di,r
1,+ _ 1,+ 1,+ —(y1+1)(g-1)
Y@ = Vi@ +[vise), <4y .

Analogously, for the ]ﬁ/z(z) in neighborhood of the point z;, we have:

Ccady R
ds _ _
2,4 (2+1)(g-1),
[Yn,l (Z)]l = f Sn(q—l)-ﬂ; =< dZ,R 4 (26)
0
[Yz,i (Z)] - |dC]| < g lozrsa] (7_-2,i) < -0 a-),
n1 ] = |C — zr2ta-D+g — 2R L /= 2R ’
(7%),
2+ _[v2+ 2+ —(y2+1)(g-1)
Yo = Y@, + [V @), < 4
d | T3] ;
2,+ 5 ~(2+1)(q-1)
< e — < ;
[Y’ﬂ (Z)]l - f IC = zp2@- D%~ f sr2g=1+q — erR !
(?-2211)1 C22R
d | T3] ;
2,+ S ~(y2+1)(qg-1)
"= < — < .
[Yﬂl (Z)]z - f | — 2|72+~ f sv2(g-1+q — der !
), el

rae = [veel+[rzel ot
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Let y1,72 < 0. Then, analogously to the (25) and (26), we obtain:

-r1(g-1)
1+ B |C =z |77 |d(] y1(g-1)—q 1+ _ (11-1@-D),
Y, 1@ = f T <dy mesF,* < dy ; (27)
7-]1,i
[ el _ =
Ylfi Z ﬁ - < d q 7
w2 (2) f |C—z|9
7:21,1 C1d1 R

and

Y2 < |C = 2o 727D 4zl < gCr2a 25  4-r2-Da-1),
n1 (Z) - |C _ z|'7 | Cl = "2R mesﬁ — "2,R 4

o
| 731
Yie) f [ |‘1’” Y ) < f L)
Fr* cada R
Combining (24) - (27), in this case, we get:
L0303
An(2) 1Pl [dLR” + dZ,R 4 ], yi=max{0;y;, i=1,2}. (28)

Let us estimate the B,(z). By notations from (23), I'* = 7—“11’1 U 7—'21'1 u 7—”12’1 U 7—'22’i and, so:

2
d . .
B@=), [ L= Mo 9)

The integrals M(Tk“) and M(Tki’_), i,k = 1,2, are estimated to be similar, then we will estimate only M(T}jﬁ).

Cldl,Rd | rﬂd
1+ 5 1 14y _ ds 1
M(F, ™) 25 d PMFT) = | 7 = i
[z1—z dir
|ZZ‘Z§|d Czdz,Rd | T3 d | T3 i .
2,+ 5 S 2,+ 5 5
4 = — < — — R
M) f s2 f 2= d P M) = f s2 = dar’
0 0 22—z caday R
Then, from (29), we have:
Bu(2) < dip +dyp. (30)
Comparing (19), (20), (28) and (30), we get:
o +1> 03D
P, (2)| < |@"'(2)| [ oD P, ||p( +d, g’ ) + 1Py ()] (dik + d;}z)] . (31)
Using [9, Cor.1.3], for the |P, (z)| we have the following;:
Py () < e 1P, ], [0 (32)
T Nz, T) Y ’
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where ¢ = ¢(G, p, y;) > 0 is a constant independent of # and z, and

(v1+1 i2lee 12+1 p

n Mg nﬂ“*az) Y, v2>p-1,
By = (Inn)'~7, yi=p-1-1<y,<p-1 (33)
or-1<y1<p-Ly=p-1,
1, “1<y,y2<p-1
Then, from (32) and (31), we obtain:
| 2n+1) (7 )| 07+ 03D
P, (2)| < e Pl [( R” +d, )+ By (dik + dz‘}{)]. (34)

According to Lemma 2.7, for the d; g, we get:
dig =1, Ve > 0. (35)

For the estimate d, g, let’s set: zg € Trsuchthatda g = |20 — zg| , C* € T* such thatd(zg, [?NI*) := d(zg, T);
= e€T?: |- z| = cady r. Under this notations, from Lemma 2.4, we obtain:

dy = d(zr, > NT*) = |zg — 25| = dy . (36)

In this case, dyg = (zzf’)”"2 On the other hand, according to Lemma 2.7 and [23, Corollary 2], we get:
di > n~'~¢. Therefore,

dog > 1 T (37)

From (34)-(37), we get:

1) (z) 0+~ Ga) - )
P, (2)] = % IPull, [( Ty nﬂﬂzwzﬁ*') +Ba (nAl + n“lwz“)] (38)

