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Rate of Convergence of parametrically generalized bivariate
Baskakov-Stancu operators

Smita Sonker?, Priyanka®

?Department of Mathematics, National Institute of Technology Kurukshetra, Kurukshetra-136119, India

Abstract. In the present work, we consider Stancu variant of a bivariate parametrically generalised
Baskakov operator. We discuss the rate of convergence of these operators by means of partial moduli
of continuity and modulus of continuity of second order. Also, we prove Vornovskaja type assymptotic
theorem. Furthermore, the Generalized Boolean Sum (GBS) operators associated to Stancu variant of a-
Baskakov operators are constructed and we study their order of convergence using mixed modulus of
smoothness for Bigel continuous and Bogel differentiable functions. Some surface plotting illustrating the
approximation for different values of Stancu variables and the error of approximation by the proposed
operators are also given using MATLAB programming.

1. Introduction

Baskakov [8] introduced a sequence of positive linear operators, called Baskakov operators for suitable
functions defined on an unbounded interval [0, c0). Later, Aral and Gupta considered g-analogues to
Baskakov operators in [4]. Also, the same authors introduced another g-analogues to Baskakov operators
[3] and studied some shape preserving properties and the convergence rate in weighted norm. In 2019, Aral
and Erbay [2] considered a parametric generalization of Baskakov operators given as follows: For r > 0 and
P eCu(S)=1{p eC(S): |1p(s)| < M@ +5"), for some M > 0}, where S = [0,00), the a-Baskakov operators are
given by

Bua(;t) =) | w(%)m,,-w (1)
=0

wherenzlileSand. ) s »

P;, (t) = (1+ttl)7/-1{1u_:t ”JT Y- (1 -a)1+ t)(”;.:’; Y+ (1 - a)t(’”f )} with (")) = ("7?) = 0 and represented these
operators in terms of divided differences. Further, P. N. Agrawal et al. [1] investigated the degree of
approximation for these operators and estabilished a Vornovskaya type assymptotic result for the bivariate

extension of the operators given by (1).
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In 1969, Stancu [24] introduced the sequence of linear positive operators for iy € C(S), where S = [0, oo)
* < k+a
TP = Y pustov(i5)
k=0
where p,, () = ()*(1 = )" * and 0 < a < B. Inspired from their work, different authers [16, 17, 20-23, 25, 26]
have studied Stancu-variant for different positive linear operators. Recently, Heshamuddin et al. [19]
discussed approximation properties of a-Stancu-Schurer-Kantrovinch operators.

The present work have a close connection with the theory of sampling, machine learning and neural
network (NN). The learning theory includes approximation of a function from its sample values. For more
details, we refer the readers to [13]. Many researchers have worked with NN in order to reproduce the
functions by their sample values. Cardalaiguet and Euvrard [12] developed the theory of NN operators.
Motivated from above work, we construct the Stancu-variant of bivariate case of operators given by (1).
This construction is given in the section 3.

Furthermore, Bogel [9] defined the concepts of Bogel continuous and differentiable functions. For more
details on these notions we refer the readers to [10]. Dobrescu and Matei [15] introduced the uniform
convergence of GBS of bivariate Bernstein operators to B-continuous functions. Further, a Korovkin type
theorem and a quantitative variant of this theorem for GBS operators on B-continuous functions was given
by Badea and Cottin [5] and Badea [6] respectively. Birbosu and Muraru [7] study approximation of B-
continuous functions by GBS of Bernstein-Schrurer-Stancu operators. Some definitions and notations are
given as follows:

Let Yy, Y, € R. Then a function i : Y7 X Y; — R is called B-continuous at a point (¢, f;) € Y1 X Y3 if

Iim A t1,1) =0,
(y2)—= () (yllyz)lzb(l 2)

where, Ay, ) Y(t1, t2) = P(t, t2) — Y(t1, y2) — P(y1, t2) + P(y1, y2) is the mixed difference and the function ¢
is said to be B-continuous in Y; X Y5 if it is B-continuous at every point of the domain. Let Cp(Y; X Y>)
be collection of all B-continuous functions on Y7 X Y,. The function ¢ is called B-bounded if its mixed
difference is bounded on Y7 X Y, i.e.

