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Sharp bounds for the operator norm of commutator
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Abstract. Let ∥ · ∥p denote the Schatten p-norm, 1 ≤ p ≤ ∞. The smallest constant CF
∞,q,r such that

∥XY − YX∥∞ ≤ CF
∞,q,r∥X∥q∥Y∥r

for all real (F = R) or complex (F = C) matrices X and Y is determined.

1. Introduction

A general problem is the determination of the best (i.e., smallest) constant CFp,q,r such that

∥XY − YX∥p ≤ CFp,q,r∥X∥q∥Y∥r, X,Y ∈Mn(F), (1)

where Mn(F) denotes the set of n × n matrices with entries in F ∈ {R,C}, and ∥ · ∥p denotes the Schatten
p-norm, 1 ≤ p ≤ ∞. In [2], Böttcher and Wenzel first raised the problem for real matrices and Frobenius
norm (i.e., for F = R and p = q = r = 2). It was conjectured that CR2,2,2 =

√
2. The conjecture was proved

by László [11] for n = 3, and in general by Vong and Jin [16] and by Lu [12]. The result was extended to
complex matrices in [1] and [3], giving CC2,2,2 =

√
2. For other interesting results about commutator norm

inequalities, see the surveys [9] and [13].

The generalization (1) was raised in [18]. Simple formulas for CFp,q,r are obtained in [6] and [18].

In particular, for the operator norm of commutators, i.e., p = ∞, we have (see [18]) CF
∞,1,1 =

√
27
4 and

CF∞,q,r = 21− 1
max{q,r} if q ≥ 2 or r ≥ 2. Difficulty arises when coming to the remaining situation. In [8], it is

shown that CR
∞,q,1, 1 < q < 2, can be found by solving a polynomial-like equation. This hinted that simple

expressions for CR∞,q,r are not likely.

For 1 ≤ p ≤ ∞, let p̃ satisfy 1
p +

1
p̃ = 1. As usual, take 1

∞
= 0. It is shown in [18] that the commutator

bounds CFp,q,r satisfy

CFp,q,r = CFp,r,q and CFp,q,r = CFq̃,p̃,r. (2)

2020 Mathematics Subject Classification. 15A60
Keywords. Commutator, Schatten norm, operator norm, singular values.
Received: 21 January 2023; Revised: 30 April 2023; Accepted: 09 May 2023
Communicated by Mohammad Sal Moslehian
This research is supported by the research project 0013/2021/A from the Science and Technology Development Fund, Macao S.A.R.

(FDCT).
* Corresponding author: Che-Man Cheng
Email addresses: fstcmc@um.edu.mo (Che-Man Cheng), mb95454@connect.um.edu.mo (Ka Leong Hoi)



C.-M. Cheng, K. L. Hoi / Filomat 37:27 (2023), 9183–9195 9184

Thus, CF∞,q,r = CFq̃,1,r = CFq̃,r,1. Recently, the determination of CFp,1,1, 2 < p < ∞, is solved in [4] with a new form
of solution: the constants CFp,1,1 are expressed in terms of a parametrization of p. To determine CF∞,q,r, we
are going to determine CFp,1,r for all the unsolved situations of p and r, i.e., 2 < p < ∞ and 1 < r < 2. This
problem is solved in [4] for 2× 2 real matrices. Here, in Theorem 2.7, we solve the problem for general n×n
matrices.

Let us introduce some notations. Let e j ∈ Fn denote the column vector with 1 at the j-th component and
0 otherwise. The identity and zero matrices (of appropriate orders) are denoted by I and 0, respectively.
For X,Y ∈ Mn(F), the commutator XY − YX is denoted by [X,Y]. Let Ei j ∈ Mn(F) denote the matrix with
1 at the (i, j) entry and 0 otherwise. Let s1(X) ≥ · · · ≥ sn(X) denote the singular values of X arranged in
non-increasing order, and s(X) = (s1(X), . . . , sn(X))T. Let s1,2(X) = (s1(X), s2(X))T. Let O(n) and U(n) denote
the sets of n× n orthogonal and unitary matrices, respectively. The set of the extreme points of a convex set
X is denoted by ext(X). For simplicity, we use ∥ · ∥ to denote the Euclidean norm on Fn and the Frobenius
norm on Mn(F). We also use the following notations:

Σ1,r(n,F) = {(X,Y) : X,Y ∈Mn(F), ∥X∥1 = 1, ∥Y∥r = 1},
Σ0

1,r(n,F) = {(X,Y) : X,Y ∈Mn(F), ∥X∥1 = 1, ∥Y∥r = 1, tr X = tr Y = 0},

Σ(1),r(n,F) = {(X,Y) : X,Y ∈Mn(F), s(X) = (1, 0, ..., 0)T, ∥Y∥r = 1},
Σ0

(1),r(n,F) = {(X,Y) : X,Y ∈Mn(F), s(X) = (1, 0, ..., 0)T, ∥Y∥r = 1, tr X = tr Y = 0},

S(1),r(n,F) = {(s1([X,Y]), s2([X,Y])) : (X,Y) ∈ Σ(1),r(n,F)},
S0

(1),r(n,F) = {(s1([X,Y]), s2([X,Y])) : (X,Y) ∈ Σ0
(1),r(n,F)}.

2. Results

2.1. Some background and lemmas

A norm is a convex function and a closed unit ball is a convex set. For the determination of CFp,q,r,
one may focus on the extreme points of the unit balls. When q = 1, ext{X : X ∈ Mn(F), ∥X∥1 ≤ 1} is the
set of normalized rank one matrices. Note that when rank X = 1, rank [X,Y] ≤ 2. It is known (see [4,
Introduction]) that (with ∥x∥p is the lp norm of x),

CFp,1,r = max{∥[X,Y]∥p : (X,Y) ∈ Σ(1),r(n,F)} = max{∥x∥p : xT
∈ S(1),r(n,F)}. (3)

A simple fact about the set S(1),r(n,F) is given in the following lemma.