01 H)“l
n v , V1 >

-1, )/2>(1+C¥2)/\1—1

o _— (1+a )/\
yot
‘CD (n+ )(Z)l P, pi 0 < »< < etl L, 72>(1+a) /\1 -1,
< —d(z F) nllp 5 (T+ax)Aq
’ nr’t, —1<)/1<Q, —1<7/2<(1+a2)/\1—1,
+phite. Bn,l
(7’1*1);\'1 Yot
n y121+a)ﬁ —1 7/2>(1+a2)/\1—1
(12+1) 1
np(lﬂtj) , 0 < ')/ m 1, )/2 Z (1 + 0(2) Al - 1,
. —
|+1(2)| - M 1< 71<0, —1<y<(l+a)t -1,
> r1+1 3
d(z,T) " n)lv Mg nl’”“z)M1 yYuy2>p-1,
+ (Inn)'~7, yi=p-1-1<y,<p-1
or—-1<y1<p-1,92=p-1,
1, -1<yLy2a<p-1,
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1+1
/\1

el Ay —
I’Z( ) V12 Lranh, 1, Y2 2= (1 +a) A — 1,
}ZJY +e —}/Z+1 —_ Y —_
nwa i) , 0<y1< Tt 1L, y22(Q+a)A -1,
1 p—
M, —1<y;<0, —1<ya<(1+m)A -1,
ikl Y +1
‘®z(n+1)(z)| 71( P ) 1 yi>p-1+ (110( 12t b ,v2>p—1,
<——77IP i
d(z,T) aly s . e p-1<yisp-1+ (1+a)A’V 2>p=1
LN +1
+ a5, n>p-l+ Bk ya=p-1,
-1 +1
(Inn)'~» “l<y<p-1+ ﬁ,yz p-1,
(Inn)'~7 y1=p-1,-1<y,<p-1,
1, “l<y1<p-1, -1<y,<p—-1,
B > 2] >(1+a)A -1,
Tl( , ’ 71 m 1, 2 (+6¥2)1—
Vot
Tl*’(”“j) 0< Y1 (1+a2)/\ ,)/2 > (1 + az) Al -1,
1
|20 z)| M, ~1<y1<0, —1< )/2 < (1 +a) A -1,
<Pl NE o1+ L
(Z/r) . 4 71 p (1+a )}\ /7/2_19
(25 -1) o 1
o )TMH p-l<y<p-1+gommre>p-1,
(Inn)"7, “1<y1<p-1,-1<y,<p-1,
1, -l<yi<p-1, =1<y,<p-1.
Therefore, we get:
| Az )| 1), Q)
P @] = =gz WPl [P + D7),
where
(V1+1)/\1 -
) n(fl) Y12 1+a)} -1, y220+a)A -1,
1 _ Vot —
Dy = np<1+wi> 0<y < ﬁ—l, ya>(1+a)i -1,
1 —_~
niAl, 1<y <0, —1<ya<(+a)A -1,
()% 1+ 222 sy
NI o e
1H( =1 gy e _ _ 41—
D@ _ n ! e, p—1<yi<p-1+ A+a)y’
. =
y2>p-1,
1
(lnn)l v, Y1,)2 :p_ll
1, “1<y,y2<p-1,
and we complete the proof for the points z € €2(0).
2. Let us now z € Qg(9).
2.1. Let y1,y2 > 0. We get:
1-71(g-1 r 1-1(3-1
. L du{l‘f , n@-1>1, . Il dugl(f )
Y, i@ < f G0 < Inz=,  »n@-1H=1, Y5 (2) < f 0D < Inz-,
0 1/ Vl(q - 1) < 1/ cidir 1/

9254

(39)

, ri@g-1)>1,
yig-1)=1,
71(9-1)<1;
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di;{)’l(q_l), )/1(0] _ 1) > 1[

Yi@+Y,5@ =1 Iz, n@-1=1,
1, yi(g-1) <1

cadar i d;;’zw—l), )/2(‘7 ~1)>1,

Vi) < f S Sy Iz n@-D=1
0 1, y2(g—1) < 1;

. | T3] s d;{)fz(q—l)’ ng-1)>1,
Y, @ = f D < In 01217, y209-1) =1,
cada R 1, 7/2(‘7 - 1) <1

e[ o,
Y2, (2)+Y5(2) <] In dL yg-1)=1,

1, VZ(q - 1) <1.
Let y1,72 < 0. Then, analogously to the estimates (27), we get:

Yyll’;—'(z) < d;{l)(q_l)mesﬁl <1, Y:l:;—'(z) < | Tﬂ )@=+l <1,

Y, () +Y,,@) <1

1
Vi) + Y5 < 1.
Combining estimates (24) - (43), in this case, we find:

1+l r2+l

1 1
le” +d2lR”, yL,Y2>p—1,

An(@) < [1Pall, (lnﬁ,)l_%+(lnﬁ)l_%, T

s V1,)2 < P -1
|dC]
B,(z) = f < f|dc| <1.
IC -z
T T

Comparing (19), (20), (29) and (30), we have:

P,
d(z,T)

P, (2)] < |@"(2)| [ By + Py (Z)I],

where B, ; defined as in (33)
According to (33), from (46), we have:
|(D2(”+1)(z)|
d(z,T)

P, (2)| < IPully By

Yi,i(z) < dgg”(q_l)mesﬁz’i <1, Yié(z) < | 1"2i| r2)@-D+1 4 1,

9255

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

Therefore, we complete the proof for the points z € ﬁR(é), and so, the proof of the Theorem 1.3 is

complete. [
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Proof. [Proof of Corollaries 1.4 and 1.5]
1) Under the conditions of Corollary 1.4, for the points z € Qr(0), from (34), (33) and (35), we get:

”+1)( O+~ 03D~ ~ ~
JY(H_L———THMDWK Y ph)+mJ@“+nhﬂ
iy 1
nr’, Yuy2>p-—4
2(n+1) =
< ‘q’ " (Z)| 24l Ciee ) nt (Inn)'7, ify1=p-1 -1<y,<p-1,
d(z,T) P B or —1<yi1<p-1,y2=p-1,
nt, -1<yLy2<p-1,

where A := max {/\1,/\2} y* := max {7’1'7/2} y := max{y1;y2}, and, for the points z € ﬁR(é), from (47) and
(33), we obtain:

| 20041) (5 )| ”(7_1)?r yuy2>p-1,
P’()I_—)IIP lp{ (nm'r, if7/11=P—1f —1§V25P—1i
or — <7/1SP_ /7/2:}7_ s
1, -1<y1,72<p-1

2) Under the conditions of Corollary 1.5, from (34), (33) and (37), we have:

| 20 (z )| D o5+ 1 a1
P/ ( )| —r) ||P ”]ﬂ (np(lﬂxl) + np(‘l+(12) )+ Bn,l (I’l Tray 4 n1+zrz)

y+1

nmr )/1/)/2>P_1r

O ] 1 if =p-1, -1< <p-1
P e e 1 yi=p—4 y2=p— 1L
[1Pnll,, | 727 nt (Inn)~7, or —1<y;<p-1,y2=p-1,

‘®2(n+1) (Z)l
- d(z,T)
+e

nﬁ -l<y,y2<p-1,

where a. := min {a;; a»} ,and, for the points z € ﬁR(é), from (47) and (33), we obtain:

YA gs]
@20 (z)| n(p Joe ’ yuLy2>p—1,
Py ——P = ifyr=p-1 -1<y,<p-1
@) 5 1P {M—K%Swin=wm
1/ —1<)/1,)/2<p—1.

O

Proof. [Proof of Theorem 1.6] Assume that G € Cg(Ay;cx!™2), for some 0 < Ay <2,and @y > 0. Let z€ T
arbitrary fixed point and let us B(z, d(z,I'r) := {t : |t — z| < d(z,I'r)} . Using the Cauchy integral representation
for derivatives P/, (z) in a bounded domain, we obtain:

nol-lgm [ 2% g [ mor 8 mar, ©isp

(C — Z)z ! 27‘[ |C - zeGr zel
dB(z,d(z,T'r) dB(z,d(z,T'r)

1
d(z,Tr) |

According [9, Cor.1.3.] and applying (4), we have:

y’éﬂ

*
np(1+a2)+p(1+a2)+s, 1 < p < 2 +

0+ . 1+a2
max/|P, (O < Pallg < I1Pally |1~ 7+ (ninm'+, pzﬂm (48)
zeGgr 1
n'r, p>2+ 1+a
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From (35) and (37), we have:

1 1 1 3
-\ — - < ph
sop{ 7y | = s fooe { s booe { i

and, therefore,

6 A S W V3
P+an) 1
g, [P p <z i

, 1 7. 1 1 *
< 3 A+1-2 1-= _ Vo

P, @)| < IPall, |1 1AM ey, p=2+
Ap+1-1 3

nty, p>2+ 7,

and we completed the proof of Theorem 1.6. [

3.0.1. Proof of Remark

Proof. The proof of the accuracy of the inequalities (13) - (15) can be divided into two parts: (i) : )

Py

1||Pulleo 5 (1) [Palles < tn ||Pn||p . The first inequality- the well known sharp Markov inequality. The sharpness
of the inequality (i/) can be verified in the following examples (see, for exp., [17], [18, Rm 2.9]). Let
Ta(z) =14z+...+2" ' (z) = ho(z), W (z) = z— 1", ¥ >0, T := {z : |z| = 1} .Then, for any n € N, there exist

cr=c(l,p) >0, cr =ca(h™,p) > 0 such that:
1
@) Ml = can’ Tz, n, p>1
y+1
b) Mo = cn? [ Tllg,ge, 1y, p>y+1.
O
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