‘A(y1,yz)¢(t1rt2)| <M, VY (t,t2), (Y1, ¥2) € Y1 X Y2

Let B(Y; X Y3) be space of bounded funtions on Y; X Y, with sup norm and Bg(Y7 X Y>) be the space of
B-bounded functions 1 defined on Y; X Y, endowed with the norm

||11b||B = sup |A(y1,yz)l1b(tlrt2)|
(Y1,92),(t1,82)EY1XY 2

A function ¢ : Y1 X Y, — Ris said to be uniformly B-continuous if for given € > 0, 34 6 > 0 such that

|A(y1,yz)¢(f1, t2)| <e

whenever max{)yl —t|,|y2 - t2|} < 6 and (t1, 1), (y1,¥2) € Y1 X Yo. Let the space of all uniformly B-
continuous functions on Y; X Y» is denoted by Cg(Y1 X Y>). Also Y is called B-differentiable at any point

(f1, tz) if the limit
A(yl,yz)lp(tl/ tZ)

lim ,
()= (tk) (Y1 — t)(y2 — t2)
exists finitely. In this case the limit is B-differential of ¢ at (t1, t,) and is denoted by Dy(y; t1, t2).
Let

DB(Yl X Yz) = {I’D Y1 XY, > ]R/ Db(l#} t1, l’z) existson Y1 X YQ}
The mixed modulus of smoothness wg(); (1, (2) is defined by
wp(Y; T, C2) = supl[O(y ym(tr, )| * |y1 — 1| < G,

. Here, supremum is taken over Yy X Y,. Also for any ki, k, > 0,

wp(Y; k1C1, k2 Cr) < (1 + k)1 + k2)wp(Y; C1, C2) ()

o — | < G}
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2. Preliminaries

Lemma 2.1. [1] The a-Baskakov operators B 4(.; t), for n € IN, satisfy the following identities:
1. Bua(L;t)=1;
Bua(s;t) =t + 2t(a — 1);
B, (s%t) = 1152(4{1 3) + Lt(n +4a - 4)
B,a(s%t) = L #3(6na — 3n + 6a —4) + 51*(18a + 3n — 15) + Lt(8a +n —8);
B,a(s*t) = t4 % t4{(811 2)n? + (24a — 13)n+(16a 10)} + 5 £3{6n° + (482 — 30)n + (48a — 36)} + 5 *{(4a +
3)n + 60a — 53} + Lt(16a + n — 16).

P‘PS”!\’

3. Construction of Bivariate operators

Let0 <a; £1and 0 <4, <1 be parameters. Forry, r» > 0and ¢ € Chrn(®) ={Y € CA) : Yy, ) <
My(1 + y)(1 + t72), for some My > 0}, where I* = I X I, we consider Stancu type modification of bivariate
a-Baskakov operators as follows:

B, k1 + aq k2 + an ]
e = XY (g B ) ®

e n + ﬁl ny + ﬁ
where ny, 13 €N, (t1,t2) € I?, 0 < a; < i and

Pl (h,t) = P ()P (h),

ny,12,k1 k2
where
it aiti (ni+ki—1 ni+ki—3
’ ~(1-a)@+t)| "
"’k(l) (1+i‘)"l+k 1{1+t( k; ) ( 61)( * 7)( k-2 )

n; + k,‘ -
+(1- ﬂi)ti( k. )}

with (")) = (") =0,i=1,2.
In order to validate the theoretical approach and to compare the convergence of (3) with GBS operators,
we introduce some numerical example showing the approximation of proposed operators in section 3.

Let ex, x, = tlil tgz, ki,k; € {0,1,2}. Now, we can obtain the following identities for the operator defined
by (3).

Lemma 3.1. Fora;, a, >0, n;, p € Nand0 < o; < B;,i = 1,2, §Z‘I:ﬁ;:§flﬁz(z,b; t1, ty) satisfies the followings:

L §hhee e, 1) = 1;

n1,12,41,42
ay,p1,a2,2 . — _m 2
ny,12,a1,2 (610’ tl’tz) - n1+51 b+ n1+51 (al 1)t1 + n +ﬁ ’
ay,f1,a2,p2 .
Ny, 12,041,042 (601’ tl’ tZ) n2+ﬁz i’z + nz+ﬁz (112 1)t2 + n2+ﬁ2
2

2
3
4. ay,p1,a2,2 t2 (nq+4a,—-4) 2011y 4ay(a;-1) ay
5

. 2 .
n1,12,01,02 (620/ f1, tZ) (”1+ﬁ1)2 (711+ﬁ1 2 (4:&1 S)tl (m+p1)? f +(n1+ﬁ1)2 f+ (L +P1)? f+ (m+P1)2’

a1,p1,02,f2 . __m 2, (mp+day—4) 2aom 4as(a-1) a
iy ay (€025 H1, £2) = (”2+;32)2 B+ (2 +ﬁ (402 = 3)t (n2+p2)> b2 +(nz+zﬁzz)2 b2+ (na+p2)? 2 (1’!2+;32)2'
Proof. Using the linearity of §ﬁ;ﬁ;jf£2( ;t1,1), we have
a1,p1,az,42 . _  m . o ]
11,012,412 (610/ t1, t2) - mBnl,ﬂl (610/ tl)mBm,m(ll tl)

By using preliminaries, part (2) is true. In a similar manner, readers can prove other parts of above
lemma. O
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Lemma 3.2. Foray, a; >0, ny, np e Nand 0 < a; <Bi (i =1,2), z}ﬁ;ﬁfﬁz(gb; by, tp) satisfies the followings:

L g (yi - it h) = (ni'fﬁ, - 1)fi + o (@i = g
2

2§ R (g = ) b, b) = (#ﬁ)z -2+ o +ﬁ )2 (4a; = 3)t7 = 2(;1i v - 1)tz - n,%ﬁi(ﬂi -2+ m(ni(zai +
1) +4(a; — 1) + 4ai(a; — 1) — 2a; )t ff;; tit G +ﬁ T

3. gyl ti)4't1,t2) o +ﬁ )4{71 + 213 (4a; — 1) + n3(24a; — 13) + 2n; (8a1 5)) — Hﬁ a4 + 12n2(2al
1) +8n;(32; — 2)} + n+ﬁ (e {6n? + 6n;(4a; - 3)} - (n +ﬁ){4n1+8(a, D+t + (n +ﬁ 7 {2n3(2a1+3)+6n2[8111
Zai(Zai—l)]+4ni[3(4a,-— )+2ai(3ai—2)]} o +ﬁ By {127’[2(0(+1)+121’l [(6&, )+0(i(4ﬂi—3)]} n+ﬁ )2{

2

2ai)+24(0ci+1)(ai— )} - o +ﬁ 4&1 " :"ﬁ i (4a,-+3+12ai+6a2)+ni[60ai—53+12a,-(6a1-—5)+60z7.2(4a,-—
I -4 +ﬁ Ty 4ni(1+ 30 + 3a7) + 8n;(4 — 6a; — 3a7)(a; — 1)} +
8(a; — (2 + 4a; + 30li + 80(?)

6m;(1+

ti
(ni+pi)*

6a7 + {ni(1 + 4o + 607 + 4a7) +

(ni +ﬁ )?

4
4(1 + (n_ifﬁ_)“where i=1,2.

(i +ﬁ )

Proof. Using the linear property of §‘;}ﬁ;§ffj( ; 1, t2) and lemma (3.1), readers can derive lemma (3.2). [

Corollary 3.3. Foraj, a, 20, n1, n € Nand 0 < a; < f; (i = 1,2), we have following results:
L lim S b (y; — 1) b, 1) = (i — it) + 2ti(a; — 1);
2. lim n; R (g — )%, k) = Bt + 1)

3. lim 2§ e (v — b) b £2) = B82( + 1) + 42(a; = 1),

4. Degree of Approximation of §"" Pz f (1, t2)

ny,ny,aq,03

Let Iy = [0,h] X [0, k] be compact subset of I> and C,(I%) be collection of all bounded and continuous
functions on I endowed with the norm

¢l = sup [t bl

(i)l

Theorem 4.1. Let i € Cy(I?), then
lim Sty t) = Y(b)

1ny,np—00

uniformly on Ip.

Proof. For (ki,k2) € {(0,0),(1,0), (0, 1)}, using lemma (3.1), we have

. ay,p1,a2,p2 . _
" lnln'_l)oo §n1,n2,a1,a2 (eklsz/ t1, t2) = €y k, (tll tZ)r
1,112

and lim §Z}5;ffffj (20 + €q; t1, £2) = (€20 + €02)(t1, t2) uniformly on Ij. The required result follows immedi-
nl,nz—)oo

ately by theorem (2.1) [7]. O

a,B,a2,62 @i Bi

Now denote §;, ", s 2, (Vi — ti); t1,t2) by v,/ (t:),i=1,2 and r=1,2,3,... Total modulus of continuity for
Y € Cyp(I?) = { € Cp(I?) : ¢ is uniformly continuous} and C > 0 is defined as

o(; Q)= sup  {lP(y1, v2) — P(t, t2)l \/(]/1 —h)P+ (2 —h)? <) 4)

(y1,y2)(t1,t2)el?
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Also, the partial modulli of continuity w.r.t. #; and t; are defind as

@1(y; C) = supllp(yr, £) = Yy, Ol = tEL (y1,42) € P & ly1 — y2l < T} (5)
and

@2(y; C) = supll(y, 1) = P(y, L)l - y €1, (t,0) € P & b — 1| < ) (6)
Devore and Lorentz [14] derived some properties of continuity moduli for bi-variate case. Now the degree

of approximation of §ﬁ}§;ff£z (.; 11, t2) via complete and partial moduli of continuity is given by the following

theorems:

Theorem 4.2. Let i € C(I?). Then we have the inequality

1
2
St s, ) = s, 1)) < 205 (Y2000 + 520,00 )

Proof. By using the definition of @(y; (), C > 0 given by equation (4) and Cauchy-Schwartz inequality, we
have

I§E B (ot 1) — (b, )] < e (W, ) — Wt b)), Ba)
< SR @ 1 — B+ (2 — 2P, 1)
_ 1 0 g,
< o(y; C){l + Z§Zifqigfff( \/(]/1 —h)?*+ (2 — )% tl/tZ)}