Lemma 2.1. Suppose n ≥ 2, 1 ≤ r ≤ ∞ and F ∈ {R,C}. The set S(1),r(n,F) is star-shaped with the origin as a star
center.

Proof. The proof is similar to that given in [4, Lemma 3.1].

The set S(1),r(2,R) is characterized in [4]. Let

• C1 be the segment joining the points (1, 0) and
( √

2+1
2 ,

√
2−1
2

)
together with the curve

C(1) :
4
√

sinϕ cosϕ
(sinϕ + cosϕ)2 (cosϕ, sinϕ), tan−1

( √
2−1
√

2+1

)
≤ ϕ ≤

π
4
,

• Cr, 1 < r < ∞, be the curve

Cr :
(
x(t), y(t)

)
=

(
f (t) + 1(t), f (t) − 1(t)

)
, 0 ≤ t ≤ 1, (4)
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where

f (t) =

√
(tr+1 + tr−1)2 + (1 − t2r)2

(t2r−2 + 1)(t2r + 1)
1
r

and 1(t) =
(tr+1 + tr−1)

(t2r−2 + 1)(t2r + 1)
1
r

.

(Note that the above formulas are obtained with t = s
1

r−1 and so cannot be used for r = 1.)

• C∞ be the segment joining the points (1, 1) and (2, 0).

For 1 ≤ r ≤ ∞, the curve Cr, the x-axis and the line x = y bounded a region. We denote this region by Rr.
For illustration, Figure 2.1, which can be found in [4], shows the curve Cr for r = 1, 1.3, 1.7, 2, 2.5, 5,∞. The
broken line shows the segment joining the origin and the point (1, 1).

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Figure 2.1. The curve Cr for r = 1 (blue), 1.3 (yellow),
1.7 (magenta), 2 (red), 2.5 (cyan), 5 (green),∞ (black).

Theorem 2.2. [4, Theorem 3.3] Suppose 1 ≤ r ≤ ∞. Then S(1),r(2,R) = S0
(1),r(2,R) = Rr.

Lemma 2.3. Suppose 1 ≤ r ≤ ∞. The curve Cr is a convex curve and the slope m of any of its non-vertical tangent
line satisfies

m ∈


(−∞,−1] ∪ [ r

2−r ,∞) if 1 ≤ r < 2,
(−∞,−1] if r = 2,
[ r

2−r ,−1] if 2 < r < ∞,
{−1} if r = ∞.

. (5)

Proof. We first consider 1 < r < ∞. When t goes from 0 to 1, the curve Cr goes from (1, 1) to (21− 1
r , 0) in the

first quadrant. When r = 2, the curve C2 is the arc (in the first quadrant) of the circle with radius
√

2 and
centered at the origin, joining (1, 1) and (

√
2, 0). When r ∈ (1,∞) \ {2}, referring to the second paragraph of

[4, Section 4], it is noted that at the points (1, 1) and (21− 1
r , 0), the slopes of the tangent lines of Cr are -1 and

r
2−r , respectively. In [4, Lemma 3.5], by showing that dy

dx ·
d2 y
dx2 ≥ 0 (except possibly at the point where the

curve has a vertical tangent), it is proved that Cr is a convex curve. The result follows readily.

When r = 1, the fact that C(1) is a convex curve is proved in the proof of [4, Theorem 2.1]. At the points

(1, 1) and (
√

2+1
2 ,

√
2−1
2 ), the slopes of the tangent lines are -1 and 1, respectively. The result follows readily.

Finally, the result is trivial when r = ∞.

For x ∈ Rn, let x[i] denote the i-th largest component of x, i.e., x[1] ≥ · · · ≥ x[n]. For x,y ∈ Rn, we say
that x is weakly majorized by y, and write x ≺w y, if

∑k
i=1 x[i] ≤

∑k
i=1 y[i], k = 1, 2, . . . ,n. See [14] for more

information about majorization.

Lemma 2.4. Let n ≥ 1, F ∈ {R,C} and X,Y ∈Mn(F).
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(a) Suppose d = (|x11|, . . . , |xnn|)T. Then d ≺w s(X).

(b) For any 1 ≤ r ≤ ∞, if s(X) ≺w s(Y) then ∥X∥r ≤ ∥Y∥r .

Proof. For (a), see [14, 9.D.1]. For (b), see [14, 10.A.2].

Lemma 2.5. Let 1 ≤ r ≤ ∞, F ∈ {R,C} and X ∈M2(F). Then ∥X − tr X
2 I∥r ≤ ∥X∥r.

Proof. Suppose X ∈ M2(C). By [10, Lemma 1.3.1], X is unitarily similar to a matrix with equal diagonal
entries. In fact, when X is real, it is orthogonally similar to a matrix with equal diagonal entries. The
argument is as follows. Let X = S + K where S = 1

2 (X + XT) is symmetric and K = 1
2 (X − XT) is skew-

symmetric. Let u1,u2 ∈ R2 be orthonormal eigenvectors of S corresponding to its real eigenvalues λ1 and
λ2. Let v1 =

1
√

2
u1 +

1
√

2
u2, v2 =

1
√

2
u1 −

1
√

2
u2. Then, V = [v1 v2] is orthogonal. By direct verification, both

diagonal entries of VTSV are 1
2 (λ1 + λ2). As K is skew-symmetric, VTKV is also skew-symmetric and hence

its diagonal entries are zero. Hence VTXV has equal diagonal entries.

Write X̂ = X − tr X
2 I. We now show that s(X̂) ≺w s(X). Under unitary (orthogonal if F = R) similarity, we

may assume X =
[

a b
c a

]
and so X̂ =

[
0 b
c 0

]
. Then,

s1(X) ≥ max
{√
|a|2 + |b|2,

√
|a|2 + |c|2

}
≥ max{|b|, |c|} = s1(X̂).