1

1 a1,p1,02,p2 2
< o(y; C){l + Z( nl,ﬁz,m,fz (11 — t)* + (2 — b))% 1, fz)) }

<awoft+ Lt i) )

1
By taking C = (yn: 5 11 H(t) + )/nz f Zz(tz)) , we will get the required result. [

Theorem 4.3. For ¢ € Cy(I?) and (1, tp) € I?, we have

1 1
2
Suie Wit ) - e, < 2on(v (10 w) )+ ool (vei,w) ).
Proof. By using the definitions given by equations (5) & (6) and Cauchy-Schwartz inequality, we have
S v (511, 12) = (b1, 0] < S (9 (v, y2) = (b, b)l by, 1)
Braz,
< Stz (W (yr, y2) — (b, y)l; 1, 1)
+ Sty (9(t1, 1) = 9y, vl b 1)
< G B (@1 (s lyr -t b, b)
+ G (@a(W; 1y — hal)s b, 1)
<@ L{SumeE )
1 1
+ a(§2§isf£2 (1 —t)*h, fz))z}
< i Sl (it 1)

1 1
+ a(§3}5§?f£2 (11 — )%, b))2 }
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1 1
The required result will follow by choosing C; = (yZI f 11 2(t1)) and (, = (yzz 52 2(1&2)) and lemma (3.1). O

mwm%zweqmyﬂiwwa

oy oy’ T eCy(?), j=1, 2} endowed with the norm

82

P
"
ayl

Iy’

8y1 ayz ’

”17[)”C2(12) HIPH * Hayl ”8}/2

82
o

And corresponding Peetre’s functional for ¢ € C,(I?) and C > 0 is defined as

K@;0) = inf { Hlp !]||+C||!]ch ®"

geC(12)
From [11], there exists a constant M such that

K@; 0) < Man(y; \O), )

where @,(1); V) is 2" ordered modulus of continuity for bivariate case.

Theorem 4.4. Let 1 € C,(I2). Then ¥ (t1, 1) € I2, following inequality holds for §-F1 >+
g q y 1,102,647 ,42
1
A W, ) = it )| < MCDz(lI/; SN (1, t2))
B B :
- o Q
+ (tp (7/711 asl( 1)) (V,,zazzl( 2)) ),

2
where et = (@] it @)

(e + ) )

Proof. We first define an auxiliary operator as
y op

Al b1, 1) = S (b 1) + (it 1)

a1,p1 a2,p2 (8)
- lp(‘ynl 51 1(t1)' ynz:fz,l(tz))
Using lemma (3.1), we can write
At @t b) = 1, ARl (i = )1, 12) = 0, i = 1,2. 9)
Also,
A st 1) < 3|y (10)
Applying operator Ay 242 1 1) to Taylor expansion for g € C3(I?) given by
d (f1, f2) P g(p, t2)
9(y1,y2) — gt —t2) = (y1 — 1) J (y1 —P)%po
ag(tl/ tz) g(t1,q)
+ (y2 - tz) &t ( Yo — ) aq2 dq

fyl fyz azg(p, ‘7)
dpag T
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we have

|Azll,'ﬁ;§12,’aiz(.’7(y1/ )it ta) — gt — B)|

Pg(p,
< antt(| [ o -n ™G anpn v
« 32 )
+ At f (12 9‘1 Dagly 1)
oL Y1 2 82 ;
+ Ay ﬁ;ufff f f 5;5 ‘7) tl,tz)
Equation (8) led us to
A e @y, y2)i b, ) = gt — b))
a Y1 82 ( /tZ)
= niiﬁiié'f,ff( f (yl_p)g&—pzdp}tl,tz)
f p

t (201 ~24n7)+aq

TR (hQap—2+m) +a &2g(p,t)
[T s e,

+

n + ﬁl (9;9

v g(t1,q)
+ §ﬁii§ii§fﬁz( f (v2—-9) o dql;t, tz)
t
tr (209 —2+n9 )+a
N 2 an+{322 2 (t2(2a2 -2+ 712) + _ )8 g(ﬁ,q) ’
ny + ﬁz
gubrats fw fyz *q(p, q) a6 tz)
111 13,01 ﬂz b apa ’
t1(2111n12;;r111)+11 t2(2n2”22:/;122)+ vy a g(p, q)
+
2 b 9pdq
Now,
” (9 9(}9, 2) (y1 — 1)?
‘f (- ‘ < ”»‘7“(:5(12) 5
yz( _ )8 g( 1/11) ” ” (2 — b)?
t 72 - ) 2 ’
t (2a1 =2+np)+ay
n+p1 (t1(2a1 -2+ 7’11) + B )829(;}, tz)d < 1 || || ( s (t ))2
t1 ny + B 8}72 P|= @)\ na NV
ty(2ap =241 )+
BT e th(2a, =2+ 1) + ap 92 g tl,q)d wrfr 2
T (R o) R < 5 e (i 2)
and
t1(2n1n—12++ﬁnll)+al tz(Zﬂz,,;:;;” ) & g(p, q)

s | < Yoot (e2)].

”57Hc2 @) an 511 1 (8 1)‘

dpdq

ty t

9203
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So we can conclude
AR (g, yo)it, 1) — gk, )]
< % ||9”c,23(12){ ziﬁ;iﬁ,ﬁz((% - 1) t1,fz) ( Zl fll( 1))
+ §z115;szzz((y2 —h)%t, fz) (V:; 5221(t2))

+ 2§5I’5§’3f£2(|y1 —tilly2 — tal; 11, t2)

ay,p1 as,B2
an A1, 1(t ) ynz,nz,l(tz)'}
A @, y2)i b, ) = g (b1, 0] < [lgllca oy Tl (s 12) (11)

Using equations (9), (10) and (11), from (8) we can write

Se e (s 11, 1) — Wt )] < VAR (s 1, 1) — P, 1)
A CYRTANCS) T
< VAP — gt )]+ (P(H, B) — g(t, b))
+ [ Ag e (g; 1, 1) — gt 1)l

lopmten i ) - v

+

141,

<4 ”¢ - -’7” + Hg”c;(p) inﬁiiglz:aﬁzz(tlrtZ)

+a')(‘l’ \/(7’;?51]1(’f ))2 ( 25221(2)))

On taking infimum to RHS over all g € C7(I?), we obtain

Fpmsians (b fz))

M Wi, ) - (i, )] < 4Ky e 2

caly \/( ne) + (s e))

Using equation (7), we will reach the required result. O

Further, we give the degree of approximation by the operator given by (3) on bivariate Lipschitz class
Llp(r1 ™ 41,15 € (0,1] and M > 0 such that

LZP(H = {f £ [fny) - ft,t)| < Mys - tl|rl vz - tz(rz , (1, v2), (t1, 1) € PP}

Theorem 4.5. Let ¢ € Lip\"?. Then following inequality holds for glbrazpe

ny,ny,a1,a2

’1 Yl
2
et s ) = e, )] < MO 0)) (Vi)
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Proof. For ¢ € Lip!""™), we can write

iR (W, b)) — Pt 12)| < Snhva (v, y2) = Yt b)| st 1)

< S M ys - 1] [y2 - 1] s 1 1)
< M§z:f5;§fﬁ2(|y1 - 1f1|r1 st )
xSt (2 = "5t 1)
Now Holder’s inequality for p; = % &g = Z%r, implies that
n
M Wit 1) = gt )] < M{SHAE G - 0 1))
2n

a,f1,a2,2 . 2
X { 11,12,1,42 (6001 ty, tZ)}

n
2
X { iijﬁiﬁ?ﬁ,ﬁz((yz —h)4Hh, fz)}
2—72

2

X { ﬂﬁigfiz (eoo; 1, tz)}
In the view of lemma (3.1), we are led to required result. [

Theorem 4.6. For y € C}(I?), we have

Varma(t)

n1 H]Z

J (tlrtZ)
Wt ) - gt ) < | L

a ﬁ
n§a222( )

Hallf(fl,fz)

Proof. For ¢ € C}(I*), we can write

v 9v(p, 2 Ju(iyn,
V) - it = [ %W f wg; Dy,

fy

Now operating above equation by §; 25> (: t;, 1)

dp; t, ta)

" |90,
1,02, B1,02,B 7 Y2
SR Wit ) - )| < S f =

31!’(3/% q)
eS| P g1
91P(f1, tz)

H Zi;ﬁ;:?ii%)yl b)
H a17[}(t1/ t2) alrﬁl,azrﬁz t
ny,12,41,a2 2)

Using Cauchy-Schwartz inequality & lemma (3.1), we are led to the desired inequality. [J

Next, we establish a Vornovskaya type Asymptotic result.

9205
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Theorem 4.7. Let i € C}(I?). Then

;}1_1}010 ”{ 32@{%”52(1#; t, ) — ll’(fl,tz)} = (a1 — pit1 + 2t1(a1 — 1)) ihd (fl, ta)

+ (g — Patr + 2t2(a — 1))8—;}2(% ty)

2

0
1 {tl(fl +1) yw(fl,tz) +t(tr +1)
1

2

5 lf(tl, )
uniformly on Iy.