Furthermore, we have

(s1(X) + s2(X))2 = ∥X∥2 + 2|det X|
= 2|a|2 + |b|2 + |c|2 + 2|a2

− bc|
≥ 2|a|2 + |b|2 + |c|2 + 2|bc| − 2|a|2

= (|b| + |c|)2

= (s1(X̂) + s2(X̂))2.

The required weak majorization result follows. The result then follows from Lemma 2.4(b).

Lemma 2.6. Suppose X ∈M2(C). Then s(Re(X)) ≺w s(X).

Proof. Suppose U,V ∈ O(2) such that URe(X)V = diag
(
s1(Re(X)), s2(Re(X))

)
by the singular value decompo-

sition. Then, using Lemma 2.4(a),

s(Re(X)) = s(URe(X)V) ≤ (|(UXV)11|, |(UXV)22|)T
≺w s(UXV) = s(X).

Here, ‘≤’ denotes the component-wise comparison. The result follows readily.

2.2. The main theorem
To state our main theorem, we first note that when 1 ≤ r ≤ 2, referring to (5) and Figure 2.1, there is a

unique point (x(tr), y(tr)) on the curve Cr at which the tangent line is vertical.

Theorem 2.7.

(a) Let x and y be defined as in (4), and let (with x′ denoting the derivative of x)

p(t) = 1 +
ln

(
−

y′(t)
x′(t)

)
ln x(t)

y(t)

, 0 < t < tr.

Suppose F ∈ {R,C}, n ≥ 2 and 1 < r < 2. Then,

CF
∞,

p(t)
p(t)−1 ,r

= CFp(t),1,r =
[
(x(t))p(t) + (y(t))p(t)

]1/p(t)
= y(t)

(
1 −

x(t)y′(t)
y(t)x′(t)

)1/p(t)

, 0 < t < tr.
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(b) The function p (resp. p
p−1 ) is strictly increasing (resp. decreasing) and its range is (2,∞) (resp. (1, 2)).

Utilizing the set S(1),r(2,R), in particular Cr, Theorem 2.7 is proved when n = 2 and F = R in [4, Theorem
4.1]. Though CRp(t),1,r in Theorem 2.7(a) looks complicated, its derivation from S(1),r(2,R) is not difficulty. Let
Γk denote the curve xp + yp = kp, k ≥ 0. Then, it is obvious that

CRp,1,r = max{∥x∥p : xT
∈ S(1),r(2,R)} = max{k : Γk ∩ S(1),r(2,R) is non-empty}.

Let xT
0 ∈ S(1),r(2,R) such that max{∥x∥p : xT

∈ S(1),r(2,R)} is achieved. Obviously, xT
0 ∈ Cr. The two endpoints

of Cr are (1, 1) and (21− 1
r , 0). From [18, Theorem 3]), we have

√
2 = CR2,1,1. As p > 2, ∥(1, 1)∥p = 2

1
p <
√

2 =

CR2,1,1 ≤ CRp,1,r and so xT
0 , (1, 1). Similarily, as 1 < r < 2, xT

0 , (21− 1
r , 0). Any increase in k from CRp,1,r will make

Γk ∩ S(1),r(2,R) empty. Thus, we see that the curves ΓCRp,1,r
and Cr touch each other at xT

0 = (x(t), y(t)) with

0 < t < 1, and so have a common tangent line. The slope of the tangent line of Cr at xT
0 is y′(t)/x′(t), while

that of Γk is −(x(t)/y(t))p−1. Equating the two slopes, we get y′(t)/x′(t) = −(x(t)/y(t))p−1, from which we get
the function p and consequently CRp(t),1,r.

Our main objective is to show that Theorem 2.7 is true for general n × n complex matrices. Of course,
if we can show that S(1),r(n,C) = S(1),r(2,R), the result follows immediately (see (3)). However, this result is
stronger than what we need, and we tried in vain to prove it. Nevertheless, we see that if we can show that
the maximum

max{∥[X,Y]∥p : (X,Y) ∈ Σ(1),r(n,C)} = CCp,1,r

is attained with some (X,Y) ∈ Σ(1),r(n,C) such that s([X,Y])T
∈ Cr, then CCp,1,r is the same as the one given in

[4, Theorem 4.1] for 2 × 2 real matrices. This is our approach to prove the result.

Let C+r (resp. C−r ) denote the part of Cr joining the points
(
x(tr), y(tr)

)
and

(
21− 1

r , 0
)

(resp. (1, 1)). This is

the part of Cr where, except for the point
(
x(tr), y(tr)

)
at which the tangent line is vertical, the tangent lines

have positive (resp. negative) slopes. Let Qr be the region bounded by the x-axis, the curve C+r and the
vertical tangent line of Cr. It has nonempty interior if and only if 1 ≤ r < 2 (when r = 2, Q2 = {(

√
2, 0)}). For

1 ≤ r < 2, define the set Tr = Rr ∪ Qr. For an illustration, see Figure 2.2 for T1.3. Our main task is to show
that S(1),r(n,C) ⊂ Tr (see Theorem 2.12). With this result, we can readily prove Theorem 2.7, as follows.

Proof of Theorem 2.7. Let 2 < p < ∞. It is clear that

max{k : xp + yp = kp, (x, y) ∈ Tr}

is attained at a point lying on C−r . Hence, as C−r ⊂ S(1),r(2,R), we get

CCp,1,r = max{k : xp + yp = kp, (x, y) ∈ S(1),r(n,C)}

≤ max{k : xp + yp = kp, (x, y) ∈ Tr} (6)
≤ max{k : xp + yp = kp, (x, y) ∈ S(1),r(2,R)}

= CRp,1,r for 2 × 2 real matrices,

where (6) follows from Theorem 2.12. The result follows readily from [4, Theorem 4.1].