Proof. Let (t1,t2) € Iyx. Taylor’s series expansion for ¢ € CZ(IZ) is given as

Y1, y2) — Y, t2) = (1 — tl)_lp(tlrtZ) +(y2 - tz) ihd (t1/t2) + —{(}/1 — 1)

x2¢tt+2 —t 82l’btt+ — ty)?
8_y%( 1,t2) +2(y1 —t)(y2 — )ay E (t1,t2) + (y2 — 1) (12)
2

a;b (t, fz)} +e(y1, Y2 t, tz)\/ (1 —t)* + (2 — )4,

where € € Cy(I?) and € — 0 as (11, y2) — (t1,12). Applying §i,”,f ;lo;zzﬁ *(.; 1, 12) to both sides of above equation,
we obtain

B
fiff; izzzlz(l,b; ti,t2) — P(t, t2)

J
= Sy —h)it, tz)ai(tl, t)
ay,f1,az2,42 IP
+ §n,n,a1,a2 ((yZ - t2), tl/ t2) (tl/ t2)

1 a,fi,a2,62 2. lzb
+ 2!{ wnaas (Y1 — 1)t t2) % (t1,t2) (13)

a,f,a2,62 _ 824)
+ 2§7l,1’l,t11,ﬂ2 ((yl tl)(]/z tZ)/ tl/ t2) (tlz 2)

2
+ St (2 = )% 1, tz)a—f(tl, tz)}
Y3

+ §n]nﬁ;1izzﬁz (e(y1,y2, 11, t2) \/(]/1 — 1)+ (y2 — )% t1, b))

Now as a result of Cauchy-Schwartz inequality, we obtain

lim Gt 2P (e(y1, y2r 1, 1) \/(y1 —t)t+ (2 —t2)% 1, 1) =0
The required result follows from equation (13) in the view of corollary (3.3). [

5. Generalized Boolean Sum (GBS) operators

We construct GBS operators for ¢ € Cg(I?) associated with the operators given by equation (3) as follows:

G221, 1) = Saar 2P (1, b2) + (b, ¥2) = (1, y2); b, ) (14)
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Now, we give error estimation while approximation of B-continuous function by GBS operators defined in
equation (14) in terms of mixed modulus of continuity.

Theorem 5.1. For i € Cp(I?) and (1, t2) € I?, we have

Gatat i, ) = i, )] < a0 Y000, 1),

Proof. By using definition of mixed modulus wg(y : {1, () of smoothness, equation (2) and (14) for (5, C; >
0& (y1,12), (t1,t2) € I?, we have

|Agmi(ti, )] < Y2 — hal)
' (y1 - f1| |y2 - f2|
< wp(Y; G, Cz)(l + G )( 5 )
_ yi-t] [ya—to| [y -]l -t
< w(y; Cl'CZ)(l * G " G * GG )

By using definition of mixed difference and Cauchy-Schwartz inequality, we obtain

Zlnﬁall[;zzﬁz(lP ti,t) — I!J(fl,tz)‘ < wp(y; Cl,Cz){l + = \/§Z; 52 fo; ((y1 = t1)% 11, 1)

b S - P )

E \/§Zi15§j?f,£z((y1 —t)%t, t)

X \/§2ﬁ;§i}zﬁf((yz —h)%h, tz)}

Now, taking {3 = 4 /yjif ;’z(tl) and {; = y;ff ;z(tz), leads us to the required result. O

Lipschitz class of B-continuous functions: Lipschitz class of B-continuous functions for r1,r, € (0,1] and
M > 0 is defined as follows

Liphy(r1,72) = { € Cp(I?) | Ay, (b, )] < M [y1 — tl(rl |v2 - fz)rz},

Y (y1,12), (t1, 1) € I2. Error estimation over the Lipschitz class of B-continuous functions is given by the
following theorem.

a1,f1,a2,p2

Theorem 5.2. Let i € Lipf,{(rl, 12), 0 < 11,12 < 1. Then for (t1,1,) € 12, error estimation of Gyparar 18 given by

n 2
2
Gﬁfﬂ',ﬁ'ﬁz(%flrfz)—IP(flrfz)’SM(V::ff ot )) (szffz( )) :

Proof. For i € Lfd(rl, 12), from equation (14), we may write

Gudarsz2 (i1, 1) = it )| < S (8, ¥t B)] s 1, 12)
T T
< M§Z,‘f£{f2§’ﬁ2(|y1 —t|" 2 -t st t2)
T
< MSE P (v — 1] 1, 1)

1
X §abb |y, — | 11, 1)




S. Sonker, Priyanka / Filomat 37:27 (2023), 9197-9214 9208

In the view of lemma (3.1) and using Holder’s inequality for p; = % &gi = ZL we get

2
Gt (W3 11, 12) = (flrfz)| < M( A (1 ;t1,tz))
n
a,B,a2,B2 2 2
X\ Su,n,a1,0, (|_]/2 - S, tZ) .

This completes the result. [

Next, Mixed modulus of smoothness (cf.[18]) for i € Bg(Y1 X Y>) is defined by

wp(; Gy, 0) = Sup{|A(y1,y2)¢’(t1,tz)| : |y1 - tl) <Gy, |2 - t2| < G},

Y (t1,t2), (Y1, y2) € Y1 X Yy and (g, G > 0. From [6] and [5], it is known that wp(y; C1, () — 0 as (1, C; — 0iff
Y is uniformly B-continuous on Y; X Y;. Further, for positive numbers A1 and A,, we have

wp(P; MG, A20) < (1 + A1 + A)wp(; C1, C2). (15)

Now the following result yields us the rate of convergence of GBS operator Gzlf ,;{fffz’ﬁ ? in terms of mixed

modulus wg(y; (1, () of smoothness of B-derivative of .