The proof of S(1),r(n,C) ⊂ Tr is divided into two main parts. We prove the result for n = 2 in Section 2.3.
Then, extending the idea used in [5], we prove result for n > 2 in Section 2.4.



C.-M. Cheng, K. L. Hoi / Filomat 37:27 (2023), 9183–9195 9188

2.3. The inclusion S(1),r(2,C) ⊂ Tr

We first consider n = 2 in this section. We introduce a few more notations.

Dr(F) = {X : X ∈M2(F), ∥X∥r ≤ 1},
∂Dr(F) = {X : X ∈M2(F), ∥X∥r = 1},
D

0
r (F) = {X : X ∈M2(F), ∥X∥r ≤ 1, tr X = 0},

∂D0
r (F) = {X : X ∈M2(F), ∥X∥r = 1, tr X = 0}.

Suppose c = (c1, c2)T with c1 ≥ c2 ≥ 0. Let Dc = diag(c1, c2). Define νc on M2(C) by

νc(X) = max{Re
(
tr (DcUXV)

)
: U,V ∈ U(2)} = c1s1(X) + c2s2(X). (7)

The second equality is due to von Neumann [15] (see, for example, [14, 20.B.1]). It gives a variational
characterization of the inner product of (c1, c2)T and s(X). The following lemma, giving two very nice
properties of νc that we need, can be verified readily.

Lemma 2.8. Suppose c = (c1, c2)T
∈ R2 with c1 ≥ c2 ≥ 0. Then

(a) The function νc is unitary similarity invariant.

(b) For each fixed Y ∈M2(C), νc([X,Y]) is a convex function in X.

Lemma 2.9. Let 1 ≤ r ≤ ∞. For each c = (c1, c2)T
∈ R2 with c1 ≥ c2 ≥ 0,

max{cTx : xT
∈ S(1),r(2,C)} = max{cTx : xT

∈ S0
(1),r(2,R)}.

Proof. We first show that for any Y ∈ ∂D0
r (C),

cTs([E12,Y]) ≤ max{cTx : x ∈ S0
(1),r(R)}. (8)

As tr Y = 0, there exist a unit θ ∈ C and a diagonal unitary matrix D such that θD∗YD =
[
|y11| ∗

|y21| −|y11|

]
.

By Lemmas 2.6 and 2.4(b), ∥Re(θD∗YD)∥r ≤ ∥θD∗YD∥r = 1. We may assume Re(θD∗YD) , 0. Otherwise,
y11 = y21 = 0 and this implies [E12,Y] = 0. Then, (8) is trivial. Let Z = Re(θD∗YD)

∥Re(θD∗YD)∥r
∈ ∂D0

r (R). Then,

s([E12,Y]) = s
([

y21 −2y11
0 −y21

])
= s

([
|y21| −2|y11|

0 −|y21|

])
= s([E12,Re(θD∗YD)]) = ts([E12,Z]),

where 0 < t = ∥Re(θD∗YD)∥r ≤ 1. So, (8) holds because

cTs([E12,Y]) = tcTs([E12,Z]) ≤ cTs([E12,Z]).

To prove the lemma, it suffices to prove the inequality (≤). The other part is trivial. Suppose

max{cTx : xT
∈ S(1),r(2,C)} = cTs([X,Y]),

where (X,Y) ∈ Σ(1),r(2,C). We first show that

νc([X,Y]) ≤ max{νc([X,Y]) : (X,Y) ∈ Σ0
1,r(2,C)}. (9)

Obviously, X and Y are not multiples of I. Thus, ∥X − tr X
2 I∥1 and ∥Y − tr Y

2 I∥r are positive. By Lemma 2.5,
∥X − tr X

2 I∥1 ≤ 1 and ∥Y − tr Y
2 I∥r ≤ 1. Let

X̃ =
X − tr X

2 I

∥X − tr X
2 I∥1

and Ỹ =
Y − tr Y

2 I

∥Y − tr Y
2 I∥r

,
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so that (X̃, Ỹ) ∈ Σ0
1,r(2,C). Then,

[X̃, Ỹ] =
1

∥X − tr X
2 I∥1 · ∥Y − tr Y

2 I∥r
[X,Y],

from which we easily get νc([X,Y]) ≤ νc([X̃, Ỹ]). Thus (9) holds. Then,

cTs([X,Y]) ≤ max{νc([X,Y]) : (X,Y) ∈ Σ0
1,r(2,C)} (10)

≤ max{νc([X,Y]) : X ∈ D0
1(C),Y ∈ ∂D0

r (C)}

= max{νc([X,Y]) : X ∈ ext(D0
1(C)),Y ∈ ∂D0

r (C)} (11)

= max{νc([E12,Y]) : Y ∈ ∂D0
r (C)} (12)

≤ max{cTx : x ∈ S0
(1),r(2,R)}. (13)

Note that (10) follows from (7) and (9); (11) follows from Lemma 2.8(b); (12) follows from 2.8(a) and the fact
that ext(D0

1(C)) = {U∗E12U : U ∈ U(2)}; and (13) follows from (8).

In the following theorem, though we just need the result for 1 ≤ r < 2, we include the result for 2 ≤ r ≤ ∞
which gives the precise description of the set S(1),r(2,C).

Theorem 2.10. Suppose n = 2 and 1 ≤ r ≤ ∞. Then,

(a) S(1),r(2,C) ⊂ Tr, 1 ≤ r < 2;

(b) S(1),r(2,C) = S0
(1),r(2,R) = Rr, 2 ≤ r ≤ ∞.