Theorem 5.3. Let ¢ € Dy(I%) such that Dgyp € Cp(I%) N B(I). Then for each (t1,t5) € I2, Gyt satisfies

et ol - on(Dv: = =)}

GadarsaP (s 1, 1) = it )| <

Proof. From Mean value theorem for 1 € Dy(I?), we have

APt t2) = (y1 — t1)(y2 — t2) D (1, 12),

for some 11 € (t1,y1) & 12 € (t2, y2). For Dy € Cp(I?) N B(I?), using the definition of mixed difference, we
obtain
St (A gt 1) 1, )]
i (= ) (Y2 = 2Dyl na); 1)
< S B (yy — tillya — tal(| A,y De(ty, £2)]

+ D11, t2)| + IDpyp(ts, n2)l
+|Dpy(ty, t2)I); 11, t2)

< Z}é@{%’ﬁz(Wl = tlly2 — t2lwp(Dp1; M — t1l, 2 — tal); 1, £2)
B1,a2,
+3|1Dslle Snr (ly1 = tillyz = tals b1, £2)

Now for any (3, (; > 0 taking into account

B(DaY; 1C1 — ], 1Co —

f2|)

< (1 + |ylc_1 tl‘)(l + |y2C_2 t2|)wB(D3¢; G, C)
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and applying Cauchy-Schwartz inequality, we are led to

Guslita s, 1) = e )| < 3Dyl YL 00 200
+ wp(DpY; Cy, Cz){ \/Yzzfllz(t ) \/V;t 5222
R LG R
G \/7/2,’511,2(“) \/szf;(tz)

1 a B @B
Y TG ni,;g(tl)ynjﬂ;z(tz)}

We reach the required result by taking {; = ”1_% and (, = n_%

,  and using lemma (3.2). O

6. Graphical Analysis

Now, we present some numerical results to show the convergence behavior of §;‘}§;fo;(¢, t1, t2) to Y(f)
by fixing the parameters a1, a5, 111, 1, and by varying the values of ay, a; & f81, B2 by using MATLAB.

Example 6.1. Let i(t1,t2) = tftz + tftz and, a1 = a, =08, oy = ap = 0and (B1,B2) € {0,0.5,0.6,0.7}. Figure 1

and 3 illustrate the convergence behavior of §Zi:5;:fff;(¢; t1,t2) to Y(t) on I at ny = ny = 10 and 20 respectively for
different values of (81, B2). Whereas the respective absolute error in the approximation are shown in figure 2 and 4.

Table 1 and 2 gives the absolute errors in the approximation Eﬁ;ﬁ;jfiz(gb, t,tp) = Ziﬁ;?ff;(yb, t1, ) — P(t, t2)| at
some points in I? for n; = np = 10 and 20 respectively. From the figures, it is clear that for B; = B = 0.7, the operator

Z;ﬁ;ffff (Y; 1, t2) gives best approximation to Y(t) in comparison to other values of 1 = Ba.

Further, figure 5 and 7 illustrates the approximation by GBS operator G ﬁLOfZS 0sWit1, t2) to Y for ny = ny =10
and 20 respectively. Also the respective errors are shown in figures 6 and 8. From these figures and tables 3 and 4, it is

clear that upper bound of errors for GBS operator is smaller for 1 = B = 0.7 than that for other values of p1 and B,.

By comparing table 1 with table 3 and table 2 with table 4, we observe that errors in the approximation by GBS
operators are much smaller as compared to that by Stancu type a-Baskakov operators.

Table 1: Error of approximation E%ll’f)léfxszf;)(w; t) fora; = az; =0& By, B2 €{0,0.5,0.6,0.7}.

(ts, ) E©000 E©0500.5) E006,0,06 E007,007)
10,10,0.8,0.8 10,10,0.8,0.8 10,10,0.8,0.8 10,10,0.8,0.8
(1,1) 0.4983 0.0993 0.0296 0.0370
(0.9,0.9) 0.3608 0.0836 0.0352 0.0112
(0.8,0.8) 0.2531 0.0678 0.0354 0.0044
(0.7,0.7) 0.1706 0.0526 0.0319 0.0122
(0.4,0.4) 0.0357 0.0167 0.0133 0.0101
(0.2,0.2) 0.0062 0.0038 0.0034 0.0030
0.2,0.7) 0.0216 0.0135 0.0120 0.0106

(0.7,0.2) 0.0488 0.0150 0.0091 0.0035




Table 2: Error of approximation E
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Figure 1: Approximation by §

(a1,p1,02,82) () .
101,1010.82,&; (; £, ).