Proof. (a) We first note that the constant

max{s1([X,Y]) : (X,Y) ∈ Σ(1),r(n,F)} = CF
∞,1,r = CRr̃,1,1 (14)

is independent of n (≥ 2) and F, see [5]. For the last equality, see (2). As Rr = S(1),r(2,R), we know that the
vertical tangent line of Cr is x = CRr̃,1,1. Also, from (14), we deduce that S(1),r(2,C) is contain in T(CRr̃,1,1), the
triangular region with the origin, (CRr̃,1,1, 0) and (CRr̃,1,1,C

R
r̃,1,1) as vertices. For illustration, Figure 2.2 shows

the regions T(CRr̃,1,1), Rr (green) and Qr (blue), with r = 1.3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2.2. The triangular region T(CRr̃,1,1), the region Rr (green),
and the region Qr (blue), where r = 1.3.

Assume to the contrary that S(1),r(2,C) 1 Tr (= Rr ∪ Qr). Then, there exists uT
∈ S(1),r(2,C) such that

uT
∈ T(CFr̃,1,1) \ Tr. In other words, uT

∈ T(CFr̃,1,1) and is above the curve C−r (i.e., in the white bounded
region in Figure 2.2). So, there exists a non-vertical tangent line L of C−r with negative slope which separates
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uT from Tr. From Lemma 2.3, the slope m of L must satisfy m ≤ −1. So, we may take c = (c1, c2)T with
c1 ≥ c2 > 0 to be a normal vector of L. Then, as S0

(1),r(2,R) ⊂ Tr,

max{cTx : xT
∈ S0

(1),r(2,R)} ≤ max{cTx : xT
∈ Tr} < cTu ≤ max{cTx : xT

∈ S(1),r(2,C)}.

This contradicts Lemma 2.9. The result follows.

(b) When 2 ≤ r ≤ ∞, by Lemma 2.3, the slopes of tangent lines of Cr are always negative, except when r = 2
and at the point (

√
2, 0) where the tangent line is vertical. The proof is similar to that of part (a), with Tr

replaced by Rr = S0
(1),r(2,R).

2.4. The inclusion S(1),r(n,C) ⊂ Tr

Lemma 2.11. Suppose n ≥ 5 and 1 ≤ r ≤ ∞. Then, S(1),r(n,C) = S(1),r(4,C).

Proof. Suppose n ≥ 5. It suffices to show S(1),r(n,C) ⊆ S(1),r(4,C). Let (X,Y) ∈ Σ(1),r(n,C). As rank X = 1, let
X = ab∗, where a and b are unit vectors in Cn. Then,

[X,Y] = a(b∗Y) − (Ya)b∗ = a(Y∗b)∗ − (Ya)b∗.

Let U = [u1 u2 · · · un] ∈ U(n) with {a,b,Ya,Y∗b} ⊆ span{u1,u2,u3,u4}. Readily, we have

U∗XU = X̂ ⊕ 0 and U∗[X,Y]U = Z ⊕ 0,

where X̂,Z ∈M4(C) with s(X̂) = (1, 0, 0, 0)T. Let U∗YU = [U∗i YU j]i, j=1,2 = [Ŷi, j]i, j=1,2. Then,

Z ⊕ 0 = U∗[X,Y]U = [U∗XU,U∗YU] =
[

[X̂, Ŷ11] ∗

∗ 0

]
,

and hence Z = [X̂, Ŷ11]. Thus, s1,2([X,Y]) = s1,2(Z) = s1,2([X̂, Ŷ11]). If Ŷ11 = 0, the result is trivial. Suppose
Ŷ11 , 0. Then

s1,2([X,Y]) = ∥Ŷ11∥r s1,2

([
X̂, Ŷ11/∥Ŷ11∥r

])
.

Note that Ŷ11 is a submatrix of U∗YU and so ∥Ŷ11∥r ≤ ∥U∗YU∥r = ∥Y∥r = 1. By Lemma 2.1, the result
follows.

Theorem 2.12. Suppose n ≥ 2 and 1 ≤ r < 2. Then S(1),r(n,C) ⊂ Tr.

Proof. We first note that when rank X ≤ 1, rank ([X,Y]) ≤ 2 and so s2
1([X,Y]) + s2

2([X,Y]) = ∥[X,Y]∥2. Thus,
∥[X,Y]∥ is also the distance of the point s1,2([X,Y])T from the origin. For notation simplicity, abbreviate
s1([X,Y]) · s2([X,Y]) as s1·2([X,Y]), and let s2

1·2([X,Y]) = (s1·2([X,Y]))2.

Theorem 2.10(a) gives the result for n = 2. As S(1),r(3,C) ⊂ S(1),r(4,C), by Lemma 2.11, it suffices to
prove the result for n = 4. The idea of our proof comes from [5] and [7] in which, instead of s([X,Y]), the
coefficients of the characteristic polynomials of [X,Y]∗[X,Y] are studied. Here, we carry out our proof with
reference to Tr. In [5], Y = cd∗ is a rank one matrix. Perturbation can be done by varying the unit vectors
c and d. Without the rank one condition on Y here, we need different arguement and the techniques are
more involved. We divide the proof into three steps.

Step 1. Problem formulation. Suppose to the contrary that S(1),r(4,C) 1 Tr. Then there exists (X0,Y0) ∈
Σ(1),r(4,C) such that s1,2([X0,Y0])T

∈ S(1),r(4,C) \ Tr. As explained in (14), the vertical tangent line of Cr
is x = CRr̃,1,1 and CRr̃,1,1 is independent of n and F. So, s1,2([X0,Y0])T lies in the left closed open half plane
determined by x = CRr̃,1,1. On the other hand, from (20) below, we know that for any (X,Y) ∈ Σ(1),r(4,C),
s2

1·2([X,Y]) ≤ 1. Thus, s1,2([X0,Y0])T lies on or below the branch of the hyperbola xy = 1 in the first quadrant.
Hence, s1,2([X0,Y0])T lies in the region Pr bounded by the vertical line x = CRr̃,1,1, the curves C−r and xy = 1,
but not on C−r . For illustration, Figure 2.3 shows the regions Rr (green), Qr (blue) and Pr (red), with r = 1.3.
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Figure 2.3. The regions Rr (green), Qr (blue) and Pr (red), with r = 1.3.

The point at which Cr has a vertical tangent is (x(tr), y(tr)) (where x(tr) = CRr̃,1,1). Let βr = x2(tr)y2(tr).
Obviously, the point s1,2([X0,Y0])T lies above the hyperbola xy =

√
βr and so βr < s2

1·2([X0,Y0]) ≤ 1. Suppose,
for some βr < β0 ≤ 1, s1,2([X0,Y0])T lies on the hyperbola xy =

√
β0. It is easy to check that when a point on

the part of the hyperbola {(x, y) : xy =
√
β0, x ≥ y > 0} goes along the hyperbola to the right, the distance of

the point from the origin increases. Consequently,

max{∥[X,Y]∥2 : X,Y ∈ Σ(1),r(4,C), s2
1·2([X,Y]) = β0}

≥ s2
1([X0,Y0]) + s2

2([X0,Y0])

> max{x2 + y2 : (x, y) ∈ Tr, xy =
√
β0} (15)

≥ max{∥[X,Y]∥2 : X,Y ∈ Σ(1),r(2,C), s2
1·2([X,Y]) = β0}. (16)

Inequality (16) follows from Theorem 2.10(a).

The inequality (15) is strict. To prove the result, we are going to obtain a contradiction by showing that
for all βr < β ≤ 1, the first and the last terms in the above inequalities are equal, i.e.,

max{∥[X,Y]∥2 : X,Y ∈ Σ(1),r(4,C), s2
1·2([X,Y]) = β}

= max{∥[X,Y]∥2 : X,Y ∈ Σ(1),r(2,C), s2
1·2([X,Y]) = β}.

The result then follows. Our strategy is to establish (17) and (18) below for all βr < β ≤ 1:

max{∥[X,Y]∥2 : X,Y ∈ Σ(1),r(4,C), s2
1·2([X,Y]) = β}

≤ max{∥[X,Y]∥2 : X,Y ∈ Σ(1),r(4,C), s2
1·2([X,Y]) ≤ β}

≤ max{∥[X,Y]∥2 : X,Y ∈ Σ(1),r(2,C), s2
1·2([X,Y]) ≤ β} (17)

= max{∥[X,Y]∥2 : X,Y ∈ Σ(1),r(2,C), s2
1·2([X,Y]) = β} (18)

≤ max{∥[X,Y]∥2 : X,Y ∈ Σ(1),r(4,C), s2
1·2([X,Y]) = β}.

Step 2. We establish (18). For each βr < ξ ≤ 1, let

M(ξ) = max{∥[X,Y]∥2 : (X,Y) ∈ Σ(1),r(2,C), s2
1·2([X,Y]) = ξ}

= max{∥x∥2 : xT
∈ S(1),r(2,C), x2

1x2
2 = ξ}.

To show (18), it suffices to show that M is an increasing function in ξ. As ξ > βr, by Theorem 2.10(a), it
is obvious that max{∥x∥2 : xT

∈ S(1),r(2,C), x2
1x2

2 = ξ} has it maximum achieved at the unique intersection
point of xy =

√
ξ and C−r . Thus, it suffices to show that when ξ increases, the square of the distance of the

intersection point from the origin increases. In terms of the parametrization of Cr in (4), let

F(t) = x2(t) + y2(t) = 2( f 2(t) + 12(t)) and ξ(t) = x2(t)y2(t) = ( f 2(t) − 12(t))2, 0 ≤ t ≤ 1.
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Note that we have f 2(t) − 12(t) > 0 if t , 1, and it is shown in the proof of [4, Lemma 3.5] that f ′ < 0 and
1′ > 0 on the open interval (0, 1). Thus, dξ

dt = 4( f 2(t) − 12(t))( f (t) f ′(t) − 1(t)1′(t)) < 0 on (0, 1). Hence, ξ is
one-to-one and F may be regarded as a function in ξ. Using symbolic calculation with MATLAB, we get,
for 0 < t < 1 and 1 < r < 2,

dF
dξ
=

d
dt [2( f 2(t) + 12(t))]

d
dt ( f 2(t) − 12(t))2

=
(t2r
− t4)(t2r + 1)

2
r (t2r + t2)2

t6(1 − t2r)3 > 0.

Hence, F is an increasing function in ξ (for all t ∈ (0, 1)). Consequently, (18) is valid.

Step 3. We establish (17). Suppose (X,Y) ∈ Σ(1),r(4,C) with X = ab∗ where a,b ∈ C4 are unit vectors. Let
U = [u1 · · ·u4] ∈ U(4) with u1 = a and u2 =

Ya−(a∗Ya)a
∥Ya−(a∗Ya)a∥ if Ya is not a multiple of a. Then a,Ya ∈ span{u1,u2}.

Let V = [v1 · · · v4] ∈ U(4) such that v1 = b and v2 =
Y∗b−(b∗Y∗b)b
∥Y∗b−(b∗Y∗b)b∥ if Y∗b is not a multiple of b. We have

U∗([X,Y])V = U∗
(
a(Y∗b)∗ − (Ya)b∗

)
V = e1(Y∗b)∗V −U∗(Ya)e∗1 = Z ⊕ 02,

where

Z =
[

b∗Yb − a∗Ya
√
∥Y∗b∥2 − |b∗Y∗b|2

−

√
∥Ya∥2 − |a∗Ya|2 0

]
.