Figure 2: Error approximation of §(“1 ’ﬁl’ﬂz’ﬁZ)(lp; t1, £2).

20,20,0.8,0.8

10,10,0.8,0.8

@uPLa2 ) () for ay = ay = 0 & B, B € {0,0.5,0.6,0.7).

(ts, ) (0,0,0,0) (0,0.5,0,0.5) (0,0.6,0,0.6) (0,0.7,0,0.7)
20,20,0.8,0.8 20,20,0.8,0.8 20,20,0.8,0.8 20,20,0.8,0.8
(1,1) 0.2548 0.0662 0.0310 0.0035
(0.9,0.9) 0.1846 0.0542 0.0298 0.0060
(0.8,0.8) 0.1296 0.0429 0.0267 0.0108
(0.7,0.7) 0.0874 0.0326 0.0223 0.0123
(0.4,0.4) 0.0183 0.0098 0.0082 0.0066
(0.2,0.2) 0.0032 0.0022 0.0020 0.0018
0.2,0.7) 0.0111 0.0077 0.0070 0.0064
(0.7,0.2) 0.0250 0.0093 0.0064 0.0035
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Figure 3: Approximation by §

Figure 4: Error approximation of §

10,10,0.8,0.8

(a1,p1,22,82) () .
20],2010.82,0.§ Wit o).

20,20,0.8,0.8

(Lh/ﬁl/az/ﬁz)(lp; t, ).

@ b2 b)) for ay = oy = 0 & By, B2 € {0,0.5,0.6,0.7).

(ts, ) (0,0,0,0) (0,0.5,0,0.5) (0,0.6,0,0.6) (0,0.7,0,0.7)
10,10,0.8,0.8 10,10,0.8,0.8 10,10,0.8,0.8 10,10,0.8,0.8
(1,1) 0.0241 0.0254 0.0227 0.0193
(0.9,0.9) 0.0173 0.0190 0.0173 0.0150
(0.8,0.8) 0.0121 0.0138 0.0127 0.0114
(0.7,0.7) 0.0081 0.0096 0.0091 0.0083
(0.4,0.4) 0.0016 0.0023 0.0023 0.0022
(0.2,0.2) 2.7315e-04 4.3742e-04 4,5192e-04 4.6132e-04
0.2,0.7) 9.5603e-04 0.0015 0.0016 0.0016
(0.7,0.2) 0.0023 0.0027 0.0026 0.0024

9211



S. Sonker, Priyanka / Filomat 37:27 (2023), 9197-9214

Figure 5: Approximation by GBS of §

Figure 6: Error in the approximation by GBS of §

(a1,B1,02,2) ().
10,10,0.8,0.8 W;t1,

(a1,p1,02,82)
10,10,0.8,0.8

t).

(¢; f,t).

Table 4: Error of approximation E(m/ﬁwz/ﬁz)(lp; t) foray = a; =0 & p1, B2 € {0,0.5,0.6,0.7}.

20,20,0.8,0.8

(ts, ) (0,0,0,0) (0,0.5,0,0.5) (0,0.6,0,0.6) (0,0.7,0,0.7)
20,20,0.8,0.8 20,20,0.8,0.8 20,20,0.8,0.8 20,20,0.8,0.8
(1,1) 0.0060 0.0071 0.0065 0.0058
(0.9,0.9) 0.0043 0.0053 0.0050 0.0045
(0.8,0.8) 0.0030 0.0038 0.0036 0.0034
(0.7,0.7) 0.0020 0.0027 0.0026 0.0024
(0.4,0.4) 4.1094e-04 6.3051e-04 6.4009e-04 6.3925e-04
(0.2,0.2) 6.8544e-04 1.1982e-04 1.2603e-04 1.3102e-04
0.2,0.7) 2.3990e-04 4.1936e-04 4.4111e-04 4.5855e-04
(0.7,0.2) 5.7772e-04 7.6312e-04 7.3784e-04 6.9370e-04
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Figure 7: Approximation by GBS of §g612ﬁ10[22(f§)(1/), 1, t2).

Figure 8: Error in the approximation by GBS of §%12’€16§(’f g)(w; t1, t2).

7. Conclusion

The Stancu type modification of a-Baskakov operators yields better approximation than a-Baskakov
operators. The Stancu parameters (a1, f1, @2, f2) involving in the modification provides flexibility to pro-
posed operators. This can be seen from the figures 2 and 4. Further from the error tables 1,2,3 and 4,
it can be observed that the rate of convergence of GBS operators is much better than that of bivariate
a-Baskakov-Stancu operators.
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