Hence,

∥[X,Y]∥2 = ∥Z∥2 = ∥Ya∥2 − 2Re
(
(a∗Ya)(b∗Y∗b)

)
+ ∥Y∗b∥2 (19)

and

s2
1·2([X,Y]) = |det Z|2 =

(
∥Ya∥2 − |a∗Ya|2

)(
∥Y∗b∥2 − |b∗Y∗b|2

)
. (20)

Suppose βr < β ≤ 1 and

max{∥[X,Y]∥2 : X,Y ∈ Σ(1),r(4,C), s2
1·2([X,Y]) ≤ β} = ∥[X,Y]∥2 > 0,

where (X,Y) ∈ Σ(1),r(4,C) with X = ab∗ where a,b ∈ C4 are unit vectors. We first note that we must
have s2

1·2([X,Y]) > βr. Otherwise, s1,2([X,Y])T lies in the region bounded by the x-axis, the line x = y, the
hyperbola xy =

√
βr and the vertical line x = CRr̃,1,1. Obviously, the point in this region that is furthest

from the origin is the point (x(tr), y(tr)). So, x2(tr) + y2(tr) ≥ ∥[X,Y]∥2. Suppose (H,K) ∈ Σ(1),r(2,R) such that
s([H,K])T

∈ C−r and s2
1·2([H,K]) = β. From the proof in Step 2, we know that ∥[H,K]∥2 > x2(tr) + y2(tr). Then,

(H ⊕ 0,K ⊕ 0) ∈ Σ(1),r(4,C), s2
1·2([H ⊕ 0,K ⊕ 0]) = β and ∥[H ⊕ 0,K ⊕ 0]∥2 > ∥[X,Y]∥2. This contradicts the

maximality of ∥[X,Y]∥2.

We now have different arguement, depending on whether a and b are linearly dependent or not.

Suppose a and b are linearly dependent. Under simultaneous unitary similarity on X and Y and the
multiplication of a suitable unit scalar to X, we may assume X = E11. Let Ui = [1]⊕Wi where Wi ∈ U(3), i =
1, 2. By direct calculation, we have U∗1[E11,U1YU2]U∗2 = [E11,Y] so that s([E11,U1YU2]) = s([E11,Y]). Thus,

with U1 and U2 suitably chosen, we may assume y13 = y14 = y31 = y41 = 0. Then, [X,Y] =
[

0 y12
−y21 0

]
⊕ 0.

On the other hand, as
[

y11 y12
y21 y22

]
is a submatrix of Y,

∥∥∥∥∥[ y11 y12
y21 y22

]∥∥∥∥∥
r
≤ 1. Let Ỹ =

[
y11 y12
y21 t

]
where t is

chosen such that ∥Ỹ∥r = 1. Then, with E11 ∈M2(C), [E11, Ỹ] =
[

0 y12
−y21 0

]
. Readily, (17) follows.

Suppose now a and b are linearly independent.
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Case 1. a∗Ya , 0 or b∗Y∗b , 0. Since s([X,Y]) = s([X∗,Y∗]), by replacing [X,Y] by [X∗,Y∗] if necessary, we
may assume a∗Ya , 0. In addition, under simultaneous unitary similarity on X and Y and the multiplication
of a suitable unit scalar to X, we may assume that a = e1, b = (b1, b2, 0, 0)T, where b1 ≥ 0 and b2 > 0. Write
Y∗b = d = (d1, d2, d3, d4)T.

Claim. (b2, 0, 0)T and (d2, d3, d4)T are linearly dependent.

Before we prove the claim, let us first see how the claim works. Let Y = [Yi j]i, j=1,2 where Yi j ∈M2(C). For
x = (x1, x2, x3, x4)T

∈ C4, let x̂ = (x1, x2)T
∈ C2. With the claim, we see that (since b2 , 0) Y∗12b̂ = (d3, d4)T = 0.

So,

[X,Y] = ab∗Y − Yab∗ =
[

âb̂∗Y11 − Y11âb̂∗ 0
−Y21âb̂∗ 0

]
. (21)

We now show that Y21â = 0. As â, b̂ ∈ R2 are unit vectors, â + b̂ and â − b̂ are orthogonal. Suppose
â + b̂ = ∥â + b̂∥u1 and â − b̂ = ∥â − b̂∥u2. Then,

2â = ∥a + b∥u1 + ∥a − b∥u2 and 2b̂ = ∥a + b∥u1 − ∥a − b∥u2.

Take W ∈ O(2) such that Wu1 = u1 and Wu2 = −u2. We see that Wâ = b̂ and Wb̂ = â. Let U = W ⊕ I. Then
UX∗U∗ = X. As

s([X,UY∗U∗]) = s([UX∗U∗,UY∗U∗]) = s([X∗,Y∗]) = s(−[X,Y]∗) = s([X,Y]),

we may apply the claim to [X,UY∗U∗] to have (WY∗21)∗b̂ = 0, i.e., Y21â = 0. Thus, from (21),

s1,2([X,Y]) = s([âb̂∗,Y11]).

If ∥Y11∥r = 1, (17) follows. Otherwise, as Y11 is a nonzero submatrix of Y, 0 < ∥Y11∥r < 1. Then,

s([âb̂∗,Y11]) = ∥Y11∥r s
([

âb̂∗,
Y11

∥Y11∥r

])
.

As S(1),r(2,C) is star-shaped by Lemma 2.1, we deduce that s([âb̂∗,Y11])T
∈ S(1),r(2,C) but not on the boundary

curve C−r . The hyperbola xy = s1·2([âb̂∗,Y11]) (= s1·2([X,Y]) >
√
βr ) intersects with C−r at some point s([H,K])T,

where (H,K) ∈ Σ0
(1),r(2,R). The points s([âb̂∗,Y11])T and s([H,K])T lie on the same hyperbola, and s([H,K])T

is on the right of s([âb̂∗,Y11])T. Thus, for (H ⊕ 0,K ⊕ 0) ∈ Σ(1),r(4,C), we easily get ∥[H ⊕ 0,K ⊕ 0]∥2 >
∥[âb̂∗,Y11]∥2 = ∥[X,Y]∥2. Also, we have s2

1·2([H ⊕ 0,K ⊕ 0]) = s2
1·2([âb̂∗,Y11]) = s2

1·2([X,Y]) ∈ [βr, β]. This
contradicts the maximality of ∥[X,Y]∥2. The result follows.

Proof of the claim. The idea of the proof can be found in [5]. We include the necessary modification here.
Assume to the contrary that (b2, 0, 0)T and (d2, d3, d4)T are linearly independent. Then d3 or d4 is nonzero.
By multiplying a suitable scalar to Y, we may assume d1 ≥ 0. Let W ∈ U(3) such that

([1] ⊕W)Y∗b = ([1] ⊕W)d = (d1, ∥(d2, d3, d4)T
∥, 0, 0)T,

and let, for α ∈ [−π, π],
Yα = Y

(
[1] ⊕ (e−iαW∗)

)
,

and
dα = Y∗αb =

(
[1] ⊕ (eiαW)

)
d = (d1, eiα

∥(d2, d3, d4)T
∥, 0, 0)T.

Define closed unit disks

D1 = {z : z ∈ C, |z| ≤ |b∗d|} and D2 = {z : z ∈ C, |z − b1d1| ≤ |b2| · ∥(d2, d3, d4)T
∥}.
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Let Do
i and ∂Di, i = 1, 2, denote the interior and boundary of Di, respectively. Note that

∂D2 = {b∗dα : −π ≤ α ≤ π}

is the circle centered at b1d1 ≥ 0 with radius |b2| · ∥(d2, d3, d4)T
∥ > |b2d2|. The arguement is now similar to

those given in [5, page 171-172]. We can find an Yα0 ∈M4(C) with ∥Yα0∥r = 1 such that ∥[X,Yα0 ]∥2 > ∥[X,Y]∥2

and s2
1·2([X,Yα0 ]) ≤ β. This gives a contradiction.

The proof of the following is different from the corresponding part in [5, Case 2] which, in Subcase 2.2,
makes use of the result from [17] that {s1,2([X,Y])T : X,Y ∈ M3(R), s(X) = s(Y) = e1} = R1. For our purpose,
however, result on S(1),r(n,R), n ≥ 3, is not available.

Case 2. a∗Ya = b∗Y∗b = 0. If Ya = Y∗b = 0, then [X,Y] = 0 by (19), and we have a contradiction. Again, by
replacing (X,Y) by (X∗,Y∗) if necessary, we may assume Ya , 0.

Subcase 2.1. Ya < span{b}. With a and b are linearly independent, we now have a,Ya < span{b}. The
orthogonal projections of a and Ya on {x : x ∈ C4, x∗b = 0} are nonzero, and thus there exists U ∈ U(4) such
that Ub = b (hence U∗b = b), and a∗(UYa) , 0. Then, using (19) and (20), we check that (as b∗Y∗b = 0),

∥[X,UY]∥2 = ∥(UY)a∥2 − 2Re
(
(b∗(UY)∗b)(a∗(UY)a)

)
+ ∥(UY)∗b∥2 = ∥[X,Y]∥2

and

s2
1·2([X,UY]) =

(
∥(UY)a∥2 − |a∗(UY)a|2

)(
∥(UY)∗b∥2 − |b∗(UY)∗b|2

)
< ∥Ya∥2 · ∥Y∗b∥2

= s2
1·2([X,Y])

≤ β.

Thus, with Y replaced by UY, we are back to Case 1. The result follows.

Subcase 2.2. 0 , Ya ∈ span{b}. In this case, as a∗Ya = 0, we have a∗b = 0. Let U ∈ U(4) such that Ua = e1
and Ub = e2. Replacing (X,Y) by (UXU∗,UYU∗), we may assume X = E12 = e1e∗2. Then, the assumptions
a∗Ya = b∗Y∗b = 0 mean y11 = y22 = 0. Let Ui = I2 ⊕Wi where Wi ∈ U(2), i = 1, 2. By direct calculation,
we have U∗1[E12,U1YU2]U∗2 = [E12,Y] so that s([E12,U1YU2]) = s([E12,Y]). Thus, with U1 and U2 suitably
chosen, we may assume y41 = y24 = 0, y23 ≤ 0 and y31 ≥ 0. Then,

[X,Y] =

 y21 0 y23
0 −y21 0
0 −y31 0

 ⊕ [0].

Note that ∥[X,Y]∥2 = 2|y21|
2 + |y23|

2 + |y31|
2 and

(|y21|
2 + |y23|

2)(|y21|
2 + |y31|

2) =
(
∥Y∗b∥2 − |b∗Y∗b|2

)(
∥Ya∥2 − |a∗Ya|2

)
≤ β.

As
[

y21 y23
y31 y33

]
is a submatrix of Y, we deduce that

∥∥∥∥∥[ y23 y33
y21 y31

]∥∥∥∥∥
r
≤ 1. Let E12 = e1e∗2 ∈ M2(C) and

K =
[

y23 t
y21 y31

]
, where t is chosen such that ∥K∥r = 1. Then, [E12,K] =

[
y21 y31 − y23
0 −y21

]
, from which we

have (since y23 ≤ 0 and y31 ≥ 0)

∥[E12,K]∥2 = 2|y21|
2 + (y31 − y23)2

≥ 2|y21|
2 + |y23|

2 + |y31|
2 = ∥[X,Y]∥2

and
s2

1·2([E12,K]) = |det[E12,K]|2 = |y21|
4
≤ (|y21|

2 + |y23|
2)(|y21|

2 + |y31|
2) ≤ β.

Thus, (17) follows.



C.-M. Cheng, K. L. Hoi / Filomat 37:27 (2023), 9183–9195 9195

References

[1] K. Audenaert, Variance bounds, with an application to norm bounds for commutators, Linear Algebra Appl. 432 (2010), 1126–1143.